
Supplementary Material for
Bootstrapping Neural Processes

Juho Lee1,2∗, Yoonho Lee2∗, Jungtaek Kim3,
Eunho Yang1,2, Sung Ju Hwang1,2, Yee Whye Teh4

KAIST1, Daejeon, South Korea, AITRICS2, Seoul, South Korea,
POSTECH3, Pohang, South Korea, University of Oxford4, Oxford, England

juholee@kaist.ac.kr

A Model Architectures

A.1 Conditional Neural Process (CNP), Neural Process (NP) and Bootstrapping Neural
Process (BNP)

We borrowed most of the architectures from the paper [7] and their source code released 1.

Encoder Let MLP(`, din, dh, dout), (` ≥ 2) be a multilayer perceptron having the structure

MLP(`, din, dh, dout) = Linear(dh, dout)

◦ (ReLU ◦ Linear(dh, dh) ◦ . . .)︸ ︷︷ ︸
×(`−2)

◦ Linear(dh, din). (A.1)

An encoder of a NP consists of a deterministic path and a latent path using two identical structures
(but with separate parameters),

h1 =
1

|c|
∑
i∈c

MLP(`pre, dx + dy, dh, dh)([xi, yi]),

φ = MLP(`post, dh, dh)(h1), fdenc(Xc, Yc) = φ

h2 =
1

|c|
∑
i∈c

MLP(`pre, dx + dy, dh, dh)([xi, yi]),

(η, ρ′) = MLP(`post, dh, 2dz)(h2),

ρ′ = 0.1 + 0.9 · sigmoid(ρ̃), flenc(Xc, Yc) = (η, ρ), (A.2)

where dx and dy are the dimensionalities of x and y respectively, and dh is fixed to 128 for all
experiments.

An original CNP uses only one deterministic encoder, but that would perform worse than NP because
it uses twice less number of parameters. For a fair comparison, we used two identical encoders for

∗ Equal contribution
1https://github.com/deepmind/neural-processes

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/deepmind/neural-processes

CNP as well.

h1 =
1

|c|
∑
i∈c

MLP(`pre, dx + dy, dh, dh)([xi, yi]),

φ1 = MLP(`post, dh, dh)(h1)

h2 =
1

|c|
∑
i∈c

MLP(`pre, dx + dy, dh, dh)([xi, yi]),

φ2 = MLP(`post, dh, dh)(h2)

φ = [φ1, φ2], fenc(Xc, Yc) = φ. (A.3)

BNP uses exactly the same network encoder as CNP.

Decoder A decoder in CNP and NP take a represerntation of a context and transform it to parameters
of conditional probability. Let x∗ be a target data point. A decoder of CNP is defined as

(µ, σ′) = MLP(`dec, 2dh + dx, dh, 2dy)([φ, x∗])

σ = 0.1 + 0.9 · softplus(σ′), fdec(φ, x∗) = (µ, σ). (A.4)

A decoder for NP uses excatly the same architecture except for that it takes [φ, z] instead.

(µ, σ′) = MLP(`dec, dh + dz + dx, dh, 2dy)([φ, z, x∗])

σ = 0.1 + 0.9 · softplus(σ′), fdec(φ, x∗) = (µ, σ). (A.5)

BNP uses the same decoder as CNP when computing the deterministic representation without boot-
strapping (base model). When decoding an aggregated representations from an original context φ
and a bootstrapped context φ̃, we add an adaptation layer to the first linear layer of the MLP.

h1 = Linear(2dh + dx, dh)([φ, x∗])

h2 = Linear(2dh, dh)(φ̃) (adaptation layer)

(µ, σ′) = MLP(`dec − 1, dh, dh, 2dy)(ReLU(h1 + h2))

σ = 0.1 + 0.9 · softplus(σ′), fdec(φ, φ̃, x∗) = (µ, σ). (A.6)

A.2 Conditional Attentive Neural Process (CANP), Attentive Neural Process (ANP) and
Bootstrapping Attentive Neural Process (BANP)

Encoder An encoder of ANP has a deterministic path and latent path. A deterministic path
uses a self-attention and cross-attention to summarize contexts. Let MHA(dout) be a multi-head
attention [12] comptued as follows:

Q′ = {Linear(dq, dout)(q)}q∈Q, {Q′j}
nhead
j=1 = split(Q′, nhead)

