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A Appendix

This supplementary material contains three sections. Section A.1 reviews additional related work.
Section A.2 provides additional experimental results. Section A.3 describes downstream tasks and
implementation details.

A.1 Additional Related Work

Adversarial Training Many efforts have been devoted to improving AT from different angles: (i) use
triplet-wise metric learning [8, 7] and optimal transport [20] to leverage inter-sample interactions; (ii)
exploit extra unlabeled training data [12, 1]; and (iii) accelerate the training procedure [11, 19, 14].
Specifically, adversarial examples have been explored primarily in the image domain, and only
recently started to gain attention in vision-and-language research. [2, 16] studied how to craft
adversarial examples for image captioning, and [10] investigated how to derive adversarial rules to
attack VQA systems. Different from these studies, we are not interested in crafting actual adversarial
examples, but aim to apply AT to improve the final model performance over V+L tasks. Note that
“adversarial regularization” was proposed in [9]; however, it is mainly used to overcome the language
priors in VQA, which is entirely different from the AT used here.

A.2 Additional Results

Results on VQA In Table 1a of the main text, we have reported the experimental results on the
test-dev and test-std splits of VQA. More detailed results on each question type are provided in
Table 1. As shown, VILLA improves over UNITER on all the question types.

Method test-dev test-std

yes/no number other overall yes/no number other overall

UNITERBASE (reimp.) 88.97 55.67 62.81 72.77 - - - -
VILLABASE 89.37 56.86 63.90 73.59 89.41 56.78 63.84 73.67

UNITERLARGE (reimp.) 90.13 57.24 63.70 73.86 - - - -
VILLALARGE 90.76 58.26 64.67 74.69 90.85 57.3 64.98 74.87

VILLALARGE (Ensemble) 91.24 59.73 65.98 75.68 91.30 59.23 66.20 75.85

Table 1: More detailed results on VQA.

Training Curves In Figure 3a of the main text, we have provided the training curves on three
datasets. The training curves for the remaining three datasets are shown in Figure 1 with similar trend
observed.
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Figure 1: Additional training curves of VILLA and UNITER on different tasks.

Method VQA VCR (val) Ave.
test-dev Q→A QA→R Q→AR

UNITER (reimp.) 73.82 76.70 80.61 62.15 72.32
VILLA-pre 74.05 77.16 81.02 62.99 73.80
VILLA-fine 74.48 77.74 81.91 64.00 74.53
VILLA 74.69 78.45 82.57 65.18 75.22

Table 2: Ablation study on VILLA-pre (pre-training) and VILLA-fine (finetuning) with large model size.

Method VQA (test-dev)

100k 200k (from scratch)

UNITER (reimp.) 72.70 -
VILLA-pre 73.03 73.18
VILLA 73.59 73.69

Table 3: Adversarial pre-training from scratch with base model size.

Method test-dev

Accuracy Binary Open Validity Plausibility Consistency Distribution

LXMERT (reimp.) 59.92 77.32 44.61 97.10 85.26 89.55 1.15
VILLA-fine 60.98 78.17 45.86 97.07 85.44 91.09 1.20

Method test-std

Accuracy Binary Open Validity Plausibility Consistency Distribution

LXMERT (reimp.) 60.28 77.14 45.40 96.33 84.46 89.45 5.38
VILLA-fine 61.12 78.07 46.16 96.36 84.80 91.13 5.55

Table 4: More detailed results on GQA.

Pre-training vs. Finetuning with Large Model Size In Table 2 of the main text, we provided
ablation study on adversarial pre-training and finetuning with UNITER-base model size (12 layers).
In Table 2, we provide additional ablation study with large model size (24 layers) on a selective set of
tasks (VQA and VCR). On average, adversarial pre-training and finetuning bring +1.48 and +2.21
performance gain, respectively. Combining the two AT stages provides further improvement.

Results on GQA In Table 5 of the main text, we have reported LXMERT results on GQA enhanced
by VILLA-fine. The complete results are provided in Table 4 for reference.

Adversarial pre-training from scratch Instead of performing adversarial pre-training from 100k
steps, we also conducted experiments on adversarial pre-training from scratch with base model size.
Preliminary results on VQA are shown in Table 3. Adversarial pre-training from scratch brings
further performance improvement. We leave a thorough investigation of this as future work.

Additional Visualization We provide additional text-to-image attention visualization results in
Figure 2.
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Figure 2: Additional visualization on text-to-image attention, comparing VILLA and UNITER.

