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Abstract

A vital aspect of human intelligence is the ability to compose increasingly complex
concepts out of simpler ideas, enabling both rapid learning and adaptation of
knowledge. In this paper we show that energy-based models can exhibit this
ability by directly combining probability distributions. Samples from the combined
distribution correspond to compositions of concepts. For example, given one
distribution for smiling face images, and another for male faces, we can combine
them to generate smiling male faces. This allows us to generate natural images that
simultaneously satisfy conjunctions, disjunctions, and negations of concepts. We
evaluate compositional generation abilities of our model on the CelebA dataset of
natural faces and synthetic 3D scene images. We showcase the breadth of unique
capabilities of our model, such as the ability to continually learn and incorporate
new concepts, or infer compositions of concept properties underlying an image.

1 Introduction
Humans are able to rapidly learn new concepts and continuously integrate them among prior knowl-
edge. The core component in enabling this is the ability to compose increasingly complex concepts
out of simpler ones as well as recombining and reusing concepts in novel ways [5]. By combining a
finite number of primitive components, humans can create an exponential number of new concepts,
and use them to rapidly explain current and past experiences [16]. We are interested in enabling such
capabilities in machine learning systems, particularly in the context of generative modeling.

Past efforts have attempted to enable compositionality in several ways. One approach decomposes
data into disentangled factors of variation and situate each datapoint in the resulting - typically
continuous - factor vector space [29, 9]. The factors can either be explicitly provided or learned in
an unsupervised manner. In both cases, however, the dimensionality of the factor vector space is
fixed and defined prior to training. This makes it difficult to introduce new factors of variation, which
may be necessary to explain new data, or to taxonomize past data in new ways. Another approach
to incorporate the compositionality is to spatially decompose an image into a collection of objects,
each object slot occupying some pixels of the image defined by a segmentation mask [28, 6]. Such
approaches can generate visual scenes with multiple objects, but may have difficulty in generating
interactions between objects. These two incorporations of compositionality are considered distinct,
with very different underlying implementations.

In this work∗, we propose to implement the compositionality via energy based models (EBMs).
Instead of an explicit vector of factors that is input to a generator function, or object slots that are
blended to form an image, our unified treatment defines factors of variation and object slots via energy
functions. Each factor is represented by an individual scalar energy function that takes as input an
image and outputs a low energy value if the factor is exhibited in the image. Images that exhibit the

∗Code and data available at https://energy-based-model.github.io/
compositional-generation-inference/
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Figure 1: Illustration of logical composition operators over energy functions E1 and E2 (drawn as level sets
where red = valid areas of samples, grey = invalid areas of samples).

factor can then be generated implicitly through an Markov Chain Monte Carlo (MCMC) sampling
process that minimizes the energy. Importantly, it is also possible to run MCMC process on some
combination of energy functions to generate images that exhibit multiple factors or multiple objects,
in a globally coherent manner.

There are several ways to combine energy functions. One can add or multiply distributions as in
mixtures [25, 6] or products [11] of experts. We view these as probabilistic instances of logical
operators over concepts. Instead of using only one, we consider three operators: logical conjunction,
disjunction, and negation (illustrated in Figure 1). We can then flexibly and recursively combine
multiple energy functions via these operators. More complex operators (such as implication) can be
formed out of our base operators.

EBMs with such composition operations enable a breadth of new capabilities - among them is a
unique approach to continual learning. Our formulation defines concepts or factors implicitly via
examples, rather than pre-declaring an explicit latent space ahead of time. For example, we can create
an EBM for concept "black hair" from a dataset of face images that share this concept. New concepts
(or factors), such as hair color can be learned by simply adding a new energy function and can then
be combined with energies for previously trained concepts. This process can repeat continually. This
view of few-shot concept learning and generation is similar to work of [23], with the distinction that
instead of learning to generate holistic images from few examples, we learn factors from examples,
which can be composed with other factors. A related advantage is that finely controllable image
generation can be achieved by specifying the desired image via a collection of logical clauses, with
applications to neural scene rendering [4].

