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A Algorithms

We first recall an algorithm from the literature and then describe in detail our two novel data structures
along with associated algorithms for constructing and using them. The last section describes ways to
allow a node to take parents also outside the set of candidate parents.

A.1 Fast zeta transform
We describe a transform that is a basic building block in several of our algorithms (see Sections 3.2
of the main article and Section A.2 below).

LetU = {1,2,...,m}. Let f be a function from the subsets of U to real numbers (or, to any ring).
The zeta transform of f (over the subset lattice of U) is the function g, defined for all " C U by

g(T) =Y f(5).

SCT

We can evaluate the zeta transform, i.e., compute g given f as input, with O(2™m) additions
[22L[11]]. This is achieved by the fast zeta transform algorithm, which first puts gy := f and then for
1 =1,2,...,muses the recurrence

gi(T) := gi1(T\{i}) + [i € T] gi-1(T), TCU,

where [¢ € T evaluates to 1 if ¢ belongs to T', and to 0 otherwise. One can show that g,,, = g.

A.2 Preparing for catastrophic cancellations

Lemma 1 in Section 3.2 of the main article gives us a way to compute any requested score sum
by subtracting a smaller sum from a larger sum. We noted that this may result in a catastrophic
cancellation due to fixed-precision arithmetic. Here we show how we handle the problematic cases
by scanning through them and storing the exact (or, more accurate) values as preprocessing.

Leti € V.LetT C U C V \ {i}. Recall that the score sum of interest is defined as
7.(U,T) = Z i (S).
SCU:SNT#0
It easy to verify that, for any j € T,
7(U,T) = (U, {7}) + 7(U\{G}, T\{5}) -

In particular, this recurrence holds when U C C;. Thus, for a fixed ¢, we can compute the values
(U, T) forall T C U C C; with O(3%) additions. Observe that the base cases can be written as

nU )= Y, m(Su{i}),
SCU\{s}
and can thus be computed using fast zeta transform with O(2¥ K?2) additions.

To avoid storing all the n3% numbers, we loop over all T' C U C C; and store 7;(U, T)) if and only if
it cannot be reliably computed from the values 7;(U) and 7,(U\T), that is, if 7;(U) — 7, (U\T) = 0
(say, the relative difference is less than 2732),

A.3 Sampling random subsets

Section 3.4 of the main article sketches an efficient technique for sampling a DAG from the posterior
conditionally on a given root-partition. The essence of the technique is to construct a data structure
for each node 7 separately so that, given “query” sets U and T', we can efficiently generate a parent set
S C U that intersects 7. Below we describe our technique in more abstract terms of subset sampling.

Let C be a set of K elements. With each subset X C C' associate a weight w(X) > 0. Consider the
problem of generating a random X with probability proportional to w(X) and satisfying X C U and
XNT #0,where U C Cand T C U are given sets.

We next give a data structure with the following properties:



e Constructing the data structure takes O(3%) time and O(3%) space.
e Sampling a random subset takes O (K) time.

For comparison, a straightforward approach would take either O(2/V!) time (linear scan) or O (4%)
space and preprocessing time (preprocessing the queries for all 7" and U).

Construction Forall X CY C C, define

FXY) = > w(s).

XCSCY
Observe that the function f can be computed with O(3%) additions using the recurrence f(X,Y) =
FXU{i},Y)+ f(X,Y\{i}) forany i € Y\ X.
Sampling Sample a subset X, given U and T, as follows. For each ¢ € U in turn, in an arbitrary
order, include 7 with probability
g(X U{i}, E)
9(X, E)

where g(X, E) := f(X,U\E) — f(X,U\E\T) and X and FE denote the sets of elements that were
already included and excluded, respectively; initially, we set both X and E empty.

; ey

To see that X is generated with the correct probability, observe first that the probability of excluding
1 can be written as

9(X, EU{i})

2
o(X.E) @)

Namely, a set S contributes to the denominator with weight w(.S) exactly when X C .S C U\ E and
SNT # 0, and to the numerator in (2)) exactly when, in addition, 7 ¢ S, and to the numerator in (T))
exactly when, in addition, i € S.