A.3 Downstream Tasks and Implementation Details

Downstream Tasks In VQA [4], GQA [5] and VCR [18], given an image and an input question, the
model predicts an answer (or selects from a candidate pool). For NLVR2 [13], given a pair of images
and a natural language description, the model judges the correctness of the description based on the
visual clues in the image pair. For Visual Entailment, we evaluate on SNLI-VE [15], where the model
predicts whether a given image semantically entails a given sentence. For Referring Expression
(RE) Comprehension, we evaluate on RefCOCO, RefCOCO+, and RefCOCOg datasets [17], where
given a text description, the model selects the described region from a set of image region proposals.
Models are evaluated on ground-truth objects and detected proposals. For Image-Text Retrieval (ITR),
we consider both image retrieval and text retrieval on Flickr30k dataset.

For all the tasks except RE Comprehension, we extract the joint V+L embedding from the [CLS]
token, and apply a multi-layer perceptron (MLP) for prediction. For RE Comprehension, we use
MLP to compute the region-wise alignment scores. During the finetuning stage, ITR is formulated
as a ranking problem, with triplet loss used for modeling training and hard negatives applied to
boost performance [6]. All the other tasks can be formulated as a classification problem, using
cross-entropy loss for model training. For VCR [18], second-stage pre-training with VCR training
data was proven useful in [3]. Therefore, for VCR downstream experiments, we further apply 60k
steps of second-stage adversarial pre-training.

Probing Analysis The visual coreference task aims to predict whether there is a link between an
image region and a noun phrase in the sentence that describes the image. In addition, each coreference
link in the dataset is annotated with a label. Through this task, we can find out whether the coreference
knowledge can be captured by the attention trace. To achieve this goal, for each data sample in the
Flickr30k Entity dataset, we extract the encoder’s attention weights for all the 144 heads. Note that
noun phrases typically consist of two or more tokens in the sequence. Thus, we extract the maximum
attention weight between the image region and each word of the noun phrase for each head. The
maximum weight is then used to evaluate which head identifies visual coreference.

Similarly, the visual relation task aims to identify and classify the relation between two image regions.
The Visual Genome dataset is used for this task, which contains 1,531,448 relations. To reduce the
imbalance in the number of relations per relation type, we randomly select at most 15,000 relation
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Task Model Batch Size Grad. Accu. Lr. Training Steps Warm-up Steps Adv. Lr. Adv. Weight

VQA VILLABASE 5120 5 8e-5 6000 600 1e-3 1.5
VILLALARGE 3072 8 5e-5 5000 500 1e-3 1.5

VCR VILLABASE 2000 10 6e-5 8000 800 1e-2 1.5
VILLALARGE 1000 20 6e-5 10000 1000 1e-1 1.0

NLVR2 VILLABASE 2560 4 6e-5 3000 300 5e-4 1.5
VILLALARGE 1280 8 2e-5 5000 500 1e-2 1.5

SNLI-VE VILLABASE 4096 4 8e-5 5000 500 3e-3 2.0
VILLALARGE 4096 2 3e-5 4000 400 1e-3 1.5

RefCOCO+ VILLABASE 128 1 5e-5 8000 800 2e-3 1.0
VILLALARGE 96 1 4e-5 8000 800 1e-3 1.5

RefCOCO VILLABASE 128 1 4e-5 8000 800 5e-3 2.0
VILLALARGE 96 1 4e-5 10000 1000 1e-3 1.5

RefCOCOg VILLABASE 128 1 7e-5 12000 1200 2e-3 1.0
VILLALARGE 96 1 4e-5 8000 800 1e-3 1.0

Flickr30k ITR VILLABASE 32 32 5e-5 5000 500 1e-2 1.0
VILLALARGE 32 32 5e-5 5000 500 1e-2 1.0

Table 5: Hyper-parameter values used in our experiments.

pairs per type. Then, we perform similar probing analysis of the attention heads by examining the
attention weights on ground-truth links.

Implementation Details Our models are implemented based on PyTorch.To speed up training, we
use Nvidia Apex1 for mixed precision training. All pre-training experiments are run on Nvidia V100
GPUs (16GB VRAM; PCIe connection). Finetuning experiments are implemented on the same
hardware or Titan RTX GPUs (48GB VRAM). For large pre-training experiments, we use Horovod2

and NCCL3 for multi-node communication. All the hyper-parameter values used in experiments are
listed in Table 5. And for all the experiments, we set the number of adversarial training steps to 3. We
mostly follow the experimental settings in UNITER [3]. For more details on each downstream task
finetuning, please refer to their Appendix. Since we mostly adopt their default hyper-parameters, and
the only additional hyper-parameters we introduce are adversarial learning rate, number of adversarial
steps, and the adversarial weight α in Eqn. 2 of the main text, the experimental results are fairly easy
to reproduce.
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