K ′ = {Linear(dk, dout)(k)}k∈K , {K ′j}
nhead
j=1 = split(K ′, nhead)

V ′ = {Linear(dv, dout)(v)}v∈V , {V ′j }
nhead
j=1 = split(V ′, nhead)

Hj = softmax(Q′j(K
′
j)
>/
√
dout)V

′
j , H = concat({Hj}nhead

j=1)

H ′ = LN(Q′ +H)

MHA(dout)(Q,K, V) = LN(H ′ +ReLU(Linear(dout, dout))). (A.7)

Here, (qk, qk, qv) denotes the dimensionalities of query Q, key K, and value V respectively, dout is
an output dimension, nhead is a number of heads, split and concat are splitting and concatenating
operation in feature axis, and LN is the layer normalization [1]. A self-attention is defined as simply
tying Q = K = V , SA(dout)(X) = MHA(dout)(X,X,X). A deterministic path of ANP is then
defined as

fqk = MLP(`qk, dx, dh, dh)

q = fqk(x∗), K = {fqk(xi)}i∈c
V = SA(dh)({MLP(`v, dx + dy, dh)([xi, yi])}i∈c))
φ = MHA(dh)(q,K, V), fdenc(Xc, Yc, x∗) = φ. (A.8)

2

A latent path of ANP is

H = SA(dh)({ReLU ◦MLP(`pre, dx + dy, dh, dh)([xi, yi])}i∈c)

(η, ρ′) = MLP(`post, dh, 2dz)

(
1

|c|
∑
i∈c

hi

)
ρ = 0.1 + 0.9 · sigmoid(ρ′), (η, ρ) = flenc(Xc, Yc). (A.9)

For CANP and BANP, we use the same architecture having two paths as follows:

fqk = MLP(`qk, dx, dh, dh)

q = fqk(x∗), K = {fqk(xi)}i∈c
V = SA(dh)({MLP(`v, dx + dy, dh)([xi, yi])}i∈c)
φ1 = MHA(dh)(q,K, V)

H = SA(dh)({ReLU ◦MLP(`pre, dx + dy, dh, dh)([xi, yi])}i∈c)

φ2 = MLP(`post, dh, dh)

(
1

|c|
∑
i∈c

hi

)
φ = [φ1, φ2], fenc(Xc, Yc, x∗) = φ. (A.10)

Decoder Decoders are the same is in Appendix A.1.

B Experimental Details

B.1 1D Regression

Architectures For models without attention (CNP, NP, BNP), we set `pre = 4, `post = 2, `dec =
3, dh = 128. For NP we set dz = 128. For models with attention (CANP, ANP, BANP), we set
`v = 2, `qk = 2, `pre = 2, `post = 2, `dec = 3, dh = 128, nhead = 8 and dz = 128 for ANP.

Data generation We trained all the models using data generated from Gaussian Processs (GPs) with
RBF kernel. For each task (X,Y, c), we first generated x i.i.d.∼ Unif(−2, 2) and generated Y from us-
ing RBF Kernel k(x, x′) = s2·exp(−‖x−x′‖2/2`2) with s ∼ Unif(0.1, 1.0) and ` ∼ Unif(0.1, 0.6),
and output additive noise N (0, 10−2). The size of the task and the size of the context c was drawn as
|c| ∼ Unif(3, 47) and n− |c| ∼ Unif(3, 50− |c|). For model-data mismatch scenario, we generated
data from GP with Matern52 kernels, periodic kernels, and GP with RBF kernel plus Student’s t noise.
For Matern52 kernel k(x, x′) = s2(1 +

√
5d/` + 5d2/(3`2)) exp(−

√
5d/`), (d = ‖x − x′‖),

we sampled s ∼ Unif(0.1, 1.0) and ` ∼ Unif(0.1, 0.6). For periodic kernel k(x, x′) =
s2 exp(−2 sin2(π‖x − x′‖2/p)/`2), we sampled s ∼ Unif(0.1, 1.0) and ` ∼ Unif(0.1, 0.6) and
p ∼ Unif(0.1, 0.5). For Student-t noise, we added ε ∼ γ · T (2.1) to the curves generated from
GP with RBF kernel, where T (2.1) is a Student’s t distribution with degree of freedom 2.1 and
γ ∼ Unif(0, 0.15).

