
We thank all the reviewers for their feedback and suggestions. We first address some commonly raised points:1

1. Computing the effective dimension dλ (raised by Reviewers 1 and 2). In the case of the surrogate leverage score2

sampling sketch, the effective dimension does not need to be explicitly calculated. In particular, this means that the3

input sparsity time algorithm from Theorem 2 does not require any knowledge of dλ (this applies to both sketching and4

scaling). When using scaled regularization with a standard sketch (e.g., Gaussian), a rough estimate of dλ is sufficient5

to significantly reduce the bias. We will discuss this in detail in the final version of the paper.6

2. The assumption that α ≥ d (raised by Reviewers 2 and 4). As discussed in Remark 11, the assumption that α ≥ d7

in Theorem 2 (and Table 1) is introduced only to account for the additional computational cost of the surrogate sketch8

when comparing to prior work (the cost is related to DPP sampling), but is not needed for the convergence rate. In fact,9

unlike in Determinantal Averaging [10], our convergence rate bound holds for any α ≥ 1, and it is by a factor of d10

better than in [10] for all α (Table 1). It is worth pointing out that time complexity of DPP sampling is an ongoing area11

of research, and we believe that further improvements in this area will eliminate the need for the α ≥ d assumption.12

3. Condition number dependence of the convergence rate result (raised by Reviewers 3 and 4). Dependence on the13

condition number is standard in the analysis of distributed Newton-type methods, including GIANT [25], Determinantal14

Averaging [10], DANE [22], AIDE [21], DiSCO [26] and others. Our approach enjoys a merely logarithmic dependence15

of the number of iterations on the condition number (see Remark 3), which is at least as good as any of the listed16

methods. Following Reviewer 3’s suggestion, we empirically compared the convergence rate of distributed Newton17

using the surrogate sketch (on the logistic regression task from Figure 3a) to a full unsketched gradient descent (GD)18

with backtracking line search, observing that GD required over 3x more iterations, compared to our method, until19

reaching 10−9 relative function value error. We will add these additional experiments to the final version.20

Reviewer 121

• Comparison of [25] and our work: The main difference between [25] and our work is that our method gives22

unbiased estimates for the Newton step, which is not the case for [25]. This makes the most difference in the23

high q (many workers) and high accuracy (small ε) regime, which is important in massively parallel computing and24

federated learning. Also, from a practical point of view, simply applying rescaled regularization to the method of25

[25] (without using surrogate sketching) improves the error performance of [25] greatly, as illustrated in Figure 1.26

Reviewer 227

• Does a result analogous to Lemma 8 hold for other surrogate sketches? Yes, we believe that a version of28

Lemma 8 can be shown for any surrogate sketch which admits a spectral approximation of A>A (most of our29

proofs extend naturally to this general case, however some technical difficulties remain).30

• Advantage over using a single server with a preconditioner: When we desire an accurate solution (i.e., small ε),31

then the cost of performing log(1/ε) iterations over all data can be very significant. By averaging the outputs of32

multiple workers, we can obtain better estimates for the Newton direction, and thus require far fewer than log(1/ε)33

iterations over all data (see Remark 3).34

• Difference between this work and [9]: While our proof techniques for showing the expectation formulas in35

Lemma 4 are indeed based on [9], the scaled regularization phenomenon is specific to our analysis ([9] did not36

observe this scaling). Furthermore, unlike us, [9] considers neither the algorithmic nor the measure concentration37

aspects of determinantal distributions. For example, they do not have an analogue of Lemma 8.38

• What is capital E in Definition 2? It is any event measurable with respect to the random (matrix) variable X.39

• Is a surrogate sketch for a general random projection useful? In terms of sampling from, say, a surrogate40

Gaussian sketch, we expect that this can be done efficiently (e.g., [12] shows how to sample from a slightly41

different determinant-rescaled Gaussian distribution). Furthermore, we believe that by bounding the discrepancy42

between a standard sketch and its surrogate, it will be possible to bound the bias of the standard sketch.43

Reviewer 344

• Linear/non-linear models: We would like to clarify that the model is not necessarily linear but the update45

direction is obtained through solving a linear system. Sketched Newton’s method works for convex cost functions46

in general, and our surrogate sketches apply there as well. For instance, Figure 7 in the appendix shows the error47

curves for distributed Newton sketch applied to a convex objective formulated using the log-barrier method.48

Reviewer 449

• Comparison of the least squares case and the general convex case: The convergence rate in Theorem 2 (least50

squares case) is stated in terms of the `2 norm squared, whereas Theorem 10 (general convex case) is stated in51

terms of the `2 norm (not squared). Squaring the expression in Theorem 10 shows that the dependence on κ is the52

same in both cases (also, it matches [10] and [25]). We will clarify this in the final version.53