Thus, the probability of the decision made in the tth round is g(X, E:)/g(X¢—1, Et—1), where X;
and E, are the sets of elements included and excluded after the first ¢ rounds. By the chain rule, we
get from the telescoping product that X := X || is generated with probability g(X, U\ X)/g(0, ).
Observe that g(X, U\ X) = w(X) if X intersects T, and g(X, U\ X) = 0 otherwise.

Confronting catastrophic cancellation Due to fixed-precision arithmetic, the computed value of
g9(X, E) may be zero even if the exact value was non-zero. This approximation may result in an
uncontrolled bias in the sampling distribution.

As a remedy, if the computed value g(X, F) has a large relative error (deduced by the terms in the
subtraction), we switch over to brute-force sampling, which takes time O(2|U‘ ).

A.4 Allowing parents outside the candidates

Strictly requiring all parents of each node ¢ to come from the established set of K candidate parents
C; has two drawbacks: (i) For some nodes ¢, the found set C; may not be optimal or sufficiently large
to cover the posterior well. (ii) The posterior landscape may contain large zero-probability regions,
which makes moving between node partitions inefficient for the Markov chain. A remedy for both
issues is to allow any single node j # i be a parent of 4, either in combination with a small number
of other arbitrary nodes, like implemented in Gadget, or in combination with any number of other
parents from the candidates, like implemented in BiDAG [13]]. Below we present some further details.

Implementation in Gadget Currently Gadget allows a node i to have a parent set that either is
contained in the set of candidates C;, or is of size at most d, where d is a user parameter, set to 3 in
our experiments. Compared to the basic case of d = 0, this extension requires some additional work
both in preprocessing and in the Markov chain simulation phase.

In preprocessing, we compute the local score for O(n?) parent sets per node, in addition to the O (2%)
subsets of the candidate set. Adopting previously proposed techniques [J5,[17], we sort the parents



sets in decreasing order by the score; this will enable a tolerably fast computation of any queried
partial sum of the scores to within a given relative error.

In the simulation phase, when the score sum is needed for a node 7 over the parent sets that are
contained in U and intersect T', we scan the sorted list until the accumulated sum is quaranteed to
be sufficiently large (we allowed a relative error of 0.1 in our experiments). Compared to previous
implementations of this idea [} [17]], a distinctive feature in our implementation is that we can initiate
the accumulating sum by the partial sum contributed by the parent sets that are contained in the
candidates; this contribution is often non-zero and expedites the computation.

Implementation in BiDAG Constant-time score sum computation during simulation is maintained
in BiDAG by precomputing the score sums for the extended parent sets. This increases the space
requirement and the preprocessing time by a factor of n, further increasing the gap to the complexity
bounds of Gadget, necessitating the use of a smaller value of K.

Furthermore, a preliminary simulation run is used to extend the initial candidate parent sets (found by
the PC algorithm) based on visited high-scoring DAGs [13]]. The extension is vital for this procedure.

B Bayesian posterior: a derivation

Here we derive formulas for the posterior of the parameters of a linear Gaussian DAG model assuming
a normal—Wishart prior. We follow previous similar derivations by Geiger and Heckerman [7]] and
Kuipers, Moffa, and Heckerman [12]. We refer to the two reference articles by GH and KMH. In
more detail, GH derive a prior distribution for the model parameters similar to ours. KMH derives
the BGe score, noting errors in the original derivation [6]]. We derive here the prior and the posterior
of the model parameters, taking into account the KMH corrections and further correcting additional
inconsistencies in GH.

B.1 Prior and posterior distributions with respect to all variables

The basic idea is to first consider a complete DAG. We will specify the prior so that it does not
distinguish between equivalent DAGs. Thus, it does not matter which complete DAG we consider.
Then, when we proceed to consider a node 7 in an arbitrary DAG, we can make use the result we have
for any complete DAG that contains the same local pattern, i.e., node ¢ has the same parent set.