Training and testing We trained all the model for 100,000 steps with each step computes updates
with a batch containing 100 tasks. We used Adam optimizer [9] with initial learning rate 5 · 10−4
and decayed the learning rate using cosine annealing scheme. NP and ANP were trained using k = 4
samples for z (as in [2]), and tested with k = 50 samples. BNP and BANP were trained with k = 4
bootstrap contexts and tested with k = 50 samples. The size of the task and the size of the context
c was drawn as |c| ∼ Unif(3, 200) and n− |c| ∼ Unif(3, 200− |c|). Testings were done for 3,000
batches with each batch containing 16 tasks (48,000 tasks in total).

B.2 Bayesian Optimization

Architectures / Training and testing For these experiments, we followed the settings described
in Appendix B.1.

3

Prior function generation We sampled 100 GP prior functions from zero mean and unit variance.
After realizing them, the prior functions are used to optimize via Bayesian optimization. We
normalized these functions in order to fairly compare simple regrets and cumulative regrets across
distinct sampled functions (Basically, since they are sampled from same distributions, the scales of
them are quite similar, but we used more precise evaluations).

Bayesian optimization setting As presented in the Bayesian optimization results, all the methods
are started from same initializations. We employed Gaussian process regression [11] with squared
exponential kernels as a surrogate model, and expected improvement [6] as an acquisition function,
which is optimized by the multi-started local optimization method, L-BFGS-B with 100 initial points.
All the experiments are implemented with [8].

B.3 Image Completion

EMNIST architectures For models without attention (CNP, NP, BNP), we set `pre = 5, `post =
3, `dec = 4, dh = 128. For NP we set dz = 128. For models with attention (CANP, ANP, BANP), we
set `v = 3, `qk = 3, `pre = 3, `post = 3, `dec = 4, dh = 128, nhead = 8 and dz = 128 for ANP.

CelebA32 architectures For models without attention (CNP, NP, BNP), we set `pre = 6, `post =
3, `dec = 5, dh = 128. For NP we set dz = 128. For models with attention (CANP, ANP, BANP), we
set `v = 4, `qk = 3, `pre = 4, `post = 3, `dec = 5, dh = 128, nhead = 8 and dz = 128 for ANP.

Data generation Each task (X,Y, c) was sampled from an image. Following [3, 7], we sampled
2D coordinates from an image and rescaled the values into [−1, 1] to comprise X , and rescaled the
corresponding pixel values into [−0.5, 0, 5] to comprise Y . The size of the task and the size of the
context c was drawn as |c| ∼ Unif(3, 200) and n− |c| ∼ Unif(3, 200− |c|). For EMNIST we used
the first 10 classes during training, and tested on remaining 37 classes as a model-data mismatch
scenario.

Training and testing Same as Appendix B.1, except that all the models were trained for 200
epochs through the datasets. The models were tested on entire test set where each sample in a test set
comprises a task. For a model-data mismatch scenario with Student’s t noise, we added ε ∼ γ ·T (2.1)
with γ ∼ Unif(0, 0.09) to Y .

B.4 Lotka-Volterra

Architectures For models without attention (CNP, NP, BNP), we set `pre = 4, `post = 2, `dec =
3, dh = 128. For NP we set dz = 128. For models with attention (CANP, ANP, BANP), we set
`pre = 2, `post = 2, `dec = 3, dh = 128, nhead = 8 and dz = 128 for ANP.

Dataset generation We followed the setting in [4], please refer to the description in the paper.
A task (X,Y, c) is then constructed by uniformly subsampling X and corresponding Y from the
generated series. The size of the task and the size of the context c was drawn as |c| ∼ Unif(15, 85)
and n− |c| ∼ Unif(15, 100− |c|). Due to the scaling issue, X and Y values were standardized using
the statistics computed from the context:

x′i =
xi −mean(Xc)

std(Xc) + 10−5
, y′i =

yi −mean(Yc)

std(Yc) + 10−5
. (B.11)

Training and testing We trained for 100,000 steps with each step is computed with a batch
containing 50 tasks. The other details are the same as in Appendix B.1. Testing was done on 3,000
batches with each batch containing 16 tasks. For real-data testing as a model-data mismatch scenario,
following [4], we generated 1,000 batches with each batch containing 16 tasks from Hudson’s
Bay hare-lynx data. Each task contained |c| ∼ Unif(15, 76) and n ∼ Unif(15, 91 − |c|) points
subsampled from the data, and standardized as above.

