Neural Controlled Differential Equations for
Irregular Time Series

Patrick Kidger James Morrill James Foster Terry Lyons

Mathematical Institute, University of Oxford
The Alan Turing Institute, British Library
{kidger, morrill, foster, tlyons}@maths.ox.ac.uk

Abstract

Neural ordinary differential equations are an attractive option for modelling
temporal dynamics. However, a fundamental issue is that the solution to an
ordinary differential equation is determined by its initial condition, and there
is no mechanism for adjusting the trajectory based on subsequent observations.
Here, we demonstrate how this may be resolved through the well-understood
mathematics of controlled differential equations. The resulting neural controlled
differential equation model is directly applicable to the general setting of partially-
observed irregularly-sampled multivariate time series, and (unlike previous work
on this problem) it may utilise memory-efficient adjoint-based backpropagation
even across observations. We demonstrate that our model achieves state-of-the-art
performance against similar (ODE or RNN based) models in empirical studies on
a range of datasets. Finally we provide theoretical results demonstrating universal
approximation, and that our model subsumes alternative ODE models.

1 Introduction

Recurrent neural networks (RNN) are a popular choice of model for sequential data, such as a time
series. The data itself is often assumed to be a sequence of observations from an underlying process,
and the RNN may be interpreted as a discrete approximation to some function of this process. Indeed
the connection between RNNs and dynamical systems is well-known [1} 2} 13| 14].

However this discretisation typically breaks down if the data is irregularly sampled or partially
observed, and the issue is often papered over by binning or imputing data [S]].

A more elegant approach is to appreciate that because the underlying process develops in continuous
time, so should our models. For example [6, [7, |8, |9] incorporate exponential decay between
observations, [10} [11]] hybridise a Gaussian process with traditional neural network models, [12]]
approximate the underlying continuous-time process, and [13} [14] adapt recurrent neural networks
by allowing some hidden state to evolve as an ODE. It is this last one that is of most interest to us
here.

1.1 Neural ordinary differential equations

Neural ordinary differential equations (Neural ODEs) [3}[15], seek to approximate a map = — y by
learning a function fp and linear maps £}, /2 such that

¢
y~Lh(2r), where 2z = z +/ fo(zs)ds and zy = £3(x). (1)
0

Note that fy does not depend explicitly on s; if desired this can be included as an extra dimension in
zs [15L Appendix B.2].

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Neural ODEs are an elegant concept. They provide an interface between machine learning and the
other dominant modelling paradigm that is differential equations. Doing so allows for the well-
understood tools of that field to be applied. Neural ODEs also interact beautifully with the manifold
hypothesis, as they describe a flow along which to evolve the data manifold.

This description has not yet involved sequential data such as time series. The ¢ dimension in equation
(I) was introduced and then integrated over, and is just an internal detail of the model.

However the presence of this extra (artificial) dimension motivates the question of whether this
model can be extended to sequential data such as time series. Given some ordered data (zg, . .., z,),
the goal is to extend the 29 = ¢%(z) condition of equation (I to a condition resembling “zo =
0(x0),...,2n = L(xy,)”, to align the introduced ¢ dimension with the natural ordering of the data.

The key difficulty is that equation (I) defines an ordinary differential equation; once 6 has been
learnt, then the solution of equation (1)) is determined by the initial condition at z(, and there is no
direct mechanism for incorporating data that arrives later [4]].

However, it turns out that the resolution of this issue — how to incorporate incoming information —
is already a well-studied problem in mathematics, in the field of rough analysis, which is concerned
with the study of controlled differential equations See for example [16, 17,18, [19]. An excellent
introduction is [20]. A comprehensive textbook is [21]].

We will not assume familiarity with either controlled differential equations or rough analysis. The
only concept we will rely on that may be unfamiliar is that of a Riemann—Stieltjes integral.

1.2 Contributions

We demonstrate how controlled differential equations may extend the Neural ODE model, which
we refer to as the neural controlled differential equation (Neural CDE) model. Just as Neural ODEs
are the continuous analogue of a ResNet, the Neural CDE is the continuous analogue of an RNN.

The Neural CDE model has three key features. One, it is capable of processing incoming data,
which may be both irregularly sampled and partially observed. Two (and unlike previous work on
this problem) the model may be trained with memory-efficient adjoint-based backpropagation even
across observations. Three, it demonstrates state-of-the-art performance against similar (ODE or
RNN based) models, which we show in empirical studies on the CharacterTrajectories, PhysioNet
sepsis prediction, and Speech Commands datasets.

We provide additional theoretical results showing that our model is a universal approximator, and
that it subsumes apparently-similar ODE models in which the vector field depends directly upon
continuous data.

Our code is available at https://github.com/patrick-kidger/NeuralCDE. We have also
released a library torchcde, athttps://github. com/patrick-kidger/torchcde

2 Background

Let 7,7 € Rwith 7 < T, and let v,w € N. Let X: [7,7] — R be a continuous function of
bounded variation; for example this is implied by X being Lipschitz. Let (€ R". Let f: RY —
R**? be continuous.