We assume « is distributed normally with precision matrix W and mean p:
x~N(p,W).
Following GH and KMH, p and W have a (conjugate) normal-Wishart prior distribution:
p~Nw,a,W), W ~W, (T ay)

where «,, and «,, are equivalent sample sizes, v is a mean vector, and 7' is an inverse scale matrix.
Because this is a conjugate prior to normal likelihood, we have that the posterior is of the same form:

MNN(V’,a;LW), W ~Wyh(R™,a)
with updated hyperparameters o), := a,, + N, o, = @, + N,

Nz
Y = TN TN and R:i=T+ Sy +
oy + N

a, N
o, +N

(v—zn)(v—2N),

N _ _

where Zy = + 25:1 xzsand Sy =Y, (s — Zn)(zs — TN).

B.2 Prior and posterior distributions with respect to subsets of variables

Now consider a node 7 in an arbitrary DAG. Our goal is to determine the joint posterior distribution
of the coefficients b; associated with the edges from pa(i) to ¢ and the precision of the error term g;.
Under the modularity assumption, the local distribution and parameter prior of node ¢ is the same for
all DAGs where pa(3) is the parent set of node . In particular, let us consider a complete DAG that
has this property and where, in addition, the topological ordering within pa(¢) conincides with the



natural ordering of integers. Let Y := pa(i) U {3}, let [ be the size of Y, and let Z denote the set of
remaining n — [ nodes. We will need the fact that subgraph induced by Y is complete in the change
of parameterization later on. For a vector v and set S, we let vg denote the subvector (v; : j € S)
where we order the entries in increasing order by j, except that 7 is the last if it belongs to S. We use
an equivalent notation for submatrices indexed by subsets of rows and columns.

Following KMH, we consider the subvector y = xy which has the distribution
y ~N(py, Wy)

where Wy := Wyy — Wy z(Wzz) "Wy is obtained by inverting to covariance matrix, marginal-
izing and inverting back to precision. The prior on 1y and Wy is

ny ~N(vy,a,Wy), Wy ~ Wi (Tyy) o —n+1) .

This result is obtained in Equation A.24 in KMH. To get to the posterior, we can make a similar
transformation of the full posterior to this subset:

py ~ N(vy, 0, Wy), Wy ~ W, ((Ryy) " a), —n+1) .
Note that the degrees of freedom in the above Wishart distribution has been reduced compared to the

corresponding distribution in the previous subsection. This result is in Equation A.26 in KMH.

B.3 Change of parameterization

We have that Byy is a full lower triangular [ x ! matrix with (b;, 0) as the /th row. Likewise, Qyy is
an [ x [ diagonal matrix including the precisions of the error terms with g; as the last element. We
will utilize the structural equation model

y = py + Byy(y — py) +ey,
from which we can solve for y:
y=py + ([ —Byy) 'ey.

Now we change the parameterization from Wy to (Byy, Qyy ) using a bijective transformation f.
Following Gelman et al. [8] p. 21-22], the density function of (Byy,Qyy ) is obtained as

p(Byy,Qyy) = |det J| - p(f ' (Byy,Qvy))

where

FHByy,Qvy) = (I — Byy)"Qyvy (I — Byy),

and J is the Jacobian matrix, i.e., the square matrix of partial derivates of f -1, f is one-to-one, since
Byy corresponds to a full DAG. The matrix Wy can be represented in a block form as follows:
Denote by B (resp. (11) the submatrix of Byy (resp. Qyy) where the last row and the last column
are removed. Now we have

_ [ d=Bu)" -b Qu 0 I-B;; 0
Wy = I 0 1 0 g b7 1
_ [ -Bi)"Qu  —big I-Bi1 0
o L 0 q; —biT 1
_ [ (=Bu)"Qu — Bui) + ¢ibib,T  —qib;
i —q;b; qi '

The absolute value of the Jacobian determinant can be obtained by direct calculation using a similar
recursion as in Theorem 6 of Geiger and Heckerman [6]:

[det J| =[] ¢’ " 3)
JeY

where k; is the index of the node j in Y. Note that this product contains the factor qé_l.