4

Table C.1: Calibration error and sharpness of the models for 1D regression experiments. Means and
standard deviations of 5 runs are reported.

RBF Matérn 5/2 Periodic t-noise

CE Sharpness CE Sharpness CE Sharpness CE Sharpness

CNP 0.059±0.003 0.072±0.001 0.012±0.001 0.079±0.001 0.171±0.004 0.226±0.004 0.029±0.002 0.093±0.001
NP 0.016±0.001 0.06±0.001 0.037±0.005 0.067±0.001 0.306±0.016 0.224±0.001 0.138±0.012 0.082±0.001

BNP 0.049±0.002 0.069±0.000 0.011±0.001 0.077±0.000 0.145±0.002 0.243±0.008 0.032±0.001 0.098±0.001

CANP 0.276±0.005 0.057±0.001 0.127±0.003 0.066±0.000 0.251±0.022 0.157±0.006 0.038±0.003 0.086±0.002
ANP 0.144±0.009 0.048±0.001 0.051±0.003 0.055±0.002 0.402±0.031 0.165±0.007 0.154±0.014 0.074±0.003

BANP 0.264±0.001 0.057±0.000 0.121±0.001 0.067±0.000 0.0.226±0.002 0.176±0.003 0.035±0.001 0.095±0.001

Table C.2: Calibration error and sharpness of the models for EMNIST experiments. Means and
standard deviations of 5 runs are reported.

Seen classes (0-9) Unseen classes (10-46) t-noise

CE sharpness CE Sharpness CE Sharpness

CNP 0.448±0.007 0.035±0.001 0.355±0.007 0.043±0.001 0.066±0.008 0.066±0.0.055
NP 0.423±0.007 0.042±0.001 0.337±0.004 0.050±0.001 0.046±0.008 0.069±0.001

BNP 0.435±0.007 0.037±0.001 0.342±0.006 0.046±0.001 0.044±0.014 0.070±0.003

CANP 0.533±0.006 0.029±0.000 0.463±0.003 0.032±0.000 0.327±0.065 0.085±0.006
ANP 0.489±0.010 0.034±0.001 0.442±0.008 0.036±0.001 0.197±0.041 0.085±0.006

BANP 0.511±0.011 0.032±0.001 0.449±0.006 0.035±0.001 0.117±0.023 0.076±0.006

Table C.3: Calibration error and sharpness of the models on CelebA32 experiments. Means and
standard deviations of 5 runs are reported.

Without noise t-noise

CE Sharpness CE Sharpness

CNP 0.019±0.000 0.056±0.000 0.003±0.000 0.080±0.002
NP 0.017±0.000 0.065±0.000 0.062±0.002 0.009±0.003

BNP 0.008±0.000 0.065±0.009 0.035±0.006 0.101±0.002

CANP 0.069±0.000 0.054±0.000 0.007±0.002 0.110±0.010
ANP 0.018±0.000 0.062±0.000 0.082±0.002 0.096±0.001

BANP 0.018±0.000 0.065±0.000 0.075±0.012 0.100±0.002

Table C.4: Calibration error and sharpness of the models on Predator-prey experiments. Means and
standard deviations of 5 runs are reported.

Simulated Real

CE Sharpness CE Sharpness

CNP 0.001±0.000 0.578±0.013 0.072±0.008 1.866±0.058
NP 0.002±0.003 0.567±0.009 0.087±0.000 1.877±0.069

BNP 0.003±0.000 0.542±0.016 0.076±0.011 1.975±0.004

CANP 0.146±0.003 0.076±0.001 0.565±0.034 0.350±0.034
ANP 0.104±0.004 0.064±0.001 0.814±0.036 0.248±0.015

BANP 0.140±0.003 0.074±0.001 0.539±0.039 0.352±0.019

5

C On calibration and sharpness of the models

We further analyze the learned models using the framework introduced in [10]. Let T = (X,Y, c)
be a task. We see how the predictions for the targets {(xi, yi)}i/∈c is calibrated, and how large the
variances are. Let Fxi

(yi) be the CDF of the prediction p(yi|xi, Xc, Yc). We say a model is perfectly
calibrated [10] if for any p ∈ [0, 1],

