
Appendix

A Toy Experiment
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Figure A.1: Visualization of the toy example. The two columns visualize the inputs, features, and
atoms of the source domain and the target domain, respectively. Only the output feature in the first
channel of each convolutional layer is visualized for comparison. Domain invariant features, the last
row, are obtained by manually adapting source domain atoms to generated target domain atoms.

B Dataset Samples and Qualitative Results

B.1 Unsupervised DA for Image Segmentation

For the image segmentation experiments in Section 5.2, we provide more qualitative results in
Figure A.2.

C Computation and Parameters

In Table A.1, we provide comparisons on additional parameters and computation introduced by one
extra domain with and without the proposed domain-adaptive filter decomposition. The comparison
reveals that domain-adaptive filter decomposition not only delivers superior performances but also
saves both parameters and computation significantly.

D Comparisons to Domain Separation Networks (DSN).

Domain separation networks (DSN) [1] share the motivation with us by using ‘domain specific’ and
‘domain shared’ network components to improve domain invariant feature learning. However,
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(a) Target domain image. (b) Before adaptation. (c) After adaptation. (d) Ground truth.

Figure A.2: Qualitative results for domain adaptation segmentation. The samples are randomly
selected from the validation subsets of Cityscapes.

Table A.1: Comparisons on additional parameters and computation introduced by one extra domain.
Comparisons are performed on VGG-16, with 6 dictionary atoms and the input size of 224 × 224.

Model Regular VGG VGG with DAFD

Parameters 14.71M 0.0007M
Flops 15.38G 10.75G

- Our method works as a plug-and-play module as demonstrated with the numerous architectures in
the experiments, with no additional loss functions as in [1], which consequently introduces additional
hyperparameters to tune.
- Our method introduces only hundreds of parameters to model one extra domain; while in DSN, three
encoder networks and one decoder networks are required to model two domains, which introduces
many times more parameters.
- The aforementioned additional costs also prevent DSN from being extended to large-scale experi-
ments like the unsupervised image segmentation which can be however easily performed by using
the proposed DAFD with no additional training objectives and neglectable parameter overheads.

Despite the remarkable simplicity, DAFD is comparable to DSN according to the performance on
SVHN->MNIST. Due to limited overlap of the experiments reported in DSN with ours, we show
additional comparisons in Table A.2 by reimplementing DSN (since the code link provided with the
original paper is taken down now), and we will add the discussion to the final revision and more
experiments in the supplementary.

Table A.2: Comparisons to domain separatioon networks
(DSN) with DANN as underlying method. Datasets in-
clude USPS (U), SVHN (S), MNIST (M), MNIST-M (MM),
Synth Digits (SD), Synth Signs (SS), and GTSRB(G). ∗
denotes numbers obtained by our reimplementation.

Methods M→U U→M S→M M→MM SD→S SS→G
DSN 90.6∗ 92.1∗ 82.7 83.2 91.2 93.1
Ours 92.3 95.4 83.2 86.2 91.7 94.0
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Figure A.3: Ablation study on K
performed on SVHN→MNIST with
DANN as underlying method.
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E Ablation Study on the Number of Atoms.

We present the ablation study on K here in Figure A.3, which shows that DAFD is only sensitive to
very small K, which degrades the expressiveness.

F Atom Visualizations

We visualize trained atoms for the digit experiments in Figure A.4. Strong correspondence is observed
from atoms across domains.

Domain 0

Domain 1

Figure A.4: Visualizations of atoms for both domains trained on the digit experiment. Atoms across
domains have strong correspondence.

G Correction of a Single Filter Transform

We first analyze the “symmetric” correction of one filter spatial transform Dτ in one layer. The
inclusion of linear correspondence transform is more direct. For technical reasons, we assume that the
displacement field τ is a small distortion, namely ‖∇τ‖∞ � 1, and then Dτ is invertible. Example
includes rotation by a small angle and a small factor rescaling (dilation).

For simplicity we only consider one input and output channel in each of the multiple convolutional
layers. The argument extends to multiple channels by modifying the boundedness condition of the
filters. Then the forward mapping in one convolutional layer can be written as y = σ(x ∗ w + b),
where x is the input activation, y is the output, w is the filter, b is the constant bias, and σ is the
nonlinear activation function, e.g., ReLU. As we take a continuous formulation in the analysis, the
activations x and y are assumed to be smooth functions supported on domain Ω ⊂ R2, typically
Ω = [−1, 1]2. The filter w is a function supported on 2jB, B being the unit disk, and 2j is layer
scale (diameter of filter patches) . The 1-norm of a function is defined to be ‖x‖1 =

∫
R2 |x(u)|du.