Then we may define a continuous path z: [7, 7] — R" by z, = (and

t
S / F(z)dX, forte (rT], %)

where the integral is a Riemann-Stieltjes integral. As f(zs) € R¥*? and X, € RY, the
notation “ f(z5)d X" refers to matrix-vector multiplication. The subscript notation refers to function
evaluation, for example as is common in stochastic calculus.

Equation (2) exhibits global existence and uniqueness subject to global Lipschitz conditions on f;
see [20, Theorem 1.3]. We say that equation (2)) is a controlled differential equation (CDE) which is
controlled or driven by X.

'Not to be confused with the similarly-named but separate field of control theory.

https://github.com/patrick-kidger/NeuralCDE
https://github.com/patrick-kidger/torchcde

_.—.—.—.—) T]me _.—.—.—.—) T]me
ty to t3 tn ty to t3 tn

Figure 1: Some data process is observed at times ¢1,...,%, to give observations x1,...,Z,. Itis
otherwise unobserved. Left: Previous work has typically modified hidden state at each observation,
and perhaps continuously evolved the hidden state between observations. Right: In contrast, the
hidden state of the Neural CDE model has continuous dependence on the observed data.

3 Method

Suppose for simplicity that we have a fully-observed but potentially irregularly sampled time series
x = ((to, o), (t1,21), ..., (tn,xn)), with each t; € R the timestamp of the observation z; € R,
and ty < --- < t,. (We will consider partially-observed data later.)

Let X : [to,t,] — RY"! be the natural cubic spline with knots at tg, . . . , t,, such that X;, = (x;,t;).
As x is often assumed to be a discretisation of an underlying process observed only through x,
then X is an approximation to this underlying process. Natural cubic splines have essentially the
minimum regularity for handling certain edge cases; see Appendix [A|for the technical details.

Let fp: R* — R**(¥+1) be any neural network model depending on parameters 6. The value w is a
hyperparameter describing the size of the hidden state. Let (5: RV! — R™ be any neural network
model depending on parameters 6.

Then we define the neural controlled differential equation model as the solution of the CDE

t
2t = 21, +/ fo(z5)dXs fort € (to,tn], 3)
to

where z;, = (p(xo,to). This initial condition is used to avoid translational invariance. Analogous
to RNNss, the output of the model may either be taken to be the evolving process z, or the terminal
value z;_, and the final prediction should typically be given by a linear map applied to this output.

The resemblance between equations (I) and (3) is clear. The essential difference is that equation (3]
is driven by the data process X, whilst equation (1) is driven only by the identity function¢: R — R.
In this way, the Neural CDE is naturally adapting to incoming data, as changes in X change the local
dynamics of the system. See Figure[I]

3.1 Universal Approximation

It is a famous theorem in CDEs that in some sense they represent general functions on streams [22,
Theorem 4.2], 23], Proposition A.6]. This may be applied to show that Neural CDEs are universal
approximators, which we summarise in the following informal statement.

Theorem (Informal). The action of a linear map on the terminal value of a Neural CDE is a
universal approximator from {sequences in R”} 1o R.

Theorem [B.T4]in Appendix [B| gives a formal statement and a proof, which is somewhat technical.
The essential idea is that CDEs may be used to approximate bases of functions on path space.

3.2 Evaluating the Neural CDE model

Evaluating the Neural CDE model is straightforward. In our formulation above, X is in fact not just
of bounded variation but is differentiable. In this case, we may define

90.x(2:8) = fol2) o (s), @

so that for ¢ € (to, tn],

t t dX t
2 =2+ | folzs)dXs = 24 + fe(zs)E(S)ds = 2, +/ 99,x (25, 8)ds.)
to

to tD

Thus it is possible to solve the Neural CDE using the same techniques as for Neural ODEs. In our
experiments, we were able to straightforwardly use the already-existing torchdiffeq package [24]]
without modification.

3.3 Comparison to alternative ODE models

For the reader not familiar with CDEs, it might instead seem more natural to replace g, x with some
hg(z, Xs) that is directly applied to and potentially nonlinear in X. Indeed, such approaches have
been suggested before, in particular to derive a “GRU-ODE” analogous to a GRU [[14, [25]].

However, it turns out that something is lost by doing so, which we summarise in the following
statement.

Theorem (Informal). Any equation of the form z; = zy + ftto ho(zs, Xs)ds may be represented

exactly by a Neural CDE of the form z; = zy + ftto fo(zs)dXs. However the converse statement is
not true.

Theorem in Appendix [C] provides the formal statement and proof. The essential idea is that a
Neural CDE can easily represent the identity function between paths, whilst the alternative cannot.

In our experiments, we find that the Neural CDE substantially outperforms the GRU-ODE, which
we speculate is a consequence of this result.

3.4 Training via the adjoint method

An attractive part of Neural ODE:s is the ability to train via adjoint backpropagation, see [15} 26 27,
28], which uses only O(H) memory in the time horizon L = t,, — to and the memory footprint H
of the vector field. This is contrast to directly backpropagating through the operations of an ODE
solver, which requires O(LH) memory.

Previous work on Neural ODEs for time series, for example [[13]], has interrupted the ODE to make
updates at each observation. Adjoint-based backpropagation cannot be performed across the jump,
so this once again requires O(LH) memory.