1

n− |c|
∑
i/∈c

1{yi≤F−1
xi

(p)≤p} → p as n→∞, (C.12)

The calibration error (CE) is then defined as

0 ≤ p1 ≤ . . . pm ≤ 1, p̂` =
1

n− |c|

n∑
i/∈c

1{yi≤F−1
xi

(p`)}, CE(T) =
m∑
`=1

(p` − p̂`)2. (C.13)

In our case, we set p(yi|xi, Xc, Yc) = N (yi|µi, σ
2
i), so

F−1xi
(p`) = µi + σi

√
2erf−1(2p` − 1). (C.14)

For the models using the ensemble of multiple predictions (NP, ANP, BNP, BANP), we report the
ensembled calibration error.

(F (j)

xi
)−1(p`) = µ(j)

i + σ(j)

i

√
2erf−1(2p` − 1), (C.15)

p̂(j)

` =
1

n− |c|
∑
i/∈c

1{yi≤(F (j)
xi

)−1(p`)}
, (C.16)

CE(T) = 1

k

k∑
j=1

n∑
i=1

(p` − p̂(j)

`)2. (C.17)

We also measure the sharpness [10] which essentially is a average prediction variance.

Sharpness(T) = 1

n− |c|
∑
i/∈c

σ2
i . (C.18)

We evaluated the CE and sharpness of CNP,NP,BNP,CANP,ANP, and BANP trained in the experiments.
The results are summarized in Tables C.1 to C.4. In general, ours (BNP and BANP) were better
calibrated for model-data mismatch settings, but worse calibrated than NP and ANP for normal
test settings or model-data mismatch settings not very different from the normal test setting (e.g.,
Matérn 5/2 kernels in 1D regression experiments and unseen classes for EMNIST). The reason is
that, as we stated in the main text, BNP and BANP tends to produce conservative credible intervals, so
become under-confident in normal-test settings and less over-confident in mismatch settings. This
corresponds to the observation and theory in [5], where BayesBag is proven to yield credible intervals
that are twice larger than the credible intervals produced by normal Bayesian models when the
model is correctly specified. The sharpness values also support this claim, where BNP and BANP
generally shows higher values than others especially for the mismatch settings. Interestingly, CNP and
CANP exhibit similar trends to ours (larger sharpness values than NP or ANP), presumably because
they output only one predictor without any functional uncertainty and thus are encouraged to be
conservative than NP or ANP to cover wider range predictions. Still, BNP and BANP produced the
largest sharpness values in overall. Although this trend we discussed is apparent in 1D regression
and predator-prey experiments, we fail to find any of such trend for image completion experiments.
We conjecture that this is because for image completion experiments we are restricting the range of
function values y to lie in [−0.5, 0.5]. This suggests that at least for image completion experiments,
the robustness of ours (which is clearly demonstrated both in terms of likelihood values and qualitative
samples) comes from a different reason.

D Additional results

D.1 1D Regression

Ablation study We present an ablation study to empirically validate our design choices for BNP
and BANP on 1D regression experiment. We compared our full model to the followings: 1) naïve

6

Table D.5: Ablation study for 1D regression.
RBF Matérn 5/2 Periodic t-noise

context target context target context target context target

BNP 1.012±0.006 0.523±0.004 0.891±0.007 0.316±0.004 -0.111±0.002 -1.089±0.009 0.554±0.006 -0.644±0.010
naïve bootstrap 0.774±0.015 0.304±0.011 0.642±0.017 0.088±0.008 -0.261±0.004 -1.368±0.019 0.329±0.012 -1.203±0.030

- paired bootstrap 0.990±0.005 0.491±0.004 0.865±0.006 0.269±0.004 -0.144±0.004 -1.342±0.014 0.455±0.037 -1.130±0.025
- adaptation layer 0.900±0.010 0.455±0.007 0.803±0.011 0.294±0.006 0.009±0.008 -0.845±0.006 0.579±0.010 -0.337±0.015

- pbase loss 0.992±0.010 0.496±0.007 0.868±0.011 0.273±0.007 -0.135±0.010 -1.315±0.016 0.468±0.014 -1.068±0.032

BANP 1.379±0.000 0.849±0.001 1.376±0.000 0.671±0.001 0.688±0.044 -3.429±0.084 1.137±0.007 -1.750±0.031
naïve bootstrap 1.365±0.008 0.822±0.014 1.356±0.011 0.632±0.014 0.502±0.068 -3.729±0.151 1.041±0.023 -1.782±0.020

