A Simulating PCFGs

Example 19. Below is a FGG for derivations of a PCFG in Chomsky normal form. The start symbol
of the FGG is S’ and the start symbol of the PCFG is S. Random variables N range over nonterminal
symbols of the PCFG, and random variables W range over terminal symbols.

N,
p(Nl — N2N3) — p(Nl — Wg)

Example 20. We can conjoin the FGG of Example 19 with the following FGG to constrain it to an
input string w, withn = |w|,0<i<j<k<m,and1 <[<n:

o]~ ()

The resulting rules have a total of O(n?) variables in their right-hand sides. The largest right-hand
side has 3 variables, so k = 2. The variables range over nonterminals, so m = |N| where N is
the CFG’s nonterminal alphabet. Therefore, running the algorithm of Theorem 15 on this FGG
takes O(ngm**1) = O(|N|?n?) time, which is the same as the CKY algorithm. This construction
generalizes easily to CFGs not in Chomsky normal form; applying Lemma 16 would keep the
inference complexity down to O(n?) (or O(n?) for a linear CFG).

W2=wl

B Relationship to other formalisms

B.1 Plate diagrams

Plate diagrams are extensions of graphs that describe repeated structure in Bayesian networks
(Buntine, 1994) or factor graphs (Obermeyer et al., 2019). A plate is a subset of variables/factors,
together with a count M, indicating that the variables/factors inside the plate are to be replicated M
times. But there cannot be edges between different instances of a plate.

Definition 21. A plated factor graph or PFG (Obermeyer et al., 2019) is a factor graph H = (V, E)
together with a finite set B of plates and a function P : V U E — 25 that assigns each variable and
factor to a set of plates. If b € P(v) and e is incident to v, then b € P(e).

The unrolling of H by M : B — N is the factor graph that results from making M (b) copies of every
node v such that b € P(v) and every edge e such that e € P(e).

Obermeyer et al. (2019) give an algorithm for computing the sum—product of a PFG. It only succeeds
on some PFGs. An example for which it fails is the set of all restricted Boltzmann machines (fully-
connected bipartite graphs); one of their main results is to characterize the PFGs for which their
algorithm succeeds. Below, we show how to convert these PFGs to FGGs.

Proposition 22. Let H be a PFG. If the sum—product algorithm of Obermeyer et al. (2019) succeeds

on H, then there is a FGG G such that for any M : B — N, there is a FGG Gy such that G 1 Gy
generates one graph, namely the unrolling of H by M.

Proof. We just describe how to construct G' 1 G directly; hopefully, it should be clear how to
construct G and G, separately (G has factors but not counts; G, has counts but not factors).
Algorithm 1 converts H and M to G 1 G ;. It has the same structure as the sum—product algorithm
of Obermeyer et al. (2019) and therefore works on the same class of PFGs. O

12

Algorithm 1 Procedure for converting a PFG H and count assignment M to a FGG.

while F # () do
let e = arg max, i | P(e)| (breaking ties arbitrarily) and L = P(e)
let Hj, be the subgraph of nodes and edges of H whose plate set is L
for each connected component H. of Hy, do
let V; be the variables not in H,. but incident to factors in H.
let L' = Uyev, P(v)
if L = L’ then
error
let X be a fresh nonterminal
letn = [Ty M(b)
replace H. with an edge with label X™ and endpoints V
fori < n,...,1do
create rule X* — R where R has:
e internal nodes and edges from H,
e external nodes V
e an edge with label X*~! and endpoints V¢

create rule X° — R where R has external nodes V; and no other nodes/edges
create rule S — H

If the algorithm of Obermeyer et al. (2019) fails on a PFG, there might not be an equivalent FGG. In
particular, FGGs cannot generate the set of RBMs, because a m x n RBM has treewidth min(m, n),
so the set of all RBMs has unbounded treewidth and can’t be generated by a HRG.

Although, in this respect, FGGs are less powerful than PFGs, we view this as a strength, not
a weakness. Because FGGs inherently generate graphs of bounded treewidth, our sum—product
algorithm (Theorem 15) works on all FGGs, and no additional constraints are needed to guarantee
efficient inference.