B.4 Posterior of the coefficients and the precision

Following KMH, the posterior density function of the k-dimensional Wishart distribution is
|W‘(aw7k71)/2
ZW (kv T7 Qi )

where Zyy (k, T, o) is the normalizing constant and W is positive definite. Plugging in the parame-
ters T := Ryy, W := Wy, k:=1[, and o, := &, — n + [ yields

We(W|T™Y, ) exp{ - %tr(TW)} : (4)

Wi (Wy|(Byy) ™, ay —n+1) Wyl 0% { L tr(Ryy W )}
o, — "N = < _ Ty '
A Zw(l, Ryy, o, —n+1) P 2 Yy
The change of parametrization then gives us the posterior density
TI'(Byy, QYY) X ( H q;,cj_l) ’(I _ BYY)Tny(I _ Byy)|(aw7n71)/2
JEY

X exp { - %tr (Ryy(I — Byy) Qyy (I — BYY))} .

The trace term in the exponent can be calculated by blocks:
tr (Ryy (I — Byy) Qyy (I — Byy))

— | | Bu Bie (I = B11)'Qu(I = Bu) + ¢ibib,"  —q;b;
Ry1 Rao —g;ib;T 4

= tr(Ruu(l — Bi1)'Qui(I — Bi1) + ¢iRi1bib;" — q;Ri2b;") + Ra2q; — ¢; Ra1b;
= ¢;b;' Ri1b; — 2¢; Ro1b; + Raogi + ¢
= qib;' Ri1b; — 2¢; Ro1(R11) T Ruib; + qiRo1(R11) ™  Rui(Ru1) ™' Rio
— qiRo1(R11) T Ri1(Ri1) ' Ria + Ragqi + ¢
= ¢;i(b; — (R11) " "Ri2)"Ri1(b; — (R11) ' Ri2) + ¢i(Ra2 — Ro1(R11) 'Ri2) + ¢, (5)
where c collects any terms that are constant with respect to b; and g;.

The determinant term simplifies since the determinant of a triangular matrix is the product of its
diagonal entries:

(= Byy) Qyy (I = Byy) |72 = Quy b 02 = TT g 020 o)
JEY

Putting together the exponent (Eq. [5), determinant (Eq. [6), and the Jacobian (Eq. [3) gives
m(bi, qi) 61271(1504”7”71)/2 eXP{ - %[Qz (b; — (R11) " 'Ri2)"Ri1(b; — (R11) ' Ri2)
+ qi(Ra2 — 321(311)71312)} } Q).
The first term in the exponent implies that:
b | g ~ N ((Ri1)'Riz, ¢iRu1) -
The normalizing constant for the normal distribution includes the term

(iRi) ™Y~ = [(@Ru)|"? o ¢V

K2

Thus, marginalizing out b; leaves

— ol —n— 1 —
() « g 1>/2f1§ w2 eXP{ 5% (Ra2 — Ro1(R11) 1R12)} :
This is a one-dimensional Wishart (Gamma) distribution, see Equation ] Thus

qi ~ Wl((RQQ - R21(R11),1R12)71 y O‘;u —n+ l) .



B.5 Prior of the coefficients and the precision

If we replace R with T and «/, with o, in the above derivation, we can obtain the priors:

bi | ¢ ~ /\/((T11)_1T12 ; CI¢T11) ) qi ~ W1<(T22 - T21(T11)_1T12)_1 y Oy — 1M+ l) .

Compared to p. 1425 in GH the precision/covariance of b; is different. The dimensions obtained in
our derivation correspond to the dimensions of b; correctly. Furthermore, the degrees of freedom
differ; ours take into account the change due to considering subset of variables, pointed out by KMH.

B.6 Marginal posterior of the edge coefficients

We can still integrate out g; to get the marginal posterior of b;. The non-constant terms in the joint
density in Equation[7]are

(X/ —n - 1 — —
ql( RS exp{ ) [(bv — (R11) "' Ri2) "Ry1(b; — (R11) ' Ri2)

+ (R22 — R21(R11)71312)} Qi} .
Integrating this over g; results in a Gamma integral, which evaluates to

F((Oziﬂ —nNn + 2l — 1)/2) {% {(bl — (Rll)_lng)TRll (bl — (Rll)_lng)

— (o, —n+21-1)/2
+ (Ra2 — 321(311)711%12)} } .