Our contributions are as follows: first, while composition of energy-based models has been proposed
in abstract settings before [11], we show that it can be used to generate plausible natural images.
Second, we propose a principled approach to combine independent trained energy models based
on logical operators which can be chained recursively, allowing controllable generation based on a
collection of logical clauses at test time. Third, by being able to recursively combine independent
models, we show our approach allows us to extrapolate to new concept combinations, continually
incorporate new visual concepts for generation, and infer concept properties compositionally.

2 Related Work
Our work draws on results in energy based models - see [17] for a comprehensive review. A number
of methods have been used for inference and sampling in EBMs, from Gibbs Sampling [12], Langevin
Dynamics [31, 3], Path Integral methods [2] and learned samplers [13, 26]. In this work, we apply
EBMs to the task of compositional generation.

Compositionality has been incorporated in representation learning (see [1] for a summary) and
generative modeling. One approach to compositionality has focused on learning disentangled factors
of variation [8, 15, 29]. Such an approach allows for the combination of existing factors, but does not
allow the addition of new factors. A different approach to compositionality includes learning various
different pixel/segmentation masks for each concept [6, 7]. However such a factorization may have
difficulty capturing the global structure of an image, and in many cases different concepts cannot be
explicitly factored using attention masks.

In contrast, our approach towards compositionality focuses on composing separate learned probability
distribution of concepts. Such an approach allows viewing factors of variation as constraints [19].
In prior work, [10] show that products of EBMs can be used to decompose complex generative
modeling problems to simpler ones. [29] further apply products of distributions over the latent space
of VAE to define compositions. [9] show that additional compositions in VAE latent space. Both
of them rely on joint training to learn compositions of a fixed number of concepts. In contrast,
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Figure 2: Concept conjunction and negation. All the images are generated through the conjunction and negation
of energy functions. For example, the image in the central part is the conjunction of male, black hair, and smiling
energy functions. Equations for composition explained in page 4.

in this work, we show how we can realize concept compositions using completely independently
trained probability distributions. Furthermore, we introduce three compositional logical operators of
conjunction, disjunction and negation can be realized and nested together through manipulation of
independent probability distributions of each concept.

Our compositional approach is inspired by the goal of continual lifelong learning - see [20] for a
thorough review. New concepts can be composed with past concepts by combining new independent
probability distributions. Many methods in continual learning are focused on how to overcome
catashtophic forgetting [14, 18], but do not support dynamically growing capacity. Progressive
growing of the models [24] has been considered, but is implemented at the level of the model
architecture, whereas our method composes independent models together.

3 Method
In this section, we first give an overview of the Energy-Based Model formulation we use and introduce
three logical operators over these models. We then discuss the unique properties such a form of
compositionality enables.

3.1 Energy Based Models

EBMs represent data by learning an unnormalized probability distribution across the data. For each
data point x, an energy function Eθ(x), parameterized by a neural network, outputs a scalar real
energy such that the model distribution

pθ(x) ∝ e−Eθ(x). (1)

To train an EBM on a data distribution pD, we use contrastive divergence [10]. In particular we use
the methodology defined in [3], where a Monte Carlo estimate (Equation 2) of maximum likelihood
L is minimized with the following gradient

∇θL = Ex+∼pD∇θEθ(x
+)− Ex−∼pθ∇θEθ(x

−). (2)

To sample x− from pθ for both training and generation, we use MCMC based off Langevin dynamics
[30]. Samples are initialized from uniform random noise and are iteratively refined using

x̃k = x̃k−1 − λ

2
∇xEθ(x̃

k−1) + ωk, ωk ∼ N (0, λ), (3)

where k is the kth iteration step and λ is the step size. We refer to each iteration of Langevin dynamics
as a negative sampling step. We note that this form of sampling allows us to use the gradient of
the combined distribution to generate samples from distributions composed of pθ and the other
distributions. We use this ability to generate from multiple different compositions of distributions.