In contrast, the gg x defined by equation continuously incorporates incoming data, without
interrupting the differential equation, and so adjoint backpropagation may be performed. This
requires only O(H) memory. The underlying data unavoidably uses an additional O(L) memory.
Thus training the Neural CDE has an overall memory footprint of just O(L + H).

We do remark that the adjoint method should be used with care, as some systems are not stable to
evaluate in both the forward and backward directions [29} |30]. The problem of finite-time blow-up
is at least not a concern, given global Lipschitz conditions on the vector field [20, Theorem 1.3].
Such a condition will be satisfied if fy uses ReLU or tanh nonlinearities, for example.

3.5 Intensity as a channel

It has been observed that the frequency of observations may carry information [6]. For example,
doctors may take more frequent measurements of patients they believe to be at greater risk. Some
previous work has for example incorporated this information by learning an intensity function [[12|
13, [15].

We instead present a simple non-learnt procedure, that is compatible with Neural CDEs. Simply
concatenate the index ¢ of z; together with x;, and then construct a path X from the pair (i, z;),
as before. The channel of X corresponding to these indices then corresponds to the cumulative
intensity of observations.

As the derivative of X is what is then used when evaluating the Neural CDE model, as in equation
@, then it is the intensity itself that then determines the vector field.

3.6 Partially observed data

One advantage of our formulation is that it naturally adapts to the case of partially observed data.
Each channel may independently be interpolated between observations to define X in exactly the
same manner as before.

In this case, the procedure for measuring observational intensity in Section [3.5]may be adjusted by
instead having a separate observational intensity channel ¢; for each original channel o;, such that
¢; increments every time an observation is made in o;.

3.7 Batching

Given a batch of training samples with observation times drawn from the same interval [to, t,,], we
may interpolate each x to produce a continuous X, as already described. Each path X is what
may then be batched together, regardless of whether the underlying data is irregularly sampled or
partially observed. Batching is thus efficient for the Neural CDE model.

4 Experiments

We benchmark the Neural CDE against a variety of existing models.

These are: GRU-At, which is a GRU with the time difference between observations additionally
used as an input; GRU-D [6], which modifies the GRU-At with learnt exponential decays between
observations; GRU-ODE [14}25]], which is an ODE analogous to the operation of a GRU and uses X
as its input; ODE-RNN [[13]], which is a GRU-At model which additionally applies a learnt Neural
ODE to the hidden state between observations. Every model then used a learnt linear map from the
final hidden state to the output, and was trained with cross entropy or binary cross entropy loss.

The GRU-At represents a straightforward baseline, the GRU-ODE is an alternative ODE model that
is thematically similar to a Neural CDE, and the GRU-D and ODE-RNNSs are state-of-the-art models
for these types of problems. To avoid unreasonably extensive comparisons we have chosen to focus
on demonstrating superiority within the class of ODE and RNN based models to which the Neural
CDE belongs. These models were selected to collectively be representative of this class.

Each model is run five times, and we report the mean and standard deviation of the test metrics.

For every problem, the hyperparameters were chosen by performing a grid search to optimise the
performance of the baseline ODE-RNN model. Equivalent hyperparameters were then used for
every other model, adjusted slightly so that every model has a comparable number of parameters.

Precise experimental details may be found in Appendix [D} regarding normalisation, architectures,
activation functions, optimisation, hyperparameters, regularisation, and so on.

4.1 Varying amounts of missing data on CharacterTrajectories

We begin by demonstrating the efficacy of Neural CDEs on irregularly sampled time series.

To do this, we consider the CharacterTrajectories dataset from the UEA time series classification
archive [31]]. This is a dataset of 2858 time series, each of length 182, consisting of the x, y position
and pen tip force whilst writing a Latin alphabet character in a single stroke. The goal is to classify
which of 20 different characters are written.

We run three experiments, in which we drop either 30%, 50% or 70% of the data. The observations
to drop are selected uniformly at random and independently for each time series. Observations
are removed across channels, so that the resulting dataset is irregularly sampled but completely
observed. The randomly removed data is the same for every model and every repeat.

The results are shown in Table [l The Neural CDE outperforms every other model considered,
and furthermore it does so whilst using an order of magnitude less memory. The GRU-ODE does
consistently poorly despite being the most theoretically similar model to a Neural CDE. Furthermore
we see that even as the fraction of dropped data increases, the performance of the Neural CDE
remains roughly constant, whilst the other models all start to decrease.

Further experimental details may be found in Appendix

Table 1: Test accuracy (mean + std, computed across five runs) and memory usage on

CharacterTrajectories. Memory usage is independent of repeats and of amount of data dropped.
Model Test Accuracy Memorl}\f/I 5

30% dropped 50% dropped 70% dropped usage (MB)

GRU-ODE 92.6% £ 1.6% 86.7% £39% 89.9% £ 3.7% 1.5
GRU-At 93.6% +£2.0% 91.3% £2.1% 90.4% £ 0.8% 15.8
GRU-D 942% +£2.1% 90.2% £4.8% 91.9% £ 1.7% 17.0
ODE-RNN ___ 954%+06% _ 960%+03% 953%+0.6% 148
Neural CDE (ours) 98.7% +0.8% 98.8% +0.2% 98.6% =+ 0.4% 1.3

Table 2: Test AUC (mean =+ std, computed across five runs) and memory usage on PhysioNet sepsis
prediction. ‘OI” refers to the inclusion of observational intensity, ‘No OI’ means without it. Memory
usage is independent of repeats.