This implies that

7(b;) o <1+ !

al, —n+1

o, —n+l
Rog — Roy(Ry1) ' Rio
—(al,—n+l+1-1)/2
X Rll(bi - (R11)1R12)> )

(bi - (R11)71R12)T

and since b; has | — 1 elements, we have that (see, e.g., Gelman et al. [8])

o, —n+l
Rys — Ro1 (R11) 1Ry

where the middle term marks precision.

b ~ -1 ((R11)1R127 Ryy, o, —n+ l> ,

C Candidate parent selection

Here we describe in detail the algorithms used for selecting the K candidate parents and how the
performance of the algorithms was evaluated. Some implementation practicalities are also discussed.

C.1 Optimal algorithm and heuristics
Unless otherwise specified, the local scores referred to in the following are as specified in section D.1.

Opt The Opt (i.e., optimal) algorithm selects a K -set C; so as to maximize the posterior
probability that pa(i) C C; (cf. Proposition 2 in the main paper). First all the local
scores are computed, after which the (unnormalized) parent set probabilities are
computed by summing for each node and parent set the scores of DAGs where the
variable has the given parent set. As a last step, for each node ¢ and subset of nodes
C; CV\ {i} of size K (that is, for each possible set of candidate parents) the sum
of probabilities over the subsets of C; is computed, and the set maximizing the sum
is finally output. Note that Opt is scalable only up to around 25 variables and we use
it here for a reference.

Top Select the K nodes j with the highest local score 7;({;}). The heuristic therefore
only considers parent sets of size 1 and will miss any candidate parent whose value
is dependent on being in a set with a number of others.



PCb Merge the neighbourhoods of i, excluding children, returned by PC on 20 bootstrap
samples. The parameters of the algorithm are the p-value threshold and the maximum
conditioning set size in the independence tests. To avoid being overly conservative,
we set the p-value to 0.10 and the maximum conditioning set size to 1.

MBb Merge the Markov blankets of ¢ returned by the incremental association (IA) algorithm
on 20 bootstrap samples. The p-value threshold and maximum conditioning set size
were set to the same values as in PCb.

GESb Merge the neighborhoods of 7, excluding children, returned by greedy equivalence
search (GES) on 20 bootstrap samples. The score function used (in pcalg [[10L 9])) is
BIC.

Greedy lteratively, add a best node to Cj, initially empty, where goodness of j is
maxgcc, ™ (S U {j}). That is, add the node with which we can get the next highest
uncovered local score covered.

Back&Forth Using the definition of goodness from Greedy, start from a random K -set, delete a
worst and add a best node, alternatingly, until the added node is the one deleted in
the previous step.

Greedy-lite A computationally more efficient variant of Greedy. First, build a candidate set C;
of K — s nodes with Greedy. Then, instead of adding the single best node, add the
s best nodes in a single step, where the goodness of a node is defined as in Greedy.
We set s := 6 to limit the number of scores that we have to compute by a factor of
26 = 64, as compared to Greedy.

Gadget, including the candidate selection phase, in its current version is implemented mostly in
Python, with some time critical parts in C++. The local scores are computed with the Python version
of Gobnilp [1,4]. The PC and Incremental Association algorithms are implemented in the bnlearn
R-package [20], which our code interfaces with. Similarly, we use GES as implemented in the pcalg
R-package [[10,19]. To compute the marginal posterior parent set probabilities (as per Proposition 2
in the main paper), allowing both for the evaluation of the heuristics and for computing the optimal
parent sets when n is small, we use software developed by Pensar et al. [[19].

As the algorithms PCb, MBb and GESD as described can return any number of candidate parents for
each node, there has to be a mechanism for adjusting the number to match the desired K exactly. In
our experiments we tried two approaches: adding (removing) nodes randomly, or in the order given
by the scores of their singular parent sets. The latter proved more performant and was therefore used.
Consequently, the selection of the parameters for the used PC and IA algorithms also determines how
closely the returned candidates mirror those of Top — if the initial phase of the heuristics return an
empty graph, the candidates finally returned equal those given by 7op. Bootstrapping the input data
has a similar effect, as it can only increase the number of candidates returned by the initial parts of
the heuristics.

