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Abstract

In this paper, we establish a theoretical comparison between the asymptotic mean-
squared error of Double Q-learning and Q-learning. Our result builds upon an
analysis for linear stochastic approximation based on Lyapunov equations and
applies to both tabular setting and with linear function approximation, provided
that the optimal policy is unique and the algorithms converge. We show that the
asymptotic mean-squared error of Double Q-learning is exactly equal to that of Q-
learning if Double Q-learning uses twice the learning rate of Q-learning and outputs
the average of its two estimators. We also present some practical implications of
this theoretical observation using simulations.

1 Introduction

Reinforcement learning (RL) seeks to design efficient algorithms to find optimal policies for Markov
Decision Processes (MDPs) without any knowledge of the underlying model (known as model-
free learning) [31]. In this paper, we study the performance of double Q-learning [20, 33], which
is a popular variant of the standard Watkins’s model-free Q-learning algorithm [34, 35]. Double
Q-learning was proposed to remedy the stability issues associated with the standard Q-learning
algorithm (due to maximization bias of the Q-function) by using two estimators instead of one. It has
been shown empirically that double Q-learning finds a better policy in the tabular setting [20] and
converges faster when coupled with deep neural networks for function approximation [33]. Several
variations of Double Q-learning were proposed in [36, 1]. However, to the best of our knowledge,
there has been no analysis of double Q-learning vis-à-vis how it performs theoretically as compared
to standard Q-learning. The objective of this paper is to address this question by providing a tight
theoretical comparison between double Q-learning and Q-learning while also drawing experimental
insights that allow us to corroborate the theory.

Stochastic Approximation (SA) has proven to be a powerful framework to analyze reinforcement
learning algorithms [7, 4, 22]. Several different types of guarantees for various reinforcement
learning algorithms have been established using techniques from stochastic approximation. The
most commonplace result is the asymptotic convergence of algorithms by analyzing the stability
of an associated ODE. Examples include [32], [30] for classical TD-learning with linear function
approximation, [8] for synchronous Q-learning, [24] for double TD-learning, and [27, 25] for
Q-learning with linear function approximation. To the best of our knowledge, establishing the
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convergence of double Q-learning with linear function approximation remains an open problem [24].
Although establishing asymptotic convergence of an algorithm is a useful theoretical goal, quantifying
the finite-time convergence rate of an algorithm can be more useful in providing actionable insight to
practitioners. There has been a significant body of recent work in this context. Finite-time analyses
of TD-learning with either decaying or constant learning rate can be found in [29, 19, 15, 14, 23, 6].
Finite-time error bounds for synchronous Q-learning can be found in [13, 12] and for asynchronous
Q-learning in [28]. This line of work primarily focuses on providing upper bounds on the error,
thereby failing to make a tight comparison between a pair of algorithms designed for solving the
same problem. Recently, several papers developed tight error bounds for SA and RL algorithms,
including [16, 17, 11, 21].

In this paper, we focus on comparing Double Q-learning with standard Q-learning, both theoretically
and experimentally. We observe that through a particular linearization technique introduced in
[16], both Double Q-learning and Q-learning can be formulated as instances of Linear Stochastic
Approximation (LSA). We further utilize a recent result [11] that characterizes the asymptotic variance
of an LSA recursion by a Lyapunov equation. By analyzing these associated Lyapunov equations for
both Q-learning and Double Q-learning, we establish bounds comparing these two algorithms.

The main contributions of this work are two-fold:

(1) Theoretical Contributions: We consider asynchronous Double Q-learning and Q-learning with
linear function approximation with decaying step-size rules (as special cases of the more general LSA
paradigm). Under the assumptions that the optimal policy is unique, both the algorithms converge
and the step-size for Double Q-learning is twice that of Q-learning, we show that the asymptotic
mean-squared errors of the two estimators of Double Q-learning are strictly worse than that of the
estimator in Q-learning, while the asymptotic mean-squared error of the average of the Double
Q-learning estimators is indeed equal to that of the Q-learning estimator. This result brings interesting
practical insight, leading to our second set of contributions.

(2) Experimental Insights: Combining results from our experiments and previous work, we have
the following observations:

1. If Double Q-learning and Q-learning use the same step-size rule, Q-learning has a faster rate
of convergence initially but suffers from a higher mean-squared error. This phenomenon
is observed both in our simulations and in earlier work on variants of Double TD-learning
[24].