- paired bootstrap 1.379±0.000 0.841±0.002 1.377±0.000 0.655±0.002 0.830±0.031 -4.510±0.138 1.141±0.014 -2.179±0.019
- adaptation layer 1.370±0.000 0.830±0.001 1.361±0.000 0.639±0.002 0.523±0.030 -3.598±0.099 1.046±0.003 -1.765±0.014

- pbase loss 1.378±0.000 0.836±0.002 1.375±0.000 0.661±0.001 0.647±0.041 -3.801±0.294 1.132±0.004 -1.697±0.050

Figure D.1: (Left) processing time per batch. (Right) log-likelihood with different dataset sizes n.

residual bootstrap applied to CNP and CANP as described in Section 3.1, 2) BNP and BANP without
context resampling via paired bootstrap, and 3) BNP and BANP without adaptation path so decoder just
taking the representations of bootstrapped contexts, and 4) BNP and BANP trained without additional
pbase loss in Eq. (14). Table D.5 summarizes the results. Except for the case without adaptation
layer which showed slightly better performance on mismatch settings, every ablation cases showed
poor performance. Naive bootstrap didn’t work well for both normal test and mismatch settings,
the models without paired bootstrap worked poorly on mismatch settings, and the models without
adaptation layer didn’t perform well on normal test settings.

Training time We measured averaging training time per batch for CNP, NP, and BNP on 1D
regression task (Fig. D.1, left). BNP forwards the data to the model twice, but the actual computation
time for BNP is less than the twice of the computation time of NP, because the first pass to compute
residuals uses only the context set (Xc, Yc) which is a subset of the entire batch (X,Y). Thanks to
the parallelization by packing every dataset into a tensor, the computation times for all models does
not scale linearly with the number of samples k.

Performance for various dataset size n We measured the average target log-likelihood with
varying dataset size n on 1D regression task (Fig. D.1, right). BNP uniformly performed better than
CNP and NP by a significant margin.

Additional figures Here we present additional samples in Fig. D.2.

D.2 Bayesian optimization

Bayesian optimization results, showed in Fig. D.3 demonstrate our methods outperform or are
comparable to other methods including GP oracle. For the RBF case, GP oracle is the best result,
but our models show the second best results and become comparable to the GP oracle at the last of
iterations. On the contrary, in the model-data mismatch setting with t-noise (see the second row of

7

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

1.0
RBF
NP (0.112)
BNP (0.364)

Context
Target

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

RBF
ANP (0.737)
BANP (0.821)

Context
Target

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.5

0.0

0.5

1.0

1.5

Matern52
NP (0.423)
BNP (0.283)

Context
Target

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.5

0.0

0.5

1.0

1.5

Matern52
ANP (0.494)
BANP (0.501)

Context
Target

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

Periodic
NP (-4.143)
BNP (-1.275)

Context
Target

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

Periodic
ANP (-2.665)
BANP (-2.359)

Context
Target

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.6

0.4

0.2

0.0

0.2

0.4

0.6
RBF+t-noise

NP (0.061)
BNP (-0.110)

Context
Target

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.4

0.2

0.0

0.2

0.4

0.6
RBF+t-noise

ANP (-0.391)
BANP (-0.325)

Context
Target

Figure D.2: More visualizations for 1D regression experiment.

8

0 10 20 30 40 50
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

M
in

im
um

 si
m

pl
e

re
gr

et

RBF (NP, CNP, BNP)
GP (Oracle)
NP
CNP
BNP

0 10 20 30 40 50
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

M
in

im
um

 si
m

pl
e

re
gr

et

RBF (ANP, CANP, BANP)
GP (Oracle)
ANP
CANP
BANP

0 10 20 30 40 50
Iteration

2

4

6

8

10

12

Cu
m

ul
at

iv
e

m
in

im
um

 re
gr

et

RBF (NP, CNP, BNP)

GP (Oracle)
NP
CNP
BNP

0 10 20 30 40 50
Iteration

2

4

6

8

10

Cu
m

ul
at

iv
e

m
in

im
um

 re
gr

et

RBF (ANP, CANP, BANP)