3.2 Composition of Energy-Based Models

We next present different ways that EBMs can compose. We consider a set of independently trained
EBMs, E(x|c1), E(x|c2), . . . , E(x|cn), which are learned conditional distributions on underlying
concept codes ci. Latent codes we consider include position, size, color, gender, hair style, and age,
which we also refer to as concepts. Figure 2 shows three concepts and their combinations on the
CelebA face dataset and attributes.
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Concept Conjunction In concept conjunction, given separate independent concepts (such as a
particular gender, hair style, or facial expression), we wish to construct an output with the specified
gender, hair style, and facial expression – the combination of each concept. Since the likelihood of
an output given a set of specific concepts is equal to the product of the likelihood of each individual
concept, we have Equation 4, which is also known as the product of experts [11]:

p(x|c1 and c2, . . . , and ci) =
∏
i

p(x|ci) ∝ e−
∑
i E(x|ci). (4)

We can thus apply Equation 3 to the distribution that is the sum of the energies of each concept.
We sample from this distribution using Equation 5 to sample from the joint concept space with
ωk ∼ N (0, λ).

x̃k = x̃k−1 − λ

2
∇x

∑
i

Eθ(x̃
k−1|ci) + ωk. (5)

Concept Disjunction In concept disjunction, given separate concepts such as the colors red and
blue, we wish to construct an output that is either red or blue. This requires a distribution that has
probability mass when any chosen concept is true. A natural choice of such a distribution is the sum
of the likelihood of each concept:

p(x|c1 or c2, . . . or ci) ∝
∑
i

p(x|ci)/Z(ci). (6)

where Z(ci) denotes the partition function for each concept. A tractable simplification becomes
available if we assume all partition functions Z(ci) to be equal∑

i

p(x|ci) ∝
∑
i

e−E(x|ci) = elogsumexp(−E(x|c1),−E(x|c2),...,−E(x|ci)), (7)

where logsumexp(f1, . . . , fN ) = log
∑
i exp(fi). We can thus apply Equation 3 to the distribution

that is a negative smooth minimum of the energies of each concept to obtain Equation 8 to sample
from the disjunction concept space:

x̃k = x̃k−1 − λ

2
∇xlogsumexp(−E(x|c1),−E(x|c2), . . . ,−E(x|ci)) + ωk, (8)

where ωk ∼ N (0, λ). While the assumption that leads to Equation 7 is not guaranteed to hold in
general, in our experiments we empirically found the partition function Z(ci) estimates to be similar
across partition functions (see Appendix) and also analyze cases in which partitions functions are
different in the Appendix. Furthermore, the resulting generation results do exhibit equal distribution
across disjunction constituents in practice as seen in Table 1.
Concept Negation In concept negation, we wish to generate an output that does not contain the
concept. Given a color red, we want an output that is of a different color, such as blue. Thus, we want
to construct a distribution that places high likelihood to data that is outside a given concept. One
choice is a distribution inversely proportional to the concept. Importantly, negation must be defined
with respect to another concept to be useful. The opposite of alive may be dead, but not inanimate.
Negation without a data distribution is not integrable and leads to a generation of chaotic textures
which, while satisfying absence of a concept, is not desirable. Thus in our experiments with negation
we combine it with another concept to ground the negation and obtain an integrable distribution:

p(x|not(c1), c2) ∝
p(x|c2)
p(x|c1)α

∝ eαE(x|c1)−E(x|c2). (9)

We found the smoothing parameter α to be a useful regularizer (when α = 0 we arrive at uniform
distribution) and we use α = 0.01 in our experiments. The above equation allows us to apply
Langevin dynamics to obtain Equation 10 to sample concept negations.

x̃k = x̃k−1 − λ

2
∇x(αE(x|c1)− E(x|c2)) + ωk, (10)

where ωk ∼ N (0, λ).
Recursive Concept Combinations We have defined the three classical symbolic operators for
concept combinations. These symbolic operators can further be recursively chained on top of each
to specify more complex logical operators at test time. To our knowledge, our approach is the only
approach enabling such compositionality across independently trained models.
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Figure 3: Combinations of different attributes on
CelebA via concept conjunction. Each row adds an
additional energy function. Images on the first row are
conditioned on young, while images on the last row
are conditioned on young, female, smiling, and wavy
hair.
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Figure 4: Combinations of different attributes on
MuJoCo via concept conjunction. Each row adds an
additional energy function. Images on the first row
are only conditioned on shape, while images on the
last row are conditioned on shape, position, size, and
color. The left part is the generation of a sphere shape
and the right is a cylinder.