2. If the step-size used for Double Q-learning is twice that of Q-learning, then Double Q-
learning achieves faster initial convergence rate, at the cost of a possibly worse mean-squared
error than Q-learning. However, if the final output is the average of the two estimators in
Double Q-learning, then its asymptotic mean-squared error is the same as that of Q-learning.

The thumb rule that these observations suggest is that one should use a higher learning rate for Double
Q-learning while using the average of its two estimators as the output.

2 Q-learning and Double Q-learning

Consider a Markov Decision Process (MDP) specified by (S,A, P,R, γ). Here S is the finite
state space, A is the finite action space, P ∈ R|S||A|×|S| is the action-dependent transition matrix,
R ∈ R|S|×|A| is the reward matrix, and γ ∈ [0, 1) is the discount factor. Upon selecting an action
a at state s, the agent will transit to the next state s′ with probability P ((s, a), s′) and receive an
immediate reward R(s, a).

A policy is a mapping from a state to an action, which specifies the action to be taken at each state.
It is well known that the optimal policy can be obtained by solving the so-called Bellman equation
[5, 31] for the state-action value function, also called the Q-function:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P ((s, a), s′) max
a′∈A

Q∗(s′, a′). (1)

In reinforcement learning, the goal is to estimate the Q-function from samples, without know-
ing the parameters of the underlying MDP. For simplicity, we assume the MDP is operated un-
der a fixed behavioral policy, and we observe a sample trajectory of the induced Markov chain
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{(S1, A1), · · · , (Sn, An), · · · }. Let Xn = (Sn, An) and define X = S × A. Since the state space
could be fairly large, function approximation is typically used to approximate the Q-function. In this
work, we focus on linear function approximation for its tractability. The goal is to find an optimal
estimator θ∗ ∈ Rd, such that Q∗ ≈ Φ>θ∗, where Φ = (φ(s1, a1), · · · , φ(s|X |, a|X |)) ∈ Rd×|X|, and
φ(s, a) ∈ Rd are given feature vectors associated with pairs of states and actions.

2.1 Q-learning

We first consider asynchronous Q-learning [34, 35] with linear function approximation. Let Φ =
(φ(x1), · · · , φ(x|X |)) ∈ Rd×|X| be the matrix consisting of columns of feature vectors. We let πθ
denote the greedy policy with respect to the parameter vector θ, i.e., πθ(s) = arg maxa φ(s, a)T θ,
where we assume that we break ties in the maximization according to some known rule. For ease of
notation, we define H(θ1, θ2, s) := φ(s, πθ1(s))>θ2. This function estimates the Q-function based
on θ2 while the action is selected from the greedy policy given by θ1. When observations on the
sample path proceed to (Xn, Sn+1), Q-learning updates the parameter θ according to the equation:

θn+1 = θn + αnφ(Xn)
(
R(Xn) + γH(θn, θn, Sn+1)− φ(Xn)>θn

)
, (2)

where αn is an appropriately chosen step-size, also known as the learning rate.

2.2 Double Q-learning

To improve the performance of Q-learning, Double Q-learning was introduced in [20, 33]. We
consider the Double Q-learning with linear function approximation here. Double Q-learning maintains
two estimators θAn , θ

B
n , which are updated to estimate Q∗ based on the sample path {Xn} in the

following manner:

θAn+1 = θAn + βnδn
(
φ(Xn)

(
R(Xn) + γH(θAn , θ

B
n , Sn+1)− φ(Xn)>θAn

))
,

θBn+1 = θBn + (1− βn)δn
(
φ(Xn)

(
R(Xn) + γH(θBn , θ

A
n , Sn+1)− φ(Xn)>θBn

))
,

(3)

where βn are IID Bernoulli random variables equal to one w.p. 1/2 and δn is the step-size. Note that
at each time instant, only one of θA or θB is updated.

2.3 Linear Stochastic Approximation

Under the assumptions that the optimal policy is unique, the ordinary differential equation (ODE)
associated with Q-learning is stable and other technical assumptions, it has been argued in [16] that
the asymptotic variance of Q-learning can be studied by considering the recursion

θn+1 = θn + αnφ(Xn)
(
R(Xn) + γφ(Sn+1, π

∗(Sn+1))>θn − φ(Xn)>θn
)
, (4)

where π∗ is the optimal policy πθ∗ based on θ∗. Here and throughout, as in [16], we assume that the
Q-learning and Double Q-learning algorithms converge to some θ∗. We refer the reader to [16] for
details.