GP (Oracle)
ANP
CANP
BANP

0 10 20 30 40 50
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

M
in

im
um

 si
m

pl
e

re
gr

et

RBF+t-noise (NP, CNP, BNP)
GP (Oracle)
NP
CNP
BNP

0 10 20 30 40 50
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

M
in

im
um

 si
m

pl
e

re
gr

et

RBF+t-noise (ANP, CANP, BANP)
GP (Oracle)
ANP
CANP
BANP

0 10 20 30 40 50
Iteration

0

5

10

15

20

25

30

35

Cu
m

ul
at

iv
e

m
in

im
um

 re
gr

et

RBF+t-noise (NP, CNP, BNP)

GP (Oracle)
NP
CNP
BNP

0 10 20 30 40 50
Iteration

0

5

10

15

20

25

30

35

Cu
m

ul
at

iv
e

m
in

im
um

 re
gr

et

RBF+t-noise (ANP, CANP, BANP)

GP (Oracle)
ANP
CANP
BANP

0 10 20 30 40 50
Iteration

0.2

0.4

0.6

0.8

1.0

M
in

im
um

 si
m

pl
e

re
gr

et

Matern (NP, CNP, BNP)
GP (Oracle)
NP
CNP
BNP

0 10 20 30 40 50
Iteration

0.2

0.4

0.6

0.8

1.0

M
in

im
um

 si
m

pl
e

re
gr

et
Matern (ANP, CANP, BANP)

GP (Oracle)
ANP
CANP
BANP

0 10 20 30 40 50
Iteration

2

4

6

8

10

12

14

Cu
m

ul
at

iv
e

m
in

im
um

 re
gr

et

Matern (NP, CNP, BNP)

GP (Oracle)
NP
CNP
BNP

0 10 20 30 40 50
Iteration

2

4

6

8

10

12

Cu
m

ul
at

iv
e

m
in

im
um

 re
gr

et

Matern (ANP, CANP, BANP)

GP (Oracle)
ANP
CANP
BANP

0 10 20 30 40 50
Iteration

0.2

0.4

0.6

0.8

1.0

M
in

im
um

 si
m

pl
e

re
gr

et

Periodic (NP, CNP, BNP)
GP (Oracle)
NP
CNP
BNP

0 10 20 30 40 50
Iteration

0.2

0.4

0.6

0.8

1.0

M
in

im
um

 si
m

pl
e

re
gr

et

Periodic (ANP, CANP, BANP)
GP (Oracle)
ANP
CANP
BANP

0 10 20 30 40 50
Iteration

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Cu

m
ul

at
iv

e
m

in
im

um
 re

gr
et

Periodic (NP, CNP, BNP)

GP (Oracle)
NP
CNP
BNP

0 10 20 30 40 50
Iteration

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Cu
m

ul
at

iv
e

m
in

im
um

 re
gr

et

Periodic (ANP, CANP, BANP)

GP (Oracle)
ANP
CANP
BANP

Figure D.3: Bayesian optimization results for GP prior functions with (first row) RBF kernel, (second
row) RBF kernel + t-noise, (third row) Matérn 5/2 kernel, and (fourth row) Periodic kernel.

Fig. D.3), our methods outperform other methods, which implies that our methods, BNP and BANP
are robust to the heavy-tailed noises. Moreover, while CNP and CANP models show the better results
in Matérn 5/2 and Periodic cases, our methods are comparable to those methods, as shown in the last
two rows of Fig. D.3.

D.3 Image completion

We present additional visualizations for EMNIST in Fig. D.4 and for CelebA in Fig. D.5.

D.4 Predator-prey model

We present additional visualizations for predator-prey experiment in Fig. D.6.

References
[1] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,

2016.

[2] Y. Burda, R. Grosse, and R. Salakhutdinov. Importance weighted autoencoders. In International
Conference on Learning Representations (ICLR), 2015.

[3] M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. M. A. Eslami, and Y. W.
Teh. Neural processes. ICML Workshop on Theoretical Foundations and Applications of Deep
Generative Models, 2018.

[4] J. Gordon, W. P. Bruinsma, A. Y. K. Foong, J. Requeima, Y. Dubois, and R. E. Turner. Convolu-
tional conditional neural processes. In International Conference on Learning Representations
(ICLR), 2020.