Lemma 1. Suppose that the two filters w, f are supported on 2jwB and 2jfB respectively. σ : R→
R is non-expansive, Dτ is a spatial transform where τ is odd, i.e., τ(−u) = −τ(u), and |∇τ |∞ < 1

5 .
Then

‖σb(x ∗Dτw) ∗ f − σb(x ∗ w) ∗D−1τ f‖1
≤ 2|∇τ |∞‖w‖1‖f‖1

{
(2jw + 2jf )‖∇x‖1 + 4‖x‖1

}
,

where σb denotes the nonlinear function with the bias. The second term vanishes if (Id− τ) is a rigid
motion, e.g., rotation.

Proof of Lemma 1. We establish a few facts:

Fact 1. |∇τ |∞ < 1
5 guarantees that, ρ := Id − τ ,

||Jρ| − 1|, ||Jρ−1| − 1| ≤ 4|∇τ |∞, (A.1)

where Jf = det(∇f) denotes the determinate of the Jacobian matrix of the mapping f : R2 → R2.
The inequality can be verified by elementary calculation. When ρ is a rigid motion then the r.h.s of
(A.1) is zero.

Fact 2. ρ is invertible, and odd symmetry of τ implies that ρ and thus ρ−1 are odd, namely
−ρ−1(−u) = ρ−1(u).
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Define

y1(u) := σb(x ∗Dτw) ∗ f(u)

=

∫
R2

σb

(∫
R2

x(u+ v − z)w(ρ(z))dz

)
f(−v)dv

=

∫
R2

σb

(∫
R2

x(u+ v − ρ−1(z̃))w(z̃)|Jρ−1(z̃)|dz̃
)
f(−v)dv

and

ŷ1(u) :=

∫
R2

σb

(∫
R2

x(u+ v − ρ−1(z̃))w(z̃)dz̃

)
f(−v)dv.

We have that

|y1(u)− ŷ1(u)| ≤
∫
R2

∫
R2

|x(u+ v − ρ−1(z̃))||w(z̃)|
∣∣|Jρ−1| − 1

∣∣ |f(−v)|dz̃dv (by σb non-expansive)

≤ 4|∇τ |∞
∫
R2

∫
R2

|x(u+ v − ρ−1(z̃))||w(z̃)||f(−v)|dz̃dv (by Fact 1)

and thus
‖y1 − ŷ1‖1 ≤ 4|∇τ |∞‖x‖1‖w‖1‖f‖1. (A.2)

When ρ is a rigid motion, y1 = ŷ1.

Also, let

y2(u) := σb(x ∗ w) ∗D−1τ f(u)

=

∫
R2

σb

(∫
R2

x(u+ v − z)w(z)dz

)
f(−ρ−1(v))dv (by Fact 2)

=

∫
R2

σb

(∫
R2

x(u+ ρ(ṽ)− z)w(z)dz

)
f(−ṽ)|Jρ(ṽ)|dṽ

and

ŷ2(u) :=

∫
R2

σb

(∫
R2

x(u+ ρ(ṽ)− z)w(z)dz

)
f(−ṽ)dṽ.

Similar to the proof of (A.2), one can verify that

‖y2 − ŷ2‖1 ≤ 4|∇τ |∞‖x‖1‖w‖1‖f‖1, (A.3)

and the bound is zero when ρ is a rigid motion.

It remains to bound ‖ŷ1 − ŷ2‖1. Note that by σb being non-expansive again

|ŷ1(u)− ŷ2(u)| ≤
∫
R2

∫
R2

|x(u+ v − ρ−1(z))− x(u+ ρ(v)− z)||w(z)|dz|f(−v)|dv. (A.4)

We claim that∫
R2

|x(u+ v − ρ−1(z))− x(u+ ρ(v)− z)|du ≤ |∇τ |∞2(2jw + 2jf )‖∇x‖1 (A.5)

uniformly for v and z. If true, with (A.4) it gives that∫
R2

|ŷ1(u)− ŷ2(u)|du ≤ |∇τ |∞2(2jw + 2jf )‖∇x‖1‖w‖1‖f‖1

which proves the lemma together with (A.2) and (A.3).