Using a similar argument, one can show that the asymptotic variance of Double Q-learning can be
studied by considering the following recursion:

θAn+1 = θAn + βnδn
(
φ(Xn)

(
R(Xn) + γφ(Sn+1, π

∗(Sn+1))>θBn − φ(Xn)>θAn
))
,

θBn+1 = θBn + (1− βn)δn
(
φ(Xn)

(
R(Xn) + γφ(Sn+1, π

∗(Sn+1))>θAn − φ(Xn)>θBn
))
.

(5)

Our comparison of the asymptotic mean-squared errors of Q-learning and Double Q-learning will use
(4)-(5). In practice, however, one is typically interested in how quickly one learns the optimal policy
which cannot be measured very well using the mean-squared error metric. Later, we will see that
our simulations indicate that the insights we obtain from mean-squared error analysis hold even for
learning the optimal policy.

3 Main Results

In this section, we present our main results. Before we do, we first review the results on asymptotic
variance of linear stochastic approximation in [11] and use these to compare the asymptotic variances
of Q-learning and Double Q-learning.
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3.1 Preliminaries

Consider the linear stochastic approximation recursion:

ξn+1 = ξn +
g

n
(A(Yn)ξn + b(Yn)) , (6)

where g is a positive constant, Yn is an irreducible, aperiodic Markov Chain on a finite state space, A
and b are a random matrix and a random vector, respectively, which are determined by Yn. Without
loss of generality, we assume ξn converges to ξ∗ = 0. If ξ∗ 6= 0, we can subtract ξ∗ from ξn. Define
the asymptotic covariance of ξn to be

Σ∞ = lim
n→∞

nE
[
ξnξ

T
n

]
.

The following result is from [11].
Theorem 1. Suppose that Ā := E [A(Y∞)], and 1

2I + gĀ is a Hurwitz matrix, i.e., its eigenvalues
have negative real parts, and Σb :=

∑∞
n=2 E

[
b(Yn)b(Y1)>

]
, where Y∞ is notation for a random

variable with the same distribution as the stationary distribution of the Markov chain {Yn}. Then,
Σ∞ is the unique solution to the Lyapunov equation

Σ∞

(
1

2
I + gĀ>

)
+

(
1

2
I + gĀ

)
Σ∞ + g2Σb = 0. (7)

In the next subsection, we use the above result to establish the relationship between the asymptotic
covariances of Q-learning and Double Q-learning.

3.2 Comparison of Q-learning and Double Q-learning

Throughout this section, we assume that θ∗ = 0 without loss of generality. If θ∗ 6= 0, the results can
hold by subtracting θ∗ from the estimators of Q-learning and Double Q-learning. Our main result is
stated in the following theorem.
Theorem 2. Define the asymptotic mean-squared error of Q-learning to be

AMSE(θ) := lim
n→∞

nE
[
θTn θn

]
,

the asymptotic mean-squared error of the estimator in Double Q-learning to be

AMSE(θA) := lim
n→∞

nE
[
(θAn )>θAn

]
,

and the asymptotic mean-squared error of the average of the two Double Q-learning estimators to be

AMSE

(
θA + θB

2

)
= lim
n→∞

1

4
nE
[
(θAn + θBn )>(θAn + θBn )

]
.

Let the step sizes of Q-learning and Double Q-learning be αn = g/n and δn = 2g/n, where g is a
positive constant. Then there exists some g0 > 0, such that for any g > g0, the following results hold:

1. AMSE(θA) ≥ AMSE(θ), and

2. AMSE( θ
A+θB

2 ) = AMSE(θ).

Before we present the proof of the above result, we make some remarks.

Remark 1. The condition g > g0 is tied to the sufficient conditions for stability of the ODEs
associated with covariance equations of Q-learning and Double Q-learning [11]. If we consider both
in tabular case, namely, Φ is exactly an identity matrix with dimension |X |. Let µmin be the minimum
probability of a state x ∈ X in the stationary distribution µ. In this case, the results hold so long as
g > 1

µmin(1−γ) , which is a common assumption used in the analysis of tabular Q-learning [28].

Remark 2. As mentioned in the introduction to this paper, Double Q-learning can be slower initially
due to the fact that only half the samples are used to estimate each of its estimators. One way to
speed up the initial convergence rate is to double the learning rate. Our results here show that the
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asymptotic mean-squared error of Double Q-learning in that case will be at least as large as that of
Q-learning; however, if the output of Double Q-learning is the average of its two estimators, the
asymptotic mean-squared error is exactly equal to that of Q-learning with half the learning rate. Thus,
Double Q-learning learns faster without sacrificing asymptotic mean-squared error. This suggests
that increasing the learning rate of Double Q-learning while averaging the output can have significant
benefits, which we verify using simulations in the next section. Now, we are ready to present the
proof of the theorem.

