
We thank the reviewers for their insightful feedback! We are encouraged they recognize the importance of probabilistic1

linear solvers (PLS) for ML (R1, R2, R4) and the need to quantify uncertainty arising from finite computation (R1, R4).2

Contributions and Novelty We are pleased the reviewers appreciate the originality of this work (R2, R3), its method-3

ological contributions (R1, R2, R3), the stipulated desiderata marking a roadmap for PLS research (R2, R3), the value4

of the proposed prior class (R2, R4), and the importance of the novel uncertainty calibration procedure (R2, R3). It5

remedies a primary shortcoming of PLS, enables probabilistic stopping criteria and estimates log(det(A)) (see below).6

We also provide the first practical open-source implementation of a PLS returning distributions over A, A−1 and7

x. This is an important step towards a framework which targets computational resources "to reduce uncertainty as8

required for a downstream task" (R4). The returned posterior means by the PLS are low-rank approximations to A and9

A−1, which among others find use in kernel methods. The returned covariances provide a bound to the error and their10

structure can be exploited for novel use cases, e.g. as proposed for probabilistic mesh refinement in Galerkin’s method.11

Bayesian Interpretation and Prior Class (R1, R3) The generic inference procedure in Section 2 for a given prior12

covariance W A
0 �� W A

0 is Bayesian since it relies on Bayes’ theorem. Algorithm 1 performs sequential Bayesian13

updates for single action - observation pairs (si,yi). This can be seen by recognizing that the posterior (see Section 2.1)14

is of the same form as the prior (for any 1 ≤ k ≤ n). Guided by the desiderata in Table 1, we restrict the n× n DoFs15

in the prior. This results in the proposed prior class in eq. (3). This prior and our calibration procedure depend on16

the entire collected ‘data’ during a run of Algorithm 1. When using the proposed prior class our method is thus not17

strictly Bayesian in the philosophical sense, but empirical Bayesian (i.e. it uses data to fit hyperparameters of the prior).18

As this approach is standard in GP regression (where kernel parameters are set by type-II maximum likelihood), we19

neglected to make this distinction. We will clarify this in the final version. This leaves the question how the algorithm20

is realizable for the proposed prior (3) given its dependence on future data. The posterior mean in Section 2.1 only21

depends on W A
0 S = Y not on W A

0 alone. By eq. (3), this product is given by the previously made observations Y .22

Similar reasoning applies for the inverse. Now, the posterior covariances do depend on W A
0 , resp. WH

0 alone, but23

during a run of Algorithm 1, we only require tr(Cov[x]) for the stopping criterion. We show in Section S4.5 under the24

assumptions of Theorem 2 how to compute this at any iteration i without access to future actions and observations.25

Calibration Procedure (R1, R3) Calibration ensures that the uncertainty returned by the solver has the right scale,26

i.e. it bounds the expected (relative) error (see Sections 2.2 and S4.5). Since the policy π only depends on the27

posterior mean E[H] and not the covariance, the hyperparameters Φ,Ψ and thus calibration do not change the28

solution estimate xi only its associated covariance at iteration i. While structure in the uncertainty is preserved,29

miscalibration negatively impacts the probabilistic termination criterion. In our experiments in Table 2 the solver30

without calibration terminates early, since it is overconfident and thus has larger error than with calibration. Why not31

return N (x̂CG, span(S)⊥(GP output at t+ 1))? (R1): This is similar to Algorithm 1’s output assuming Theorem 232

holds. However, it omits prior knowledge about the space span(S) explored by the algorithm (e.g. information about33

the dominant eigenspectrum). Further, only using the GP prediction at t+ 1 implies that the algorithm’s uncertainty34

about the action of A in S⊥ is of the same order as the next eigenvalue. This ignores any information about eigenvalues35

λt+2, . . . , λn contained in Rayleigh quotients and a priori known decay patterns for specific matrix classes.36

Importance of Noise (R4) When referring to noise, we consider matrix-vector products of the form v 7→ (A+ Ei)v,37

where Ei ∈ Rn×n
sym is Gaussian with zero mean. CG fails to converge in such a setting. While this approach can38

model floating-point arithmetic, typically in ML settings noise from subsampling dominates. An important example is39

large-scale empirical risk minimization. Due to memory constraints data needs to be batched and thus only approximate40

Hessian-vector products Hbatchv = (H + Ebatch)v are available. One could use a PLS for Hessian-free optimization41

in this setting. This results in a trade-off between computing an accurate Hessian by sampling new batches in each42

iteration of the solver and taking more optimization steps in parameter space. This approach results in an optimizer43

which interpolates between SGD and Newton’s method, depending on the batch size and number of PLS iterations k.44

Applications Transfer Learning (R1): Using a posterior from a related problem as a prior on a new problem has the45

advantage over only setting xnew
0 = xprev

k , that uncertainty in already explored directions S is low. Hence, if the new46

problem (Anew, bnew) is similar, the covariance will contract faster. In turn also convergence will be faster (as in subspace47

recycling). Kernel matrix inversion (R4): We recognize the variety of methods available for Gram matrix inversion in the48

Gaussian process setting. While a comparison for different priors adapted to the kernel choice vs. a set of inducing point49

methods is an interesting experiment, this would have exceeded the scope of this paper. Log-Determinant Estimation50

(R3, R4): The PLS can estimate the log-determinant in O(n) using the proposed ln-Rayleigh regression model for51

uncertainty calibration via ln(det(A)) = −
∑n

i=1 lnR(A, si) ≈ −(
∑k

i=1 lnR(A, si) +
∑n

i=k+1 E[lnRi | A,S]).52

Galerkin’s Method (R2, R4): When using a PLS as part of Galerkin’s method the posterior (predictive) on a refined53

mesh can be derived analytically (see Proposition S6). We leave comparisons to multi-grid methods for future work.54

Other (R3, R4) Reorthogonalization (R3) is a consequence of the policy choice si = −E[H]ri, where E[H] depends55

on all previous search directions as opposed to just si−1 for (naive) CG. Unification of PLS theory (R4): Bartels et al.56

[13] demonstrate that the matrix-based view generalizes the solution-based view. We focus on presenting a unified57

matrix-based framework, which among others, connects the inference perspectives for A and A−1 in a rigorous way.58