Example 23. The following PFG is from Obermeyer et al. (2019):

F H G
() ()
—@——0
J I
Converting to a FGG produces the following rules (in order of their construction by the above
algorithm):

B.2 Dynamic graphical models

For simplicity, we only consider binary factors, which we draw as directed edges, and we ignore edge
labels.

Definition 24. A dynamic graphical model or DGM (Bilmes, 2010) is a tuple
(H1, Hz, H3, Er2, E9g, Ea3), where the H; = (V;, E;) are factor graphs and the E;; C V; x V; are
sets of edges from H; to H;.

A DGM specifies how to construct, for any length n > 2, a factor graph
H"= WV uUVax{l,...,n}UV5, E),
where F is defined by:
o If (u,v) € E12, add an edge from v to (v, 1).
o If (u,v) € Ea9, add an edge from (u,7 — 1) to (v,7) forall 1 < i < n.
o If (u,v) € Es3, add an edge from (u,n) to v.

Proposition 25. Given a DGM D = (Hy, Ho, Hs, E1o, E9s, Ea3), there is a FGG G such that for
any count n. > 2, there is another FGG G, such that G 1 G,, generates exactly one graph, the
unrolling of D by n.

Proof. Again, we give an algorithm for constructing G I G,,, and hopefully, it should be clear how
to construct G and G,, separately. Create the following rules:
e S — R, where R contains
e Nodes and edges from H;, Hs, and E;5
e Anedge labeled A" ! and endpoints {u | (u,v) € Faa}.
e A’ — R, where R contains
e Nodes and edges from H
e If (u,v) € Egs, R has an external node v/’
e For each (u,v) € Eaa, an edge from v’ to v
e Anedge labeled A~! and endpoints {u | (u,v) € Eaa}.
e Al = R, where R contains
e Nodes and edges from Hs, Hs, and Fog
e If (u,v) € Ea9, R has an external node u’
e For each (u,v) € Eaa, an edge from v’ to v.

O

Example 26. Bilmes (2010) give the following example of a DGM. All factors have two endpoints,
and we draw them as directed edges instead of the usual squares. We draw the edges in Foy with
dotted lines.

The resulting FGG:

14

where, in the middle rule, 1 < ¢ < n.

Running the algorithm of Theorem 15 would not be guaranteed to achieve the same time complexity
as that of (Bilmes and Bartels, 2003), which searches through alternative ways of dividing the unrolled
factor graph into time slices.

B.3 Case-factor diagrams and sum-product networks

Case—factor diagrams (McAllester et al., 2008) and sum—product networks (Poon and Domingos,
2011) are compact representations of probability distributions over assignments to Boolean variables.
They generalize both Markov networks and PCFGs.

Both formalisms represent models as rooted directed acyclic graphs (DAGs), with edges directed
away from the root, in which some nodes mention variables. If D is a DAG, for any node v € D, let
scope(v) be the set of variables mentioned in v or any descendant of v.

Definition 27. A case—factor diagram (CFD) model is a pair (D, V), where D is a rooted DAG with
root r, each of whose nodes is one of the following:

e case(x) with two children vy and vo, where z is a variable not in scope(v1) U scope(vs).
e factor with two children v; and ve, where scope(v1) N scope(ve) = 0.
e unit with no children.
e empty with no children.
And ¥ : scope(r) — R assigns a cost to each variable in scope(r).

A CFD model defines a probability distribution over assignments to its variables. We compute
quantities ¢(v, §) and Z(v) for each node v as follows. Let vy, vo be the children of v, if any.

e—\Il(;c) v i) =
v = case(x) q(v’g):{ q(v1,§) ifé(x)=1

q(v2,§) if¢(x) =0
v=factor q(0,€) = (o1,) glva, €) Z(v) = Z(01) Z(v2)
v = unit q(v,§) =1 Z(v)=1
v = empty q(v,§) =0 Z(v)=0

Define ¢(¢) = q(r,&) and Z = Z(r). Then P(§) = q(§)/Z.

Proposition 28. If (D, V) is a CFD model, there is a FGG G such that (D, ¥) and G have the same
sum—product, and for any assignment § of (D, V), there is a FGG G¢ such that the sum—product of
G A G¢ equals ¢(&).