In terms of speed, the scoring code we use does not seem particularly well suited to Opt, or the
heuristics Greedy and Back&Forth, which require large numbers of scores to be computed. On
the other hand, Greedy seems like a good candidate as the default algorithm, as it achieves the
greatest coverage of the posterior mass for sufficiently large K, close to that of the reference Opt.
Back&Forth possibly offers only a slight advantage over Greedy in some cases (Figure 2 in main
paper; Figure[C.2). Thus, in order to avoid the candidate selection phase dominating the time use
in the MCMC runs, while still constructing candidate sets that cover close to equal amount of the
posterior mass as those constructed by Greedy, we used the more efficient Greedy-lite variant of it for
the main experiments in the paper.

Apart from the heuristics listed, we also experimented with numerous others. These included, for
example, hybrid ones which ran a number of heuristics in parallel for increasing K’ < K until the
size of the union of the candidates they found reached the target /. The results, however, did not
show marked improvement over the simpler methods.

C.2 Test data

Gaussian data was generated as explained in section 4.2 of the main paper.
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Figure C.1: Distribution of coverages over the n nodes for 4 randomly selected Gaussian datasets.

For the experiments on discrete data, we used the UCI data sets utilized by Malone et al. [[15]] for
learning discrete Bayesian networks. In the paper we included all the data sets with up to 23 variables,
to allow for exact evaluation of the parent set probabilitieﬂ

C.3 Empirical results

To evaluate the returned candidates for a given node, when the number of variables is sufficiently
small to allow for computing the exact parent set posteriors, we simply summed over all the posteriors
of the subsets of the candidates. Finally, we reported the mean over the nodes of the coverages thus
obtained (Figure 2 in the main paper). Here we break down the analysis further by considering the
distribution of the posterior mass covered by the candidate parents of each node. The results in
Figures|C.I]and[C.2]indicate, apart from the variation between different data sets, that even when a
heuristic performs well on average there are often nodes for which the candidate parents do not cover
a proportionate part of the posterior mass (e.g., Figure[C.2[f)).

D DAG sampling and causal effect estimation

Here we describe in detail the algorithms used for estimating causal effect and discovering ancestor
relations. We also describe how the data was generated and how the performance of the algorithms
was evaluated. We present further results and discuss some implementation practicalities.

D.1 Tested methods

We first describe the hyperparameters and implementation particulars of our novel methods, and then
previous methods. We also present further simulation results.

Hyperparameters of Bayesian models Unless noted otherwise, we set the hyperparameters of
the priors as follows. For continuous data we use BGe (i.e., a normal-Wishart prior) with o, = 1,
ay =n+2,and T = %[n as default in Gobnilp [4]]. For discrete data we employ BDeu with
equivalent sample size 10. As described in Section 2 of the main paper, we set the prior probability
of a DAG proportional to 1 / I, (";1), where d; is the number of parents of node ¢ in the DAG.
These choices ensure that Markov equivalent DAGs receive the same score, i.e., posterior probability;
while we regard this result as a folklore, we include the following proof for completeness:

Proposition D.1. The multiset of node indegrees is unique for DAGs in the same equivalence class.

Proof. Anedge i — j is called covered in a DAG G if pax(j) = pac (i) U {i} [3| Def. 2]. Consider
reversing 7 — j to 7 < j in G to form G’. Because a covered edge cannot be a part of an unshielded
v-structure, we have that G and G’ are in the same Markov equivalence class. Furthermore, a covered
edge reversal does not change the multiset of node indegrees, since the indegrees of nodes ¢ and

"We did not include LETTER (n =17, N = 20000), however, which proved to be too difficult to compute
all local scores for with our setup, presumably due to the large number of data points.