Proof of (A.5): We verify that for any fixed v, z,∫
R2

|x(u+ v − ρ−1(z))− x(u+ ρ(v)− z)|du ≤ ‖∇x‖1|∇τ |∞|v − ρ−1(z)|, (A.6)

by a direct calculation:

(l.h.s) ≤ ‖∇x‖1|(v − ρ−1(z))− (ρ(v)− z)|
= ‖∇x‖1|τ(v)− τ(ρ−1(z))|
≤ ‖∇x‖1|∇τ |∞|v − ρ−1(z)|.
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Then, combined with that v ∈ 2jfB thus |v| ≤ 2jf , and z ∈ 2jwB and thus |ρ−1(z)| ≤
1

1−|∇τ |∞ 2jw ≤ 22jw (τ(0) = 0 by that τ is odd, and then |τ(ρ−1(z))| ≤ |∇τ |∞|ρ−1(z)|), the
r.h.s of (A.6) ≤ 2(2jw + 2jf )|∇τ |∞‖∇x‖1, which proves (A.5).

Proof of Theorem 1. We need a slightly generalized form of Lemma 1, which inserts multiple plain
convolutional layers between ∗w and ∗f , presented in Lemma 2.

Under the setting of the theorem, in the generative CNNs,

Xs = σ(· · ·σ(h ∗ w(−L)
s + b(−L)s ) · · · ∗ w(−1)

s + b(−1)s ) (A.7)

Xt = σ(· · ·σ(h ∗ w(−L)
t + b

(−L)
t ) · · · ∗ w(−1)

t + b
(−1)
t ) (A.8)

where w(l)
t and b(l)t are defined by, l = −L, · · · ,−1,

w
(l)
t = Dlw

(l)
s , x̃

(l)
0 ∗ w

(l)
t + b

(l)
t = x̃

(l)
0 ∗ w(l)

s + b(l)s . (A.9)

The notation x̃(l) stands for the l-th layer output in the target net from the input in the bottom
((−L)-th) layer as x̃(−L) = h, x̃(0) = Xt, and x̃(l)0 for that from zero input in the bottom. In the
feature CNNs, the L-th layer outputs are

Fs = σ(· · ·σ(Xs ∗ w(1)
s + b(1)s ) · · · ∗ w(L)

s + b(L)s ) (A.10)

Ft = σ(· · ·σ(Xt ∗ w(1)
t + b

(1)
t ) · · · ∗ w(L)

t + b
(L)
t ) (A.11)

where for l = 1, · · · , L,
w

(l)
t = Dlw

(l)
s , b

(l)
t = b(l)s .

The proof is by applying Lemma 2 recursively to the pair of layers indexed by l and −l, from l = 1

to L. Denote w(l)
s by w(l), then w(l)

t = Dlw
(l), where D−l = Dl = Dτl , l = 1, · · · , L. We also

denote b(l)s by b(l) and keep notation b(l)t for negative l.

First, l = 1, in the target net,

x̃(1) := σ(σ(x̃(−1) ∗D1w
(−1) + b

(−1)
t ) ∗D1w

(1) + b(1))

Use the centering x̃(−1)c := x̃(−1) − x̃(−1)0 , it can be written as

x̃(1) = σ(σ(x̃(−1)c ∗D1w
(−1) + x̃

(−1)
0 ∗D1w

(−1) + b
(−1)
t ) ∗D1w

(1) + b(1)) (A.12)

= σ(σ(x̃(−1)c ∗D1w
(−1) + (x̃

(−1)
0 ∗ w(−1) + b(−1))) ∗D1w

(1) + b(1)) (by (A.9)) (A.13)

Applying Lemma 2 (or Lemma 1 for this case), taking x̃(−1)0 ∗w(−1) + b(−1) as the effective “b”, we
have that (using the non-expansiveness of σ to take r outside the last σ)

x̃(1) = σ(σ(x̃(−1)c ∗ w(−1) + x̃
(−1)
0 ∗ w(−1) + b(−1)) ∗ w(1) + b(1)) + r(1) (A.14)

= σ(σ(x̃(−1) ∗ w(−1) + b(−1)) ∗ w(1) + b(1)) + r(1) (A.15)

:= x̂(1) + r(1) (A.16)

where, since w(−1), w(1) are supported on 2j1B,

‖r(1)‖1 ≤ 4ε
{

2j1‖∇x̃(−1)c ‖1 + 2‖x̃(−1)c ‖1
}
. (A.17)

Next,

x̃(2) := σ(x̃(1) ∗D2w
(2) + b(2)) (A.18)