15

Proof. Given a CFD, we can construct a FGG where each node v of the CFD becomes a different
nonterminal symbol D,,:

node G Ge
v = case(x) — O — f
o)
z=1 z =&(x)

[D.] — f D] — f
2= ¢(x)

rz=0

v = factor @—> @_)
v = unit —>(Z) —HZ)

We do not create any rule with left-hand side empty, so that any derivations that generate empty
fail. O

The number of rules in G is the number of nodes in D. Computing its sum—product is linear in the
number of rules, just as computing the sum—product of D is linear in the number of nodes.

Definition 29. A valid sum—product network (SPN) is a rooted DAG whose nodes are each either:
e sum(\q, Ay) with two children v; and v, where scope(vy) = scope(vs).

e product with two children v; and v, such that no variable appears in one and negated in the
other.

e x or T with no children.

A valid SPN defines a distribution over assignments to its variables. For each node v, let v, v5 be the
children of v, if any.

v = sum(Ar, A2) q(v,€) = A1q(v1,§) + Aag(ve, §)
v = product q(v,€) = q(v1,€) q(v2, §)

v=1x q(v,§) = &(x)

v=1I q(v,§) =1-¢&(z)

Converting a valid SPN to a FGG is straightforward, but the resulting FGG has a separate node for
each occurrence of a variable x. The syntactic constraints in the definition of valid SPN ensure that in
any graph with nonzero weight, all occurrences of = have the same value.

Proposition 30. Any valid SPN S can be converted into a FGG G such that S and G have the same
sum—product, and for any assignment § of S, there is a FGG G¢ such that the sum—product of G \ G¢

equals q(&).

16

Proof. We construct a FGG where each node v becomes a different nonterminal symbol D,,:

node G Ge¢

v=u —>(:>—D _>@]
r=1 = £(a)

v=1=1 —><:>—D —>O .
z=0 = £(a)

v:sum(/\l,/\g) —> AE] —>
1

o o) o]
2

v = product ’DU

—>’DU1

o

5.

—>’Dv1

o

O

The number of rules in G is the number of nodes in S. Computing its sum—product is linear in the
number of rules, just as computing the sum—product of S is linear in the number of nodes.

Further variations of SPNs have been proposed, in particular to generate repeated substructures
(Stuhlmiiller and Goodman, 2012; Melibari et al., 2016). Factored SPNs (Stuhlmiiller and Goodman,
2012) are especially closely related to FGGs, in that they allow one part of a SPN to “reference”
another, which is analogous to a nonterminal-labeled edge in a FGG.

CFDs and SPNs present a rather different, lower-level view of a model than the other formalisms
surveyed here do. Whereas factor graphs and the other formalisms represent the model’s variables and
the dependencies among them, CFDs and SPNs (including factored SPNs) represent the computation
of the sum-product. For instance, converting a factor graph H to a CFD or SPN requires forming a
tree decomposition of H (McAllester et al., 2008), and the resulting CFD/SPN’s structure is that of
the tree decomposition, not of H.

FGGs, in a sense, combine both points of view. Their derived graphs represent a model’s variables
and dependencies, while their derivation trees represent the computation of the sum-product. Thus, a
factor graph H can be trivially converted into a FGG S — H, and, as can be seen in the translations
given above, a CFD or SPN can also be converted to a FGG while preserving its structure.

C Proof of Proposition 16

Let H = (V, E) be a hypergraph. Recall that a tree decomposition of H is a tree whose nodes are
called bags, to each of which is associated a set of nodes, Vg C V, and (nonstandardly) a set of
edges, Fp C E. The bags must satisfy the properties:

e Node cover: | J; VB = V.
e Edge cover: for every edge e € E, there is exactly one bag B such that e € Ep and att(e) C V5.

e Running intersection: if v € Vg, and v € Vp,, then for every bag B between B; and Bo,
v e Vp.

The width of a tree decomposition is maxp |Vg| — 1, and the treewidth of H is the minimum width
of any tree decomposition of H. A tree decomposition can always be made to have at most n nodes
without changing its width (Bodlaender, 1993).

Chiang et al. (2013) give a parsing algorithm for HRGs that matches right-hand sides incrementally
using their tree decompositions. They observe that this is related to the concept of binarization of
context-free grammars. Here, we make this connection explicit by showing how to factorize a HRG.