Model Test AUC Memory usage (MB)
Ol No OI Ol No OI
GRU-ODE 0.852 £0.010 0.771 £0.024 454 273
GRU-At 0.878 £ 0.006 0.840 + 0.007 837 826
GRU-D 0.871 £0.022 0.850 = 0.013 889 878
ODERRNN _____0874+0016 0833+0020 696 __ 686 _
Neural CDE (ours) 0.880 + 0.006 0.776 + 0.009 244 122

4.2 Observational intensity with PhysioNet sepsis prediction

Next we consider a dataset that is both irregularly sampled and partially observed, and investigate
the benefits of observational intensity as discussed in Sections [3.5]and[3.6]

We use data from the PhysioNet 2019 challenge on sepsis prediction [32) 33]]. This is a dataset of
40335 time series of variable length, describing the stay of patients within an ICU. Measurements
are made of 5 static features such as age, and 34 time-dependent features such as respiration rate
or creatinine concentration in the blood, down to an hourly resolution. Most values are missing;
only 10.3% of values are observed. We consider the first 72 hours of a patient’s stay, and consider
the binary classification problem of predicting whether they develop sepsis over the course of their
entire stay (which is as long as a month for some patients).

We run two experiments, one with observational intensity, and one without. For the Neural CDE and
GRU-ODE models, observational intensity is continuous and on a per-channel basis as described in
Section @ For the ODE-RNN, GRU-D, and GRU-At models, observational intensity is given by
appending an observed/not-observed mask to the input at each observation The initial hidden
state of every model is taken to be a function (a small single hidden layer neural network) of the
static features.

The results are shown in Table[2] As the dataset is highly imbalanced (5% positive rate), we report
AUC rather than accuracy. When observational intensity is used, then the Neural CDE produces the
best AUC overall, although the ODE-RNN and GRU-At models both perform well. The GRU-ODE
continues to perform poorly.

Without observational intensity then every model performs substantially worse, and in particular we
see that the benefit of including observational intensity is particularly dramatic for the Neural CDE.

As before, the Neural CDE remains the most memory-efficient model considered.

Further experimental details can be found in Appendix [D.3]

2As our proposed observational intensity goes via a derivative, these each contain the same information.

*Note that the ODE-RNN, GRU-D and GRU-At models always receive the time difference between
observations, At, as an input. Thus even in the no observational intensity case, they remain aware of the
irregular sampling of the data, and so this case not completely fair to the Neural CDE and GRU-ODE models.

4.3 Regular time series with Speech Commands

Finally we demonstrate the efficacy of Neural CDE models on regularly spaced, fully observed time
series, where we might hypothesise that the baseline models will do better.

We used the Speech Commands dataset [34]. This consists of one-second audio recordings of
both background noise and spoken words such as ‘left’, ‘right’, and so on. We used 34975 time
series corresponding to ten spoken words so as to produce a balanced classification problem. We
preprocess the dataset by computing mel-frequency cepstrum coefficients so that each time series is
then regularly spaced with length 161 and 20 channels.

The results are shown in Table We
Table 3: Test Accuracy (mean = std, computed across observed that the Neural CDE had the
five runs) and memory usage on Speech Commands. highest performance, whilst using very

Memory usage is independent of repeats. little memory. The GRU-ODE consistently
failed to perform. The other benchmark

Model Test Accuracy Memory models surprised us by exhibiting a large
usage (GB) variance on this problem, due to sometimes

GRU-ODE 47.9% £+ 2.9% 0.164 failing to train, and we were unable to
GRU-At 43.3% 4+ 33.9% 1.54 resolve this by tweaking the optimiser.
GRU-D 32.4% + 34.8% 1.64 The best GRU-At, GRU-D and ODE-RNN
ODE-RNN 65.9% =+ 35.6% 1.40 models did match the performance of the

Neural CDE (ours) 89.8% + 2.5% 0.167 Neural CDE, suggesting that on a regularly
spaced problem all approaches can be made

to work equally well.

In contrast, the Neural CDE model produced consistently good results every time. Anecdotally this
aligns with what we observed over the course of all of our experiments, which is that the Neural
CDE model usually trained quickly, and was robust to choice of optimisation hyperparameters. We
stress that we did not perform a formal investigation of this phenomenen.

Further experimental details can be found in Appendix [D.4]

5 Related work

In [13} [14] the authors consider interrupting a Neural ODE with updates from a recurrent cell at
each observation, and were in fact the inspiration for this paper. Earlier work [6} [7, 8, 9] use
intra-observation exponential decays, which are a special case. [35] consider something similar
by interrupting a Neural ODE with stochastic events.

SDEs and CDEs are closely related, and several authors have introduced Neural SDEs. [36) 37, 38]]
treat them as generative models for time series and seek to model the data distribution. [39, 40]]
investigate using stochasticity as a regularizer, and demonstrate better performance by doing so. [41]
use random vector fields so as to promote simpler trajectories, but do not use the ‘SDE’ terminology.