4 Experiments

We perform empirical studies to answer the following questions: (1) Can EBMs exhibit concept
compositionality (such as concept negation, conjunction, and disjunction) in generating images? (2)
Can we take advantage of concept combinations to learn new concepts in a continual manner? (3)
Does explicit factor decomposition enable generalization to novel combinations of factors? (4) Can
we perform concept inference across multiple inputs?

In the appendix, we further show that approach enables better generalization to novel combinations
of factors by learning explicit factor decompositions.

4.1 Setup

We perform experiments on 64x64 object scenes rendered in MuJoCo [27] (MuJoCo Scenes) and
the 128x128 CelebA dataset. For MuJoCo Scene images, we generate a central object of shape
either sphere, cylinder, or box of varying size and color at different positions, with some number of
(specified) additional background objects. Images are generated with varying lighting and objects.

We use the ImageNet32x32 architecture and ImageNet128x128 architecture from [3] with the Swish
activation [22] on MuJoCo and CelebA datasets. Models are trained on MuJoCo datasets for up to 1
day on 1 GPU and for 1 day on 8 GPUs for CelebA. More training details and model architecture can
be found in the appendix.

Smiling

Male

Smiling
AND
Male

Smiling 
AND

NOT Male

(Smiling AND 
Female) OR

(NOT smiling
AND Male

Figure 5: Examples of recursive composi-
tions of disjunction, conjunction, and nega-
tion on the CelebA dataset.

Model Pos Acc Color Acc
Color 0.128 0.997
Pos 0.984 0.201
Pos & Color 0.801 0.8125
Pos & (¬ Color) 0.872 0.096
(¬ Pos) & Color 0.033 0.971
Color [29] 0.132 0.333
Pos [29] 0.146 0.202
Pos & Color [29] 0.151 0.342

Model Pos 1 Acc Position 2 Acc
Pos 1 0.875 0.0
Pos 2 0.0 0.817
Pos 1 | Pos 2 0.432 0.413

Model Pos/Color 1 Acc Pos 2/Color 2 Acc
Pos 1 & Color 1 0.460 0.0
Pos 2 & Color 2 0.0 0.577
(Pos 1 & Color 1) | (Pos 2 & Color 2) 0.210 0.217

Table 1: Quantitative evaluation of conjunction (&), disjunc-
tion (|) and negation (¬) generations on the Mujoco Scenes
dataset using an EBM or the approach in [29]. Position = Pos.
Each individual attribute (Color or Position ) generation is a
individual EBM. (Acc: accuracy) Standard error is close to
0.01 for all models.
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4.2 Compositional Generation

Quantitative evaluation. We first evaluate compositionality operations of EBMs in Section 3.2. To
quantitatively evaluate generation, we use the MuJoCo Scenes dataset. We train a supervised classifier
to predict the object position and color on the MuJoCo Scenes dataset. Our classifier obtains 99.3%
accuracy for position and 99.9% for color on the test set. We also train seperate conditional EBMs on
the concepts of position and color. For a given positional generation then, if the predicted position
(obtained from a supervised classifier on generated images) and original conditioned generation
position is smaller than 0.4, then a generation is consider correct. A color generation is correct if the
predicted color is the same as the conditioned generation color.

In Table 1, we quantitatively evaluate the quality of generated images given combinations of con-
junction, disjunction, and negation on the color and position concepts. When using either Color
or Position EBMs, the respective accuracy is high. Conjunction(Position, Color) has high position
and color accuracies which demonstrates that an EBM can combine different concepts. Under
Conjunction(Position, Negation(Color)), the color accuracy drops to below that of Color EBM. This
means negating a concept reduces the likelihood of the concept. The same conclusion for Conjunc-
tion(Negation(Position), Color). We compare with the approach in [29], using the author’s online
github repo, and find it produces blurrier and worse results.

To evaluate disjunction, we set Position 1 to be a random point in the bottom left corner of a grid
and Position 2 to be a random point in the top right corner of a grid. The average results over 1000
generated images are reported in Table 1. Position 1 EBM or Position 2 EBM can obtain high accuracy
in predicting their own positions. Disjunction(Position 1, Position 2) EBM generate images that are
roughly evenly distributed between Position 1 and Position 2, indicating the disjunction can combine
concepts additively. This trend further holds with conjunction, with Disjunction(Conjunction(Position
1, Color 1),Conjunction(Position 2, Color 2)) also being evenly distributed.