= σ((x̂(1) + r(1)) ∗D2w
(2) + b(2)) (by (A.16)) (A.19)

= σ(x̂(1) ∗D2w
(2) + b(2)) + r(1)

′
(A.20)
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where ‖r(1)′‖1 ≤ ‖r(1)‖1 and observe the same bound as (A.17), since neither ∗w(2)
t (Lemma 3(i))

nor applying σ with bias expands the 1-norm. Using the brief notation σl to denote the non-linear
mapping with biases b(l), consider

σ2(x̂(1) ∗D2w
(2)) = σ2(σ1(σ−1(x̃(−1) ∗ w(−1)) ∗ w(1)) ∗D2w

(2))

= σ2(σ1(σ−1(σ(x̃(−2) ∗D2w
(−2) + b

(−2)
t ) ∗ w(−1)) ∗ w(1)) ∗D2w

(2))

= σ2(σ1(σ−1(σ(x̃(−2)c ∗D2w
(−2) + x̃

(−2)
0 ∗ w(−2) + b(−2))

∗ w(−1)) ∗ w(1)) ∗D2w
(2)), (by (A.9))

by Lemma 2, it equals (using the non-expansiveness of σ2 to take r(2) outside)

σ2(σ1(σ−1(σ(x̃(−2)c ∗ w(−2) + x̃
(−2)
0 ∗ w(−2) + b(−2)) ∗ w(−1)) ∗ w(1)) ∗ w(2)) + r(2)

= σ2(σ1(σ−1(σ(x̃(−2) ∗ w(−2) + b(−2)) ∗ w(−1)) ∗ w(1)) ∗ w(2)) + r(2)

:= x̂(2) + r(2)

where
‖r(2)‖1 ≤ 4ε

{
2j2‖∇x̃(−2)c ‖1 + 2‖x̃(−2)c ‖1

}
. (A.21)

Inserting back to (A.20),
x̃(2) = x̂(2) + r(1)

′
+ r(2)

thus ‖x̃(2) − x̂(2)‖1 is bounded by the sum of (A.17) and (A.21).

Continue the process, x̂(l) denotes the l-th layer output in the source CNN (after l times correction
in the target CNN) by feeding x̃(−l−1) from the (−l)-th layer, where x̃(−l−1) is the output in the
(un-corrected) generative target CNN after the first (L− l) layers. By that x̃(−L) = x(−L) = h, and
that Ft = x̃(L), Fs = x(L), repeating the argument L times gives that

‖Fs − Ft‖1 ≤ 4ε

L∑
l=1

(2jl‖∇x̃(−l)c ‖1 + 2‖x̃(−l)c ‖1),

and when (Id − ρl) are rigid motions, the 2nd term for each l vanishes.

We claim that

Claim 3. For l = −L, · · · ,−1, ‖∇x̃(l)c ‖1 ≤ ‖∇h‖1, and ‖x̃(l)c ‖1 ≤ ‖h‖1.

which suffices to prove the theorem.

Proof of Claim 3: No that in the bottom layer x̃(−L)c = x̃(−L) = h. For l = −L+ 1, · · · ,−1,

‖x̃(l)c ‖1 = ‖x̃(l) − x̃(l)0 ‖1
= ‖σl(x̃(l−1) ∗ w(l−1)

t )− σl(x̃(l)0 ∗ w
(l−1)
t )‖1

≤ ‖x̃(l−1) ∗ w(l−1)
t − x̃(l)0 ∗ w

(l−1)
t ‖1 (by that σl non-expansive)

≤ ‖x̃(l−1) − x̃(l)0 ‖1 (by that ‖w(l−1)
t ‖1 ≤ 1 and Lemma 3(i))

= ‖x̃(l−1)c ‖1.

Recursing the inequality gives that ‖x̃(l)c ‖1 ≤ ‖h‖1. Similarly,

‖∇x̃(l)c ‖1 = ‖∇x̃(l)‖1 = TV[σl(x̃
(l−1) ∗ w(l−1)

t )]

≤ TV[x̃(l−1) ∗ w(l−1)
t ] (by that σl does not increase total variation)