T Y ™ ) e T

&0
© 0.6 0.6 0.6
g . .
0 04 . 0.4 . 0.4
)
0.2 - . 0.2 $$ 0.2 '
0 T el T 0 T T T 0 T T T
K=6 K=9 K=12 K=6 K=9 K=12 K=6 K=9 K=12
(a) VOTING, n = 17, N = 435 (b) Zoo,n = 17, N = 101 (¢) LYMPH, n = 18, N = 148
1 141 esme cogogy segegy
g ? ? ? ®e80 DD e 0 e 7
0.8 0.8 $ $$$ ] 0.8 S .
& . ‘
© 0.6 3 0.6 0.6
o [] H oo
304 0.4 0.4
)
0.2 0.2 . 0.2
0 . . . 0 . . .
K=6 K=9 K=12 K=6 K=9 K=12 K=6 K=9 K=12
(d) EUCALYPTUS, n. = 20, N = 736 (e) HEPATITIS, n = 20, N = 155 (f) CREDIT-G, n = 21, N = 1000
1 1
2 " ? ¢¢ ?@?**
0.8 - 0.8 o8+ THHHFH
L oo
806 0.6 . llj
5 . e%e
o 04 0.4 X
) ° H
0.2 0.2 -
0 - - " 0 - - -
K=6 K=9 K=12 K=6 K=9 K=12
(g) HYPOTHYROID, n = 22, N = 3772 (h) MUSHROOM, n = 22, N = 8124 (i) SPECT, n = 23, N = 267

0 Opt O Top E PCb E MBb [ Greedy [ Back&Forth

Figure C.2: Distribution of coverages over the n nodes for each included UCI data set.

4 are simply switched. Now, by Theorem 2 of Chickering [3]], one can move through all DAGs in
a Markov equivalence class by a sequence of covered edge reversals. Hence, since the multiset of
node indegrees remains unaltered in any single covered edge reversal, all members of a Markov
equivalence class must have the same multiset of node indegrees. O

Our methods

Gadget For selecting candidate parents, Gadget uses Greedy-lite. The number of candidate
parents K was set as large as possible such that computations other than MCMC
iterations took at most a half of the allowed time budget. The running time perfor-
mance of the different parts of the system was estimated for each input by a short
preliminary test run. The first 50 % of the iterations were disregarded as burn-in, and
thinning was set to obtain 10 000 DAGs.

Beeps This essentially implements Algorithm 2 of the main paper in R. Beeps can utilize
DAGs sampled by either Gadget or BiDAG. The employed normal-Wishart prior is
the same as used for sampling DAGs.

Previous methods for averaging over DAGs

BiDAG We use the partitionMCMC function implemented in the BIDAG R-package [13].
The algorithm determines its sampling space and the number of candidate parents
automatically using a search. In some of the 107-variable runs, partitionMCMC exits
and suggests to increase HARDLIMIT of the allowed number of possible parents (/).
In these cases we reran partitionMCMC with an increased HARDLIMIT. The first 50 %
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Figure D.1: Further performance comparisons. The MCMC methods were run for 1 hours for 20-node
data and 3 hours for the benchmarks.

BEANDisco

Exact

of the iterations were disregarded as burn-in, and thinning was set such that we obtain
10 000 DAGs.

We use the authors’ implementation available online [18]]. For 20 and 50 variables, the
maximum number of parents was set to 5 and 4, respectively. Note that BEANDisco
employs a so-called order modular graph prior, which results in a posterior that is not
score equivalent. The first 50 % of the iterations were disregarded as burn-in.

This is the ARP algorithm of Pensar et al. [[19]], which computes the exact posterior of
ancestor relations using dynamic programming and inclusion—exclusion recurrences.

Methods based on IDA

BIDA

IDA

IDA+GES

alDA

JIDA

For BIDA we use the available original implementation with the default priors and
scores mentioned in the paper [19]]. In particular, they employ a fractional marginal
likelihood based score.

We use IDA and PC from the pcalg package [[10]. The p-value threshold is set to
0.05. Figure [D.I{e) shows that the threshold does not have a major effect on the
accuracy for the considered datasets.

We use IDA from the pcalg package [[10l [14]. We employ the GES algorithm in
combination with the BIC score, also from pcalg [10]. IDA has been previously
coupled with GES [2] and other structure learning algorithms [19].

We use alDA with the default settings suggested in the implementation [21]], thus
setting p-value threshold of the PC algorithm to 0.1. Figure [D.I[e) shows that the
threshold does not have a major effect on the accuracy for the considered datasets.

We test both methods, RRC and MCD, as implemented in the pcalg package [10l[16].
We employ PC with a p-value threshold 0.05 and GES with BIC for obtaining the
Markov equivalence class.