We further investigate implication using a composition of conjunctions and negations in EBMs. We
consider the term (Position 1 AND (NOT Color 1)) AND ... AND (Position 1 AND (NOT Color 4)),
which implicates Color 5. We find that are generations obtain 0.982 accuracy for Color 5.

Qualitative evaluation. We further provide qualitative visualizations of conjunction, disjunction,
and negation operations on both MuJoCo Scenes and CelebA datasets.

Concept Conjunction: In Figure 3, we show the conjunction of EBMs is able to combine multiple
independent concepts, such as age, gender, smile, and wavy hair, and get more precise generations
with each energy models. Our composed generations obtain a FID of 45.3, compared to an FID of
64.5 of an SNGAN model trained on data conditioned on all four attributes. Our generations are also
significantly more diverse than that of GAN model (average pixel MSE of 64.5 compared to 55.4 of
the GAN model). Similarily, EBMs can combine independent concepts of shape, position, size, and
color to get more precise generations in Figure 4. We also show results of conjunction with other
logical operators in Figure 5.

Concept Negation: In Figure 5, row 4 shows images that are opposite to the trained concept using
negation operation. Since concept negation operation should accompany with another concept as
described in Section 3.2, we use “smiling“ as the second concept. The images in row 4 shows the
negation of male AND smiling is smiling female. This can further be combined with disjunction in
the row 5 to make either “non-smiling male” or “smiling female”.

Concept Disjunction: The last row of Figure 5 shows EBMs can combine concepts additively
(generate images that are concept A or concept B). By constructing sampling using logsumexp, EBMs
can sample an image that is “not smiling male” or “smiling female”, where both “not smiling male”
and “smiling female” are specified through the conjunction of energy models of the two concepts.

Multiple object combination: We show that our composition operations not only combine object
concepts or attributes, but also on the object level. To verify this, we constructed a dataset with one
green cube and a large amount background clutter objects (which are not green) in the scene. We
train a conditional EBM (conditioned on position) on the dataset. Figure 7 “cube 1” and “cube 2”
are the generated images conditioned on different positions. We perform the conjunction operation
on the EBMs of “cube 1” and “cube 2” and use the combined energy model to generate images
(row 3). We find that adding two conditional EBMs allows us to selectively generate two different
cubes. Furthermore, such generation satisfies the constraints of the dataset. For example, when two
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cube1
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joint
rendering

Figure 7: Multi-object compositionality with EBMs.
An EBM is trained to generate a green cube at loca-
tion in a scene alongside other objects. At test time,
we sample from the conjunction of two EBMs condi-
tioned on different positions and sizes (cube 1 and 2)
and generates cubes at both locations. Two cubes are
merged into one if they are too close (last column).

position

shape

color

Figure 8: Continual learning of concepts. A position
EBM is first trained on one shape (cube) of one color
(purple) at different positions (first row). A shape EBM
is then trained on different shapes of one fixed color
(purple) (second row). Finally, a color EBM is trained
on shapes of many colors (third row). EBMs learn
to combine concepts to many shapes (cube, sphere),
colors and positions.

conditional cubes are too close, the conditionals EBMs are able to default and just generate one cube
like the last image in row 3.

4.3 Continual Learning

We evaluate to what extent compositionality in EBMs enables continual learning of new concepts
and their combination with previously learned concepts. If we create an EBM for a novel concept,
can it be combined with previous EBMs that have never observed this concept in their training data?
And can we continually repeat this process?

To evaluate this, we use the following methodology on MuJoCo dataset: 1) We first train a position
EBM on a dataset of varying positions, but a fixed color and a fixed shape. In experiment, we use
shape “cube” and color “purple”. The position EBM allows us generate a purple cube at various
positions. (Figure 8 row 1). 2) Next we train a shape EBM by training the model in combination
with the position EBM to generate images of different shapes at different positions, but without
training position EBM. As shown in Figure 8 row 2, after combining the position and shape EBMs,
the “sphere” is placed in the same position as “cubes” in row 1 even these “sphere” positions never
be seen during training. 3) Finally, we train a color EBM in combination with both position and
shape EBMs to generate images of different shapes at different positions and colors. Again we fix
both position and shape EBMs, and only train the color model. In Figure 8 row 3, the objects with
different color have the same position as row 1 and same shape as row 2 which shows the EBM can
continually learn different concepts and extrapolate new concepts in combination with previously
learned concepts to generate new images.