Adjoint backpropagation needs some work to apply to SDEs, and so [42,143]144] all propose methods
for training Neural SDEs. We would particularly like to highlight the elegant approach of [44], who
use the pathwise treatment given by rough analysis to approximate Brownian noise, and thus produce
a random Neural ODE which may be trained in the usual way; such approaches may also avoid the
poor convergence rates of SDE solvers as compared to ODE solvers.

Other elements of the theory of rough analysis and CDEs have also found machine learning
applications. Amongst others, [23} 145} 146} 147, 1481491 150, |51]] discuss applications of the signature
transform to time series problems, and [52] investigate the related logsignature transform. [53]]
develop a kernel for time series using this methodology, and [54] apply this kernel to Gaussian
processes. [55] develop software for these approaches tailored for machine learning.

There has been a range of work seeking to improve Neural ODEs. [56, 57] investigate speed-
ups to the training proecedure, [58|] develop an energy-based Neural ODE framework, and [29]]
demonstrate potential pitfalls with adjoint backpropagation. [30, I59]] consider ways to vary the
network parameters over time. [57,60] consider how a Neural ODE model may be regularised (see
also the stochastic regularisation discussed above). This provides a wide variety of techniques, and
we are hopeful that some of them may additionally carry over to the Neural CDE case.

6 Discussion

6.1 Considerations

There are two key elements of the Neural CDE construction which are subtle, but important.

Time as a channel CDEs exhibit a tree-like invariance property [[18]. What this means, roughly,
is that a CDE is blind to speed at which X is traversed. Thus merely setting X;, = z; would not
be enough, as time information is only incorporated via the parameterisation. This is why time is
explicitly included as a channel via Xy, = (z;, ;).

Initial value networks The initial hidden state z;, should depend on X;, = (zo, o). Otherwise,
the Neural CDE will depend upon X only through its derivative 4X/d¢, and so will be translationally
invariant. An alternative would be to append another channel whose first derivative includes
translation-sensitive information, for example by setting X, = (x;, t;, t;xo).

6.2 Performance tricks

We make certain (somewhat anecdotal) observations of tricks that seemed to help performance.

Final tanh nonlinearity = We found it beneficial to use a tanh as a final nonlinearity for the vector
field fy of a Neural CDE model. Doing so helps prevent extremely large initial losses, as the tanh
constrains the rate of change of the hidden state. This is analogous to RNNs, where the key feature
of GRUs and LSTMs are procedures to constrain the rate of change of the hidden state.

Layer-wise learning rates We found it beneficial to use a larger (x 10-100) learning rate for the
linear layer on top of the output of the Neural CDE, than for the vector field fy of the Neural CDE
itself. This was inspired by the observation that the final linear layer has (in isolation) only a convex
optimisation problem to solveE]

6.3 Limitations

Speed of computation We found that Neural CDEs were typically slightly faster to compute
than the ODE-RNN model of [13]. (This is likely to be because in an Neural CDE, steps of the
numerical solver can be made across observations, whilst the ODE-RNN must interrupt its solve at
each observation.)

However, Neural CDEs were still roughly fives times slower than RNN models. We believe this
is largely an implementation issue, as the implementation via torchdiffeq is in Python, and
by default uses double-precision arithmetic with variable step size solvers, which we suspect is
unnecessary for most practical tasks.

Number of parameters If the vector field f5: R” — R%*(+1) s a feedforward neural network,
with final hidden layer of size w, then the number of scalars for the final affine transformation is of
size O(wvw), which can easily be very large. In our experiments we have to choose small values of
w and w for the Neural CDE to ensure that the number of parameters is the same across models.

We did experiment with representing the final linear layer as an outer product of transformations
R*¥ — R¥ and R¥ — RY*!. This implies that the resulting matrix is rank-one, and reduces
the number of parameters to just O(w(v + w)), but unfortunately we found that this hindered the
classification performance of the model.

6.4 Future work

Vector field design The vector fields fy that we consider are feedforward networks. More
sophisticated choices may allow for improved performance, in particular to overcome the trilinearity
issue just discussed.

“In our experiments we applied this learning rate to the linear layer on top of every model, not the just the
Neural CDE, to ensure a fair comparison.

Modelling uncertainty As presented here, Neural CDEs do not give any measure of uncertainty
about their predictions. Such extensions are likely to be possible, given the close links between
CDEs and SDEs, and existing work on Neural SDEs [36, 137, 138|139, 140,42, 143|144} |61]].

Numerical schemes In this paper we integrated the Neural CDE by reducing it to an ODE. The
field of numerical CDE:s is relatively small — to the best of our knowledge [17} 162, 163} 164, |65, |66}
67, 168l 169] constitute essentially the entire field, and are largely restricted to rough controls. Other
numerical methods may be able to exploit the CDE structure to improve performance.

Choice of X Natural cubic splines were used to construct the path X from the time series x.
However, these are not causal. That is, X; depends upon the value of x; for ¢ < ¢;. This makes it
infeasible to apply Neural CDE:s in real-time settings, for which X is needed before x; has been
observed. Resolving this particular issue is a topic on which we have follow-up work planned.

Other problem types Our experiments here involved only classification problems. There was no
real reason for this choice, and we expect Neural CDEs to be applicable more broadly.