Proof of Theorem 2: Recall from Section 2.3 that the asymptotic variance of Q-learning can be
studied by considering the following recursion:

θn+1 = θn + αnφ(Xn)
(
R(Xn) + γφ(Sn+1, π

∗(Sn+1))>θn − φ(Xn)>θn
)
. (8)

Similarly, one can show that the asymptotic variance of double Q-learning can be studied by consid-
ering the following recursion:

θAn+1 = θAn + βnδn
(
φ(Xn)

(
R(Xn) + γφ(Sn+1, π

∗(Sn+1))>θBn − φ(Xn)>θAn
))
,

θBn+1 = θBn + (1− βn)δn
(
φ(Xn)

(
R(Xn) + γφ(Sn+1, π

∗(Sn+1))>θAn − φ(Xn)>θBn
))
.

(9)

For ease of notation, let Zn = (Xn, Sn+1). It is shown in [13] that {Zn} is also an aperiodic
and irreducible Markov chain. Let us define the following: b(Zn) = φ(Xn)R(Xn), A1(Zn) =
φ(Xn)φ(Xn)>, A2(Zn) = γφ(Xn)φ(Sn+1, π

∗(Sn+1))>, A(Zn) = A2(Zn) − A1(Zn). Using
these definitions, we can rewrite (8) and (9) as:

θn+1 = θn + αn (b(Zn) +A2(Zn)θn −A1(Zn)θn) . (10)

and
θAn+1 = θAn + βnδn

(
b(Zn) +A2(Zn)θBn −A1(Zn)θAn

)
,

θBn+1 = θBn + (1− βn)δn
(
b(Zn) +A2(Zn)θAn −A1(Zn)θBn

)
,

(11)

respectively. Let Un = ((θAn )>, (θBn )>)>. We can further write (11) in a more compact form as:

Un+1 = Un+αn

[(
−2βnA1(Zn) 2βnA2(Zn)

2(1− βn)A2(Zn) −2(1− βn)A1(Zn)

)
Un+

(
2βnb(Zn)

2(1− βn)b(Zn)

)]
. (12)

Let µ denote the steady-state probability vector for the Markov chain {Xn}. Let D be a diagonal
matrix of dimension |X | such that Dii = µi. We have A1 = E [A1(Z∞)] = ΦDΦ>, A2 =
E [A2(Z∞)] = γΦDPSπ∗Φ

>, where Sπ∗ is the action selection matrix of the optimal policy π∗

such that Sπ∗(s, (s, π∗(s))) = 1 for s ∈ S. Denote A = A2 −A1.

We will now use Theorem 1 to prove our result. Let ΣQ∞ = limn→∞ nE
[
θnθ

T
n

]
and ΣD∞ =

limn→∞ nE
[
UnU

T
n

]
. Clearly, AMSE(θ) = Tr(ΣQ∞). Applying Theorem 1 to (10) and (12):

ΣQ∞

(
1

2
I + gĀ>

)
+

(
1

2
I + gĀ

)
ΣQ∞ + g2(B1 +B2) = 0, (13)

and

ΣD∞

(
1

2
I + gA>D

)
+

(
1

2
I + gAD

)
ΣD∞ + g2ΣDb = 0, (14)

where B1 = E
[∑∞

n=1 b(Xn)b(X1)>
]
, B2 = E

[∑∞
n=2 b(Xn)b(X1)>

]
, AD =

(
−A1 A2

A2 −A1

)
,

and ΣDb = 2

(
B1 B2

B2 B1

)
. Because of the symmetry in the two estimators comprising Double

Q-learning, we observe that ΣD∞ will have the following structure: ΣD∞ =

(
V C
C V

)
, where

V = lim
n→∞

nE
[
θAn (θAn )>

]
= lim
n→∞

nE
[
θBn (θBn )>

]
, C = lim

n→∞
nE
[
θAn (θBn )>

]
.
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Coupling this observation with (14) yields(
V C
C V

)
+ g

(
V C
C V

)(
−A1 A2

A2 −A1

)T
+ g

(
−A1 A2

A2 −A1

)(
V C
C V

)
+ 2g2

(
B1 B2

B2 B1

)
= 0.