17

For every rule (X — R), where R has n g nodes and treewidth at most k, form a tree decomposition
of R with np — k < np bags. Let the root of the tree decomposition be the bag containing all the
external nodes of R. For each bag B, construct arule X5 — Rp as follows.

e If B is the root bag, X5 = X; otherwise, X p is a fresh nonterminal symbol.
e Add all nodes in V and edges in Ep to Rp.

e If B is the root bag, Rp’s external nodes are the same as R’s; if B has parent P, let Rp’s
external nodes be Vp N Vp.

e For each child bag B;, add a hyperedge with label X 5, and endpoints Vg N V5, .

This new FGG generates the same language as G. The number of rules is at most 3 x_, p)c R =
ng. Every right-hand side has at most (k 4 1) nodes.

D Supplement to Theorem 17

D.1 An example

Example 31. We show how to construct the factor graph corresponding to the following simple,
nonreentrant FGG:

This grammar generates just two graphs:

(A1,Bo)

Applying the construction from Theorem 17 gives the factor graph shown in Figure 4.

18

X
-']
O O
()| @)
O
d O
&)

[] CondOne(Byx, B,,)

(B

[] CondOne(Byx, B,,)

[{CondOne(By, B, Bx,)

[] CondOne(By, B,,)

19

Figure 4: The FGG of Example 31,
converted to a single factor graph
using the construction of Theo-
rem 17. Some detail has been omit-
ted to reduce clutter. The edges from
clusters to B variables are “meta-
tentacles” that stand for a tentacle
from every factor inside the clus-
ter to the B variable. We draw
CondNormalize and CondEquals
factors as smaller squares and omit
their names. Lastly, rather than writ-
ing out “CondFactor”, we use the
name of the original factor function

(f or g).

D.2 Complexity of inference

As noted in Section 5.2, the purpose of this conversion to a single factor graph is to make inference
possible with infinite variable domains; after converting to a factor graph, existing, possibly approxi-
mate, inference methods can be applied. But with finite variable domains, an algorithm like variable
elimination would not be appropriate because this conversion has the potential to increase treewidth
dramatically.

In the proof of Theorem 15, we constructed the nonterminal graph, which has a node for every
nonterminal and an edge from X to Y iff there is a rule X — R where R has an edge labeled Y. For
a nonreentrant FGG, the nonterminal graph is always a DAG. If, for each X € N \ S, X appears in
the right-hand side of exactly one rule, then the nonterminal graph is a tree.

When the nonterminal graph is a tree, we can construct a tree decomposition by making one bag
for each cluster, and one bag for each CondOne factor. The bag for a cluster C' contains all the
variables in C, along with B¢ and all the CondNormalize and CondFactor edges associated with
C. The bag for a CondOne factor will contain all the B variables used by that CondOne factor, all
the CondEquals edges connecting clusters involved in that CondOne factor, and all the variables
connected to those CondEquals edges.

Exact inference on this tree decomposition is very similar to the algorithm described in Theorem 15.
However, a naive application of variable elimination will still be less efficient than that algorithm, since
the CondOne factors connect | PX | + 1 binary variables, requiring a loop over 9l P¥I+1 assignments.
All but |[PX| 4 1 of these assignments have zero weight, so in fact we can process these factors
much faster; modifying the variable elimination algorithm to account for this and the CondEquals
constraints would give us something almost identical to the algorithm of Theorem 15.

In the DAG case, this simple tree decomposition is not possible. The factor graph H has the
nonterminal graph as a minor, so the treewidth of the nonterminal graph is a lower bound on
the treewidth of H (Bodlaender, 1998, Lemma 16). In the worst case, this could be |N]|.

D.3 Detailed proof of correctness

If G is a FGG and H is the factor graph that results from the construction of Theorem 17, we can
show that they have the same sum—product Zg = Zp.

The sum—product Zg can be computed in the usual way, by summing over all assignments to the
variables and, for each assignment, taking the product over all of the factors:

Zu=Y"] Fle)e(e)).