6.5 Related theories

Rough path theory The field of rough path theory, which deals with the study of CDEs, is much
larger than the small slice that we have used here. It is likely that further applications may serve to
improve Neural CDEs. A particular focus of rough path theory is how to treat functions that must
be sensitive to the order of events in a particular (continuous) way.

Control theory Despite their similar names, and consideration of similar-looking problems,
control theory and controlled differential equations are essentially separate fields. Control theory
has clear links and applications that may prove beneficial to models of this type.

RNN theory Neural CDEs may be interpreted as continuous-time versions of RNNs. CDEs thus
offer a theoretical construction through which RNNs may perhaps be better understood. Conversely,
what is known about RNNs may have applications to improve Neural CDEs.

7 Conclusion

We have introduced a new class of continuous-time time series models, Neural CDEs. Just as
Neural ODEs are the continuous analogue of ResNets, the Neural CDE is the continuous time
analogue of an RNN. The model has three key advantages: it operates directly on irregularly sampled
and partially observed multivariate time series, it demonstrates state-of-the-art performance, and it
benefits from memory-efficient adjoint-based backpropagation even across observations. To the
best of our knowledge, no other model combines these three features together. We also provide
additional theoretical results demonstrating universal approximation, and that Neural CDEs subsume
alternative ODE models.

Broader Impact

We have introduced a new tool for studying irregular time series. As with any tool, it may be used in
both positive and negative ways. The authors have a particular interest in electronic health records
(an important example of irregularly sampled time-stamped data) and so here at least we hope and
expect to see a positive impact from this work. We do not expect any specific negative impacts from
this work.

Acknowledgments and Disclosure of Funding

Thanks to Cristopher Salvi for many vigorous discussions on this topic. PK was supported by the
EPSRC grant EP/L015811/1. JM was supported by the EPSRC grant EP/L.015803/1 in collaboration
with Iterex Therapuetics. JF was supported by the EPSRC grant EP/N509711/1. PK, JM, JF, TL
were supported by the Alan Turing Institute under the EPSRC grant EP/N510129/1.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(91

(10]

(1]

(12]

[13]

(14]

(15]

[16]

(17]
(18]

(19]

(20]

(21]

(22]
(23]

[24]

K.-i. Funahashi and Y. Nakamura, “Approximation of dynamical systems by continuous time recurrent
neural networks,” Neural Networks, vol. 6, no. 6, pp. 801 — 806, 1993.

C. Bailer-Jones, D. MacKay, and P. Withers, “A recurrent neural network for modelling dynamical
systems,” Network: Computation in Neural Systems, vol. 9, pp. 531-47, 1998.

W. E, “A Proposal on Machine Learning via Dynamical Systems,” Commun. Math. Stat., vol. 5, no. 1,
pp. 1-11, 2017.

M. Ciccone, M. Gallieri, J. Masci, C. Osendorfer, and F. Gomez, “NAIS-Net: Stable Deep Networks
from Non-Autonomous Differential Equations,” in Advances in Neural Information Processing Systems
31, pp. 3025-3035, Curran Associates, Inc., 2018.

A. Gelman and J. Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge
University Press, 2007.

Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent Neural Networks for Multivariate
Time Series with Missing Values,” Scientific Reports, vol. §, no. 1, p. 6085, 2018.

W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “BRITS: Bidirectional Recurrent Imputation for Time

Series,” in Advances in Neural Information Processing Systems 31 (S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), pp. 6775-6785, Curran Associates, Inc., 2018.

H. Mei and J. M. Eisner, “The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point
Process,” in Advances in Neural Information Processing Systems 30 (1. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), pp. 6754—6764, Curran Associates, Inc.,
2017.

M. Mozer, D. Kazakov, and R. Lindsey, “Discrete Event, Continuous Time RNNs,” arXiv:1710.04110,
2017.

S. C.-X. Li and B. M. Marlin, “A scalable end-to-end Gaussian process adapter for irregularly sampled
time series classification,” in Advances in Neural Information Processing Systems, pp. 18041812, 2016.

J. Futoma, S. Hariharan, and K. Heller, “Learning to Detect Sepsis with a Multitask Gaussian Process
RNN Classifier,” in Proceedings of the 34th International Conference on Machine Learning, pp. 1174—
1182, 2017.

S. N. Shukla and B. Marlin, “Interpolation-Prediction Networks for Irregularly Sampled Time Series,” in
International Conference on Learning Representations, 2019.

Y. Rubanova, T. Q. Chen, and D. K. Duvenaud, “Latent Ordinary Differential Equations for Irregularly-
Sampled Time Series,” in Advances in Neural Information Processing Systems 32, pp. 5320-5330, Curran
Associates, Inc., 2019.

E. De Brouwer, J. Simm, A. Arany, and Y. Moreau, “GRU-ODE-Bayes: Continuous Modeling
of Sporadically-Observed Time Series,” in Advances in Neural Information Processing Systems 32,
pp. 7379-7390, Curran Associates, Inc., 2019.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural Ordinary Differential
Equations,” in Advances in Neural Information Processing Systems 31, pp. 6571-6583, Curran
Associates, Inc., 2018.

T.J. Lyons, “Differential equations driven by rough signals,” Revista Matemdtica Iberoamericana, vol. 14,
no. 2, pp. 215-310, 1998.