(15)
Summing the first two blocks (row-wise) of matrices in the above equation, we get

V + C + g(V + C)(A2 −A1)T + g(A2 −A1)(V + C) + 2g2(B1 +B2) = 0. (16)

Next, define g0 := inf{g ≥ 0 : gmax(λmax(Ā), λmax(ĀD)) < −1}, where λmax(A) denotes the
real part of the maximum eigenvalue of A. Note that g0 exists since both Ā and ĀD are Hurwitz,
under the assumption that Q-learning and Double Q-learning both converge [10]. As a result, for
any g > g0, 1

2I + gĀ is Hurwitz. Therefore, the solution V + C to the above equation and the
solution Σ∞ to (13) are unique [10]. Similarly, we also note that the solution to (15) is also unique
as 1

2I + gĀD is Hurwitz whenever g > g0.

Comparing the above equation with (13), we get ΣQ∞ = V+C
2 . Next, we observe that Tr(V ) ≥ Tr(C).

The reasoning behind that is as follows:

lim
n→∞

nE
[
(θAn − θBn )T (θAn − θBn )

]
≥ 0

⇒ 2 lim
n→∞

n
{
E
[
(θAn )T θAn

]
− E

[
(θBn )T θAn

] }
≥ 0⇒ Tr(V )− Tr(C) ≥ 0,

where the second inequality follows from the symmetry in the two estimators comprising double
Q-learning. Using Tr(V ) ≥ Tr(C), we get Tr(V ) ≥ Tr

(
V+C

2

)
= Tr(ΣQ∞). This equation proves

our first result. To prove the second result, we observe that

AMSE

(
θA + θB

2

)
=

1

2
AMSE(θA) +

1

2
Tr(C) =

1

2
(Tr(V ) + Tr(C)) = Tr(ΣQ∞).

4 Numerical Results

In this section, we provide numerical comparisons between Double Q-learning and Q-learning on
Baird’s Example [2], GridWorld [18], CartPole [3] and an example of maximization bias from [31] 1.
We investigate four algorithms: 1) Q-learning using step size αn, denoted as Q in plots; 2) Double
Q-learning using step size αn, denoted as D-Q; 3) Double Q-learning using step size equal to 2αn,
denoted as D-Q with twice the step size; 4) Double Q-learning using step size equal to 2αn and
returning the average estimator (θAn + θBn )/2, denoted as D-Q average with twice step size. For the
vanilla Double Q-learning, we always use θAn as its estimator.

For the first two experiments, we plot the logarithm of the mean-squared error for each algorithm.
We set the step size αn = 1000

n+10000 . The optimal estimator, θ∗, is calculated by solving the projected
Bellman equation [25] based on the Markov chain. Sample paths start in state 1 in Baird’s Example,
and state (1, 1) in GridWorld. We use the uniformly random policy as the behavioral policy, i.e., each
valid action is taken with equal probability in any given state. Initialization of θ1, θ

A
1 , θ

B
1 are set the

same and are uniformly sampled from [0, 2]d, where d is the dimension of features. Results in each
plot reflect the average over 100 sample paths.

4.1 Baird’s Example

The first environment we consider is the popular Baird’s Example which was used to prove that
Q-learning with linear function approximation may diverge [13, 2]. It is a simple Markov chain
as shown in Fig. 1a with 6 states and 2 actions (represented by the dotted line and the solid line
respectively). When the action represented by the dotted line is taken, the agent transits to one of the
first five states randomly. When an action represented by a solid line is taken, the agent transits to state
6. The Q-function is approximated by a parameter θ ∈ R12, where the specific linear combination
is shown next to the corresponding action. For the reward function R(s, a), 1 ≤ s ≤ 6, 1 ≤ a ≤ 2,

1Codes are at https://github.com/wentaoweng/The-Mean-Squared-Error-of-Double-Q-Learning.
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(a) Baird’s Example [2]
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(c) Small Random Reward
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(d) Large Random Reward

Figure 1: Simulation results for Baird’s example. The y-axis is in log scale.

we explore different settings: 1) Zero Reward: the reward R(s, a) is uniformly zero; 2) Small
Random Reward: the reward R(s, a) is sampled uniformly from [−0.05, 0.05]; 3) Large Random
Reward: the reward R(s, a) is sampled uniformly from [−50, 50]. Our theory applies to Small
Random Reward and Large Random Reward because the optimal policy is unique in these two cases,
but simulations indicate that our insight works more generally even in the case of Zero Reward.
Although Baird’s example was originally proposed to make Q-learning diverge when γ is large, we
study the case γ = 0.8 where all algorithms converge. Results are presented in Fig. 1b, 1c, and 1d.