9

Original Context ANP ANP BANP BANP

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Original Context ANP ANP BANP BANP

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

Figure D.4: Image completion results on EMNIST for ANP and BANP. The results under increasing
noise levels are shown.

[5] J. H. Huggins and J. W. Miller. Using bagged posteriors for robust inference and model criticism.
arXiv preprint arXiv:1912.07104, 2019.

[6] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box
functions. Journal of Global Optimization, 13:455–492, 1998.

[7] H. Kim, A. Mnih, J. Schwarz, M. Garnelo, S. M. A. Eslami, D. Rosenbaum, and V. Oriol.
Attentive neural processes. In International Conference on Learning Representations (ICLR),
2018.

[8] J. Kim and S. Choi. bayeso: A Bayesian optimization framework in Python. http://bayeso.
org, 2017.

[9] D. P. Kingma and J. Ba. Adam: a method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

[10] V. Kuleshov, N. Fenner, and S. Ermon. Accurate uncertainties for deep learning using calibrated
regression. In International Conference on Machine Learning (ICML), 2018.

[11] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press,
2006.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Neural Information Processing Systems (NeurIPS),
2017.

10

http://bayeso.org
http://bayeso.org

Original Context ANP ANP BANP BANP

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

Original Context ANP ANP BANP BANP

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.8

0.9

0.4

0.6

0.8

1.0

1.2

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.8

0.9

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.6

0.8

1.0

1.2

1.4

0.4

0.6

0.8

1.0

1.2

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Original Context ANP ANP BANP BANP

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.4

0.5

0.6

0.7

0.8

Original Context ANP ANP BANP BANP

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.8

Original Context ANP ANP BANP BANP

0.4

0.5

0.6

0.7

0.8

0.9

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

Original Context ANP ANP BANP BANP

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

0.4

0.6

0.8

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.6

0.8

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.325
0.350
0.375
0.400
0.425
0.450
0.475

0.35

0.40

0.45

0.50

0.4

0.6

0.8

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.35

0.40

0.45

0.50

0.55

0.60

0.4

0.6

0.8

1.0

1.2

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.8

0.4

0.6

0.8

1.0

1.2

0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure D.5: Image completion results on CelebA32 for ANP and BANP. The results under increasing
noise levels are shown.

11

10 20 30 40 50
Time

0

100

200

300

400

Po
pu

la
tio

n

ANP (Predator)
BANP (Predator)

Predator context
Predator target

10 20 30 40 50
Time

0

50

100

150

200

250

Po
pu

la
tio

n

ANP (Prey)
BANP (Prey)

Prey context
Prey target

5 10 15 20 25 30
Time

0

100

200

300

400

Po
pu

la
tio

n

ANP (Predator)
BANP (Predator)

Predator context
Predator target

5 10 15 20 25 30
Time

0

50

100

150

200

250

300

Po
pu

la
tio

n

ANP (Prey)
BANP (Prey)

Prey context
Prey target

1850 1860 1870 1880 1890 1900 1910 1920 1930
Year

0

20

40

60

80

100

Po
pu

la
tio

n
(th

ou
sa

nd
s)

ANP (Predator)
BANP (Predator)

Predator context
Predator target

1850 1860 1870 1880 1890 1900 1910 1920 1930
Year

50

0

50

100

150

200

Po
pu

la
tio

n
(th

ou
sa

nd
s)

ANP (Prey)
BANP (Prey)

Prey context
Prey target

1850 1860 1870 1880 1890 1900 1910 1920 1930
Year

0

20

40

60

80

Po
pu

la
tio

n
(th

ou
sa

nd
s)

ANP (Predator)
BANP (Predator)

Predator context
Predator target

1850 1860 1870 1880 1890 1900 1910 1920 1930
Year

0

25

50

75

100

125

150

Po
pu

la
tio

n
(th

ou
sa

nd
s)

ANP (Prey)
BANP (Prey)

Prey context
Prey target

Figure D.6: Regression results for predator-prey data. First two rows shows the results for simulated
data, and the last two rows shows the results for the real data (Hudson’s Bay hare-lynx data).

12

	Model Architectures
	cnp, np and bnp
	canp, anp and banp

	Experimental Details
	1D Regression
	Bayesian Optimization
	Image Completion
	Lotka-Volterra

	On calibration and sharpness of the models
	Additional results
	1D Regression
	Bayesian optimization
	Image completion
	Predator-prey model