= ‖∇(x̃(l−1) ∗ w(l−1)
t )‖1

≤ ‖∇x̃(l−1)‖1 = ‖∇x̃(l−1)c ‖1, (by that ‖w(l−1)
t ‖1 ≤ 1 and Lemma 3(ii))

and thus ‖∇x̃(l)c ‖1 ≤ ‖∇h‖1. This proves Claim 3.
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Lemma 2. Suppose filters w, f1, · · · , fm, f satisfy that the 1-norm are all bounded by 1, and
w and f are supported on 2jB. The sequence of σl, denoting non-linear function with bias, for
l = 0, · · · ,m are non-expansive. Dτ is a spatial transform where τ is odd and |∇τ |∞ ≤ ε < 1

5 .
Then

σm(· · ·σ1(σ0(x ∗Dτw) ∗ f1) · · · ∗ fm) ∗ f
approximates

σm(· · ·σ1(σ0(x ∗ w) ∗ f1) · · · ∗ fm) ∗D−1τ f

up to an error whose 1-norm is bounded by

4ε
{

2j‖∇x‖1 + 2‖x‖1
}
,

and the second term vanishes if (Id − τ) is a rigid motion.

Proof of Lemma 2. The proof uses the same technique as in the proof of Lemma 1. Omitting subscript
R2 in the integral, let

y1(u) =

∫
σm(

∫
· · ·σ1(

∫
σ0(

∫
x(u+ v1 + · · ·+ vm + v − ρ−1(z))w(z)|Jρ−1|dz)

f(−v1)dv1) · · · fm(−vm)dvm)f(−v)dv,

ŷ1(u) =

∫
σm(

∫
· · ·σ1(

∫
σ0(

∫
x(u+ v1 + · · ·+ vm + v − ρ−1(z))w(z)dz)

f(−v1)dv1) · · · fm(−vm)dvm)f(−v)dv.

By Fact 1, that σj are all non-expansive and that the 1-norm of all the filters are bounded by 1,∫
|y1(u)− ŷ1(u)|du ≤ 4ε‖x‖1.

Also,

y2(u) =

∫
σm(

∫
· · ·σ1(

∫
σ0(

∫
x(u+ v1 + · · ·+ vm + ρ(v)− z)w(z)dz)

f(−v1)dv1) · · · fm(−vm)dvm)f(−v)|Jρ|dv,

ŷ2(u) =

∫
σm(

∫
· · ·σ1(

∫
σ0(

∫
x(u+ v1 + · · ·+ vm + ρ(v)− z)w(z)dz)

f(−v1)dv1) · · · fm(−vm)dvm)f(−v)dv.

Similarly, ∫
|y2(u)− ŷ2(u)|du ≤ 4ε‖x‖1.

Same as before, with ρ being a rigid motion, ‖y1 − ŷ1‖ and ‖y2 − ŷ2‖ are both zero.

It remains to bound ‖ŷ1 − ŷ2‖1. Observe that∫
|ŷ1(u)− ŷ2(u)|du ≤

∫
· · ·
∫
dv|f(−v)|dvm|f(−vm)| · · · dv1|f(−v1)|dz|w(z)|∫

du|x(u+ v1 + · · ·+ vm + v − ρ−1(z))− x(u+ v1 + · · ·+ vm + ρ(v)− z)|, (A.22)

and similarly as in proving Lemma 1, one can verify that for any fixed v1, · · · , vm, v, z,∫
|x(u+ v1 + · · ·+ vm + v − ρ−1(z))− x(u+ v1 + · · ·+ vm + ρ(v)− z)|du

≤ ‖∇x‖1|∇τ |∞|v − ρ−1(z)| ≤ ε2(2j + 2j)‖∇x‖1.
Inserting back to (A.22), and again by that the 1-norm of all the filters are bounded by 1, we have
that ‖ŷ1 − ŷ2‖1 ≤ 4ε2j‖∇x‖1.

Lemma 3. Let x and w be smooth and compactly supported on R2, then

(i) ‖x ∗ w‖1 ≤ ‖x‖1‖w‖1.

(ii) ‖∇(x ∗ w)‖1 ≤ ‖∇x‖1‖w‖1.
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Proof of Lemma 3. For (i),

‖x ∗ w‖1 =

∫
R2

|
∫
R2

x(u− v)w(v)dv|du ≤
∫
R2

∫
R2

|x(u− v)||w(v)|dudv = ‖x‖1‖w‖1.

For (ii),

‖∇(x ∗ w)‖1 =

∫
R2

|∇u(

∫
R2

x(u− v)w(v)dv)|du

=

∫
R2

|
∫
R2

∇ux(u− v)w(v)dv|du

≤
∫
R2

∫
R2

|∇ux(u− v)||w(v)|dudv

= ‖∇x‖1‖w‖1.
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