In Table 2, we quantitatively evaluate the continuous learning ability of our EBM and GAN [21].
Similar to the quantitative evaluation in Section 3.2, we a train three classifiers for position, shape,
color respectively. For fair comparison, the GAN model is also trained sequentially on the position,
shape, and color datasets (with the corresponding position, shape, color and other random attributes
set to match the training in EBMs).

Table 2: Quantitative evaluation of continual learning. A position
EBM is first trained on “purple” “cubes” at different positions. A
shape EBM is then trained on different “purple” shapes. Finally, a
color EBM is trained on shapes of many colors with Earlier EBMs
are fixed and combined with new EBMs. We compare with a GAN
model [21] which is also trained on the same position, shape and
color dataset. EBMs is better at continually learning new concepts
and remember the old concepts. (Acc: accuracy)

Model Position Acc Shape Acc Color Acc

EBM (Position) 0.901 - -
EBM (Position + Shape) 0.813 0.743 -
EBM (Position + Shape + Color) 0.781 0.703 0.521

GAN (Position) 0.941 - -
GAN (Position + Shape) 0.111 0.977 -
GAN (Position + Shape + Color) 0.117 0.476 0.984

The position accuracy of EBM does
not drop significantly when contin-
ually learning new concepts (shape
and color) which shows our EBM
is able to extrapolate earlier learned
concepts by combining them with
newly learned concepts. In contrast,
while the GAN model is able to learn
the attributes of position, shape and
color models given the corresponding
dataset. We find the accuracies of po-
sition and shape drops significantly
after learning color. The bad perfor-
mance shows that GANs cannot com-
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bine the newly learned attributes with
the previous attributes.

large spheres only

all sphere sizes

...
10% 1%

Training Dataset
1 % 10 % 100 %

EBM Baseline GT EBM Baseline GT EBM Baseline GT

Figure 9: Cross product extrapolation. Left: the spheres of all sizes only appear in the top right corner (1%,
10%, . . . ) of the scene and the remaining positions only have large size spheres. Right: generated images of
novel size and position combinations using EBM and the baseline model.
4.4 Cross Product Extrapolation
Humans are endowed with the ability to extrapolate novel concept combinations when only a limited
number of combinations were originally observed. For example, despite never having seen a “purple
cube”, a human can compose what it looks like based on the previously observation of “red cube”
and “purple sphere”.

To evaluate the extrapolation ability of EBMs, we construct a dataset of MuJoCo scene images
with spheres of all possible sizes appearing only in the top right corner of the scene and spheres of
only large size appearing in the remaining positions. The left figure in Figure 9 shows a qualitative
illustration. For the spheres only in the top right corner of the scene, we design different settings.
For example, 1% meaning only 1% of positions (starting from the top right corner) that contain all
sphere sizes are used for training. At test time, we evaluate the generation of spheres of all sizes at
positions that are not seen during the training time. Similar to 1%, 10% and 100% mean the spheres
of all sizes appears only in the top right 10% and 100% of the scene. The task is to test the quality of
generated objects with unseen size and position combinations. This requires the model to extrapolate
the learned position and size concepts in novel combinations.

We train two EBMs on this dataset. One is conditioned on the position latent and trained only on
large sizes and another is conditioned on the size latent and trained at the aforementioned percentage
of positions. Conjunction of the two EBMs is fine-tuned for generation through gradient descent. We
compare this composed model with a baseline holistic model conditioned on both position and size
jointly. The baseline is trained on the same position and size combinations and optimized directly
from the Mean Squared Error between the generated image and real image. Both models use the
same architecture and number of parameters are described in the appendix.

We qualitatively compare the EBM and baseline in Figure 9. When sphere of all sizes are only
distributed in the 1% of possible locations, both the EBM and baseline have bad performance. This is
because the very few combinations of sizes and positions make both models fail in extrapolation. For
the 10% setting, our EBM is better than baseline. EBM is able to combine concepts to form images
from few combination examples by learning an independent model for each concept factor. Both
EBM and baseline models generate accurate images when given examples of all combinations (100%
setting), but our EBM is closer to ground truth than the baseline.