€=y e€eH

The summation over assignments ¢ includes many possible settings of the B variables. But the
CondOne factors tell us that, if the assignment to the B variables does not give us a valid derivation,
then the weight of that assignment will be 0. Therefore, we only need to sum over assignments to the
B variables which represent a valid derivation, and so we can express the sum—product using a sum
over derivations rather than a sum over assignments to B variables. Let £ represent the assignment
to the B variables. Then:

Zy= Y > [T Fe)ece.
DED(G) £€EH e€H
&g consistent with D
(Note that the product over e € H can ignore all CondOne factors, since when the assignment to the
B variables is consistent with some derivation, they all have value 1.)

We can associate a derivation D with the subset of clusters in [corresponding to the nonterminals
and rules which were used in the derivation; call this Cp. For any D, all the variables in H are
divided into three parts: those that belong to clusters in Cp (call this V), those that belong to clusters
not in Cp (call this V), and the B variables (which don’t belong to any cluster). Let {g p be the
unique assignment to the B variables that is consistent with D. Let = be the set of all assignments
extending {g,p with assignments to Vp, and let Z5 be the set of all assignments extending {B p
with assignments to V5.

20

Let E'p be the set of factors involving a variable in Vp, and let E5 be the set of factors involving a
variable in V5. Because any factors between Vp and V5 are CondEquals factors with value 1 (since
their B variable is false), we can ignore them. Similarly, the only factors which don’t involve either
Vp or V5 are the CondOne factors, which we are already ignoring. This allows us to rewrite the
sum—product as

2= X (X 11 roren) (X 1T #rcen).

DeD \¢€Ep eeEp (e ecbEy

Zp Z5

Consider Z3 first. All CondFactor and CondEquals factors in E/5 have value 1 and can be ignored,
leaving only CondNormalize factors. Because these place a probability distribution p, on each
variable v in an unused cluster, those variables all sum out:

Iy = Z H H CondNormalize, (B x, v) H H CondNormalize, (B, v)

{€E5 CxgCp veCX CrgCp veEC,
Z II I »€@) IT II pe€)
- Cx&Cp veCx CrgCp veCr
=11 II{ > »@| I 1 { > »@
Cx@CpveCx \zeQ(v) CrdCpveCy \2eQ(v)
= 1.

Now consider Zp. All CondNormalize factors in Ep have value 1 and can be ignored, leaving
only CondEquals and CondFactor factors. Let Hp be the derived graph of D. We can think of the
derivation as merging pairs of nodes in Vp, so that a single node v € Hp may correspond to several
“copies” in V. However, the CondEquals constraints ensure that all copies of v have the same value.
Therefore, instead of summing over the assignments to Vp, we can simply sum over the assignments
to Hp (and omit CondEquals factors):

Z H H CondFactor. (B, {(att(e)))

£€Ep,, Cr€Cp e€m

= > I TIFe (& att(e)))

§€Eu, Cr€Cp e€m

= Y I Fle)latt(e))).

§€EEn, e€EHp

So, finally, the sum—product of H can be rewritten as:

Zu= > Y I Fle)att(e)))

DeD(G) £E€EEn, e€Hp
> 2 we(Dg)

DED(G) £€Ew,

- Za.

E Proof of Theorem 18

Let I be a finite alphabet containing a blank symbol (), and let ¥ = |T'|. Number the symbols in T’
as Yo = -, 71,72, - - - » Yk—1. Define an encoding for strings over I':

(ey =0
(viw)y =i+ k- (w).

Note that strings that differ only in the number of trailing blanks have the same encoding.

21

We write x // k for |x/k|andx %o k=xz—x // k- k.

Let M be a Turing machine with doubly-infinite tape, input alphabet X, tape alphabet I, start state g,
transition function ¢, accept state gaceept, and reject state greject. For any input string w € X*, construct
the following rules, where the q nodes track the Turing machine’s state, the u nodes track the reverse
of the tape to the left of the head, and the v nodes track the tape from the head rightward:

q2 € {Qacccph qrcjccl}

For each transition §(g, a) = (r,b,L):

The sum-product of this FGG is 1 if M halts on w, 0 otherwise. Therefore, computing the sum-product
of an FGG is undecidable.

The operations +, -, //, % and = can be further reduced to just the successor relation and equality
with zero, as shown below.

22

Xo =xX4 +1

@ X3:0

where x7 is the dividend, x5 is the divisor, x; is the quotient, and x3 is the remainder.

23