T. Lyons, “Rough paths, signatures and the modelling of functions on streams,” arXiv:1405.4537, 2014.

B. M. Hambly and T. J. Lyons, “Uniqueness for the signature of a path of bounded variation and the
reduced path group,” Annals of Mathematics, vol. 171, no. 1, pp. 109-167, 2010.

I. Chevyrev and H. Oberhauser, “Signature moments to characterize laws of stochastic processes,”
arXiv:1810.10971, 2018.

T. Lyons, M. Caruana, and T. Levy, Differential equations driven by rough paths. Springer, 2004. Ecole
d’Eté de Probabilités de Saint-Flour XXXIV - 2004.

P. K. Friz and N. B. Victoir, “Multidimensional stochastic processes as rough paths: theory and
applications,” Cambridge University Press, 2010.

L. Perez Arribas, “Derivatives pricing using signature payoffs,” arXiv:1809.09466, 2018.

P. Bonnier, P. Kidger, 1. Perez Arribas, C. Salvi, and T. Lyons, “Deep Signature Transforms,” in Advances
in Neural Information Processing Systems, pp. 3099-3109, 2019.

R. T. Q. Chen, “torchdiffeq,” 2018. https://github.com/rtqgichen/torchdiffeq.

10

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

I. Jordan, P. A. Sokol, and I. M. Park, “Gated recurrent units viewed through the lens of continuous time
dynamical systems,” arXiv:1906.01005, 2019.

L. S. Pontryagin, E. F. Mishchenko, V. G. Boltyanskii, and R. V. Gamkrelidze, “The mathematical theory
of optimal processes,” 1962.

M. B. Giles and N. A. Pierce, “An Introduction to the Adjoint Approach to Design,” Flow, Turbulence
and Combustion, vol. 65, pp. 393-415, Dec 2000.

W. W. Hager, “Runge-Kutta methods in optimal control and the transformed adjoint system,” Numerische
Mathematik, vol. 87, pp. 247-282, Dec 2000.

A. Gholami, K. Keutzer, and G. Biros, “ANODE: Unconditionally Accurate Memory-Efficient Gradients
for Neural ODEs,” arXiv:1902.10298, 2019.

T. Zhang, Z. Yao, A. Gholami, J. E. Gonzalez, K. Keutzer, M. W. Mahoney, and G. Biros, “ANODEV2: A
Coupled Neural ODE Framework,” in Advances in Neural Information Processing Systems 32, pp. 5151—
5161, Curran Associates, Inc., 2019.

A. Bagnall, H. A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom, P. Southam, and E. Keogh, “The uea
multivariate time series classification archive,” arXiv:1811.00075, 2018.

M. Reyna, C. Josef, R. Jeter, S. Shashikumar, B. Moody, M. B. Westover, A. Sharma, S. Nemati, and
G. Clifford, “Early Prediction of Sepsis from Clinical Data: The PhysioNet/Computing in Cardiology
Challenge,” Critical Care Medicine, vol. 48, no. 2, pp. 210-217, 2019.

Goldberger, A. L. and Amaral L. A. N. and Glass, L. and Hausdorff, J. M. and Ivanov P. Ch. and Mark, R.
G. and Mietus, J. E. and Moody, G. B. and Peng, C.-K. and Stanley, H. E., “PhysioBank, PhysioToolkit
and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals,” Circulation,
vol. 23, pp. 215-220, 2003.

P. Warden, “Speech commands: A dataset for limited-vocabulary speech recognition,” arXiv:1804.03209,
2020.

J. Jia and A. R. Benson, “Neural Jump Stochastic Differential Equations,” in Advances in Neural
Information Processing Systems 32, pp. 9847-9858, Curran Associates, Inc., 2019.

C. Cuchiero, W. Khosrawi, and J. Tiechmann, “A generative adversarial network approach to calibration
of local stochastic volatility models,” arXiv:2005.02505, 2020.

B. Tzen and M. Raginsky, “Theoretical guarantees for sampling and inference in generative models with
latent diffusions,” COLT, 2019.

R. Deng, B. Chang, M. Brubaker, G. Mori, and A. Lehrmann, “Modeling Continuous Stochastic Processes
with Dynamic Normalizing Flows,” arXiv:2002.10516, 2020.

X. Liu, T. Xiao, S. Si, Q. Cao, S. Kumar, and C.-J. Hsieh, “Neural SDE: Stabilizing Neural ODE Networks
with Stochastic Noise,” arXiv:1906.02355, 2019.

V. Oganesyan, A. Volokhova, and D. Vetrov, “Stochasticity in Neural ODEs: An Empirical Study,”
arXiv:2002.09779, 2020.

N. Twomey, M. Koztowski, and R. Santos-Rodriguez, “Neural ODEs with stochastic vector field
mixtures,” arXiv:1905.09905, 2019.

X. Li, T.-K. L. Wong, R. T. Q. Chen, and D. K. Duvenaud, “Scalable Gradients and Variational Inference
for Stochastic Differential Equations,” AISTATS, 2020.

B. Tzen and M. Raginsky, “Neural Stochastic Differential Equations: Deep Latent Gaussian Models in
the Diffusion Limit,” arXiv:1905.09883, 2019.