In Figure 10, we quantitatively evaluate the extrapolation ability of EBM and the baseline. We
train a regression model that outputs both the position and size of a generated sphere image. We
compute the error between the predicted size and ground truth size and report it in the first image of
Figure 10. Similarly, we report the position error in the second image. EBMs are able to extrapolate
both position and size better than the baseline model with smaller errors. The size errors goes down
with more examples of all sphere sizes. For position error, both EBM and the baseline model have
smaller errors at 1% data than 5% or 10% data. This result is due to the make-up of the data – with
1% data, only 1% of the rightmost sphere positions have different size annotations, so the models
generate large spheres at the conditioned position which are closer to the ground truth position since
most positions (99%) are large spheres.

4.5 Concept Inference
Our formulation also allows us to infer concept parameters given a compositional relationship in
inputs. For example, given a generated set of of images, each generated by the same underlying
concept (conjunction), the likelihood of a concept is given by:
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Figure 10: Cross product extrapolation results with respect to the percentages of areas on the top right corner.
EBM has lower size and position errors which means EBM is able to extrapolate better with less data than the
baseline model.
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Figure 11: Concept inference from multiple obser-
vations. Multiple images are generated under differ-
ent size, shape, camera view points, and lighting con-
ditions. The position prediction error decreases when
the number of input images increases with different
Langevin Dynamics sampling steps for training.

Cube 1 Cube 2 Two Cubes

Figure 12: Concept inference of multiple objects
with EBM trained on single cubes and tested on two
cubes. The color images are the input and the gray
images are the output energy map over all positions.
The energy map of two cubes correctly shows the
bimodality which is close to the summation of the
front two energy maps.

p(x1, x2, . . . , xn|c) ∝ e−
∑
i E(xi|c). (11)

We can then obtain maximum a posteriori (MAP) estimates of concept parameters by minimizing
the logarithm of the above expression. We evaluate inference on an EBM trained on object position,
which takes an image and an object position (x,y in 2D) as input and outputs an energy. We analyze
the accuracy of such inference in the appendix and find EBMs exhibit both high accuracy and
robustness, performing before than a ResNet.

Concept Inference from Multiple Observations The composition rules in Section 3.2 apply
directly to inference. When given several different views of an object at a particular position with
different size, shape, camera view points, and lighting conditions, we can formulate concept inference
as inference over a conjunction of multiple positional EBMs. Each positional EBM takes a different
view as input we minimize energy value over positions across the sum of the energies. We use
the same metric used above, i.e. Mean Absolute Error, in position inference and find the error in
regressing positions goes down when successively giving more images in Figure 11.

Concept Inference of Unseen Scene with Multiple Objects We also investigate the inherent
compositionality that emerges from inference on a single EBM generalizing to multiple objects.
Given EBMs trained on images of a single object, we test on images with multiple objects (not seen
in training). In Figure 12, we plot the input RGB image and the generated energy maps over all
positions in the scene. The “Two Cubes” scenes are never seen during training, but the output energy
map is still make scene with the bimodality energy distribution. The generated energy map of “Two
Cubes” is also close to the summation of energy maps of “Cube 1” and “Cube 2” which shows the
EBM is able to infer concepts, such as position, on unseen scene with multiple objects.

5 Conclusion
In this paper, we demonstrate the potential of EBMs for both compositional generation and inference.
We show that EBMs support composition on both the factor and object level, unifying different
perspectives of compositionality and can recursively combine with each other. We further showcase
how this composition can be applied to both continually learn and compositionally infer underlying
concepts. We hope our results inspire future work in this direction.
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7 Broader Impacts
We believe that compositionality is a crucial component of next generation AI systems. Composi-
tionality enables system to synthesize and combine knowledge from different domains to tackle the
problem in hand. Our proposed method is step towards more composable deep learning models. A
truly compositional system has many positive societal benefits, potentially enabling a intelligent and
flexible robots that can selectively recruit different skills learned for the task on hand, or super-human
synthesis of scientific knowledge that can further progress of scientific discovery. At the same time,
there remain unanswered ethical problems about any such next generation AI system.
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