Unfortunately, we were not able to get sensible results from the R-code accompanying Castelletti and
Consonni [2] for the data set sizes considered here.
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(a) Marginal causal effects for Gaussian data. (b) Ancestor relations for Gaussian data.

Figure D.2: The effect of the number of candidate parents (/K) on estimation performance. The
MCMC methods were run for 1 hours for 20-node data and 3 hours for the 50-node data.

D.2 Test data

For the synthetic models, edges were included in the graph randomly such that the average neighbour-
hood size was 4. The linear Gaussian data were generated as described in the main paper Section 4.2,
and standardized to zero mean and unit variance [14, Assumption B]. The true causal effects were
calculated from the standardized models. For the discrete case, we considered binary variables and
the model parameters were drawn from a Dirichlet with an equivalent sample size (ESS) of 10.

D.3 Empirical results

Marginal causal effects Figures [D.I[a—c) show the performance of Gadget and the IDA-based
methods in estimating causal effects for additional benchmark datasets obtained from the BNLEARN-
network repository [20]. Beeps+Gadget, with the running time of 3 hours, is able to provide more
accurate estimates, and the accuracy is improved with increasing number of data points. IDA+GES
needs twice as many data points to reach a similar level of accuracy as Beeps+Gadget. Figure[D.I]e)
shows that different p-value thresholds do not improve the performance of the methods employing
the PC algorithm.

Ancestor relations Figure [D.I|(d) shows that all MCMC methods are able to closely match the
performance of the exact approach in detecting ancestor relations in linear Gaussian data. This is
similar behaviour as seen in Figure 3(a) in the main paper for discrete data. Note that ancestor relation
posteriors are more accurate in predicting the presence of ancestor relations in the true graph, than
various applied IDA-based approaches [19].

Joint causal effects In Figure 3(c) in the main paper we evaluated the quality of the estimated
causal effects under multiple interventions. We plot the MSE of the estimated causal effects w.r.t.
the true ones, where all successive pairs of variables (i.e., {x1, 2}, {x2, 3}, ..., {®n_1,2,}) are
intervened on and we consider all causal effects of the intervened variables on the remaining variables.

The effect of the number of candidate parents (X) Figure shows the accuracy performance
of Beeps+Gadget when using different values for the number of candidate parents K. These results
indicate that larger K values generally produce better accuracy performance. For 50 variable the
higher K values mean shorter MCMC chains are possible within the time budget of 3 hours—this
results in a slight drop in accuracy for detecting ancestor relations in Figure [D.2(b).

Mixing of Markov chains Figure shows the mixing performance of Gadget on datasets of
100 and 1600 data points sampled from two benchmark Gaussian BNs from the BNLEARN-network
repository [20]. The networks, ECOLI70 and ARTH150, specify a distribution on 46 and 107 nodes,
respectively. The running times were 3 hours for ECOLI70 (as in Figure [D.T]), and 12 hours for
ARTHI50 (as in Figure 3 in the main paper). The 7 independent runs for each data set reach similar
levels of posterior probability, with similar variance, indicating good mixing performance.

Running time performance Table[D.I|reports example running times for the different parts of our
methods. Most time is spend in pre-computation, and in sampling root-partitions and DAGs.

12



—4.660k

—4.690k

—4.720k

—4.750k

00T = N ‘0417023

—4.780k

—67.27k

—67.29k

—67.32k

—67.34k

009T = N ‘04170203

—67.36k

—5.180k

—5.225k

—5.270k

—5.315k

00T = N ‘0STHLYV

—5.360k

—60.42k

—60.47k

—60.52k

—60.57k

009T = N '0STHLYV

—60.62k

Figure D.3: Mixing of Gadget on data sampled from two benchmark BNs. Y -axis shows the posterior
probability of the sampled DAGs (a logarithm of the unnormalized posterior). X -axis represents the
simulation steps after the burn-in phase, during which 100 evenly spaced DAGs were sampled. The
columns show the results for 7 independent runs. Burn-in was set to 50% of the chain length, and the
running time was set to 3 hours for ECOLI70 and 12 hours for ARTH150.

Infrastructure The experiments were run in computer clusters employing Intel Xeon E5-2680 v4
processors.
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