L. Hodgkinson, C. van der Heide, F. Roosta, and M. Mahoney, “Stochastic Normalizing Flows,”
arXiv:2002.09547, 2020.

I. Chevyrev and A. Kormilitzin, “A primer on the signature method in machine learning,”
arXiv:1603.03788, 2016.

L. Perez Arribas, G. M. Goodwin, J. R. Geddes, T. Lyons, and K. E. A. Saunders, “A signature-
based machine learning model for distinguishing bipolar disorder and borderline personality disorder,”
Translational Psychiatry, vol. 8, no. 1, p. 274, 2018.

A. Fermanian, “Embedding and learning with signatures,” arXiv:1911.13211, 2019.

J. Morrill, A. Kormilitzin, A. Nevado-Holgado, S. Swaminathan, S. Howison, and T. Lyons, “The
Signature-based Model for Early Detection of Sepsis from Electronic Health Records in the Intensive
Care Unit,” International Conference in Computing in Cardiology, 2019.

J. Reizenstein, lterated-integral signatures in machine learning. PhD thesis, University of Warwick, 2019.
http://wrap.warwick.ac.uk/131162/.

11

[50]

(51]

[52]

(53]

[54]

[55]

(561

(571

(58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

(68]

[69]

[70]

(71]

[72]

(73]
[74]

M. Moor, M. Horn, C. Bock, K. Borgwardt, and B. Rieck, “Path Imputation Strategies for Signature
Models,” arXiv:2005.12359, 2020.

J. Morrill, A. Fermanian, P. Kidger, and T. Lyons, “A Generalised Signature Method for Time Series,”
arXiv:2006.00873, 2020.

S. Liao, T. Lyons, W. Yang, and H. Ni, “Learning stochastic differential equations using RNN with log
signature features,” arXiv:1908.08286, 2019.

F. J. Kirdly and H. Oberhauser, “Kernels for sequentially ordered data,” Journal of Machine Learning
Research, 2019.

C. Toth and H. Oberhauser, “Variational Gaussian Processes with Signature Covariances,” ICML 2020,
2020.

P. Kidger and T. Lyons, “Signatory: differentiable computations of the signature and logsignature
transforms, on both CPU and GPU,” arXiv:2001.00706, 2020.

A. Quaglino, M. Gallieri, J. Masci, and J. Koutnik, “Snode: Spectral discretization of neural odes for
system identification,” in International Conference on Learning Representations, 2020.

C. Finlay, J.-H. Jacobsen, L. Nurbekyan, and A. Oberman, “How to train your neural ODE,”
arXiv:2002.02798, 2020.

S. Massaroli, M. Poli, M. Bin, J. Park, A. Yamashita, and H. Asama, “Stable Neural flows,”
arXiv:2003.08063, 2020.

S. Massaroli, M. Poli, J. Park, A. Yamashita, and H. Asama, “Dissecting Neural ODEs,”
arXiv:2002.08071, 2020.

H. Yan, J. Du, V. Y. FE. Tan, and J. Feng, “On Robustness of Neural Ordinary Differential Equations,”
arXiv:1910.05513, 2019.

I. Perez Arribas, C. Salvi, and L. Szpruch, “Sig-SDEs model for quantitative finance,” arXiv:2006.00218,
2020.

F. Castell and J. Gaines, “The ordinary differential equation approach to asymptotically efficient schemes
for solution of stochastic differential equations,” Annales de I’Institut Henri Poincaré. Probabilités et
Statistiques, vol. 32, 1996.

S. Malham and A. Wiese, “Stochastic Lie Group Integrators,” SIAM J. Sci. Comput., vol. 30, no. 2,
pp- 597-617, 2007.

L. G. Gyurkd, Numerical methods for approximating solutions to rough differential equations. PhD thesis,
University of Oxford, 2008.

A. Janssen, Order book models, signatures and numerical approximations of rough differential equations.
PhD thesis, University of Oxford, 2011.

Y. Boutaib, L. G. Gyurké, T. Lyons, and D. Yang, “Dimension-free Euler estimates of rough differential
equations,” Rev. Roumaine Math. Pures Appl., 2014.

H. Boedihardjo, T. Lyons, and D. Yang, “Uniform factorial decay estimates for controlled differential
equations,” Electronic Communications in Probability, vol. 20, no. 94, 2015.

J. Foster, Numerical approximations for stochastic differential equations. PhD thesis, University of
Oxford, 2020.

J. Foster, T. Lyons, and H. Oberhauser, “An optimal polynomial approximation of Brownian motion,”
SIAM J. Numer. Anal., vol. 58, no. 3, pp. 1393-1421, 2020.

J. M. Varah, “A Lower Bound for the Smallest Singular Value of a Matrix,” Linear Algebra and its
Applications, vol. 11, no. 1, pp. 3-5, 1975.

A. Pinkus, “Approximation theory of the MLP model in neural networks,” Acta Numer., vol. 8, pp. 143—
195, 1999.

P. Kidger and T. Lyons, “Universal Approximation with Deep Narrow Networks,” arXiv:1905.08539,
2019.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” ICLR, 2015.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-Performance Deep Learning
Library,” in Advances in Neural Information Processing Systems 32, pp. 8024-8035, Curran Associates,
Inc., 2019.

12