In all the three scenarios, we observe that Double Q-learning converges much slower than Q-learning
at an early stage, when using the same step-size . When using a step size 2αn, we observe that
Double Q-learning converges slightly faster than Q-learning in Fig. 1b, Fig. 1c, and almost at the
same speed in Fig. 1d. However, the mean-squared error is much worse than that of Q-learning as
shown in Fig. 1c and Fig. 1d. Finally, by simply using the averaged estimator, Double Q-learning
obtains both faster convergence rate and smaller mean-squared error, which matches with our theory.

4.2 GridWorld

The second environment we simulate is the GridWorld game with a similar setting as in [18]. Consider
a n× n grid where the agent starts at position (1, 1) and the goal is to reach the position (n, n). A
3× 3 GridWorld is shown in Fig. 2a. For each step, the agent can walk in four directions: up, down,
left or right. If the agent walks out of the grid, the agent will stay at the same cell. There is a 30%
probability that the chosen direction is substituted by any one of the four directions randomly. The
agent receives reward −10−3 in each step, but receives reward 1 at the destination. The game ends
when the agent arrives at the destination. We consider GridWorld with n = 3, 4 and 5, so the number
of pairs of states and actions can be up to 100. The discount factor is set as γ = 0.9. We run tabular
Q-learning and tabular Double Q-learning. Simulation results are shown in Fig. 2.

As we can see, Double Q-learning using step size αn converges much slower than all the other three
algorithms even though it has a slightly better asymptotic variance as shown in Fig. 2b. By simply
doubling the step-size and using the averaged output, Double Q-learning outperforms Q-learning in
all the three settings. It is worth pointing out that theoretically speaking, Theorem 2 does not apply to
this example because the optimal policy is not unique. However, the insights offered by Theorem 2
still hold.

4.3 CartPole

The third experiment we conduct is the classical CartPole control problem introduced in [3]. In this
problem, a cart with a pole is controlled by applying a force, either to left or to right. The goal is to
keep the pole upright for as long as possible. The player receives a +1 reward for every time step
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(a) An Example of 3× 3 GridWorld
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(c) 4× 4 GridWorld
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(d) 5× 5 GridWorld
Figure 2: Simulation results for GridWorld with dimensions 3, 4, 5. In all the three simulations,
Double Q-learning with twice the step-size and averaged output outperforms Q-learning.

until the episode ends which happens when the pole falls down or the cart moves out of a certain
region. Unlike the previous numerical results which mainly focus on the mean-squared error, in this
case, we study how fast the four algorithms can find a policy that achieves the best performance. We
train algorithms on CartPole-v0 available in OpenAI Gym [9]. Specifically, we consider Q-learning
and Double Q-learning equipped with ε-greedy exploration. The training is episodic, in the sense that
for each episode, i.e., the step-size and the ε are updated after one episode. In particular, for the nth
episode, we use εn = max(0.1,min(1, 1− log( n

200 ))), αn = 40
n+100 . The step size is different from

previous experiments because we only train 1000 episodes for CartPole, and therefore, the step-size
would have remained too large throughout if we had used the previous step-size rule and we noticed
that this leads to convergence issues. The discount factor is set as γ = 0.999. Since the state space of
CartPole is continuous, we discrete it into 72 states following [26].

We evaluate the algorithms based on their "hit time", i.e., the time at which they first learn a fairly
good policy. We say an algorithm learns a fairly good policy if the mean reward of the greedy policy
based on the estimator learned from the first n episodes exceed 195. To reduce the computational
overhead, we evaluate the policy obtained after every 50 episodes by averaging the reward obtained
by the policy over 1000 independently run episodes. The distribution of the "hit time" for each
algorithm in 100 independent tests is shown in Fig. 3. We observe that Double Q-learning using
the same learning rate performs much worse than other algorithms. However, when using twice
the step size, Double Q-learning finds a good policy faster than Q-learning, at the cost of a larger
standard deviation for the "hit time". The increase of variance can be mitigated by using the averaged
estimator, which at the same time improves the convergence speed.

0 200 400 600 800 1000
Number of Episodes to Achieve At Least 195 Reward

0.0

0.2

0.4

0.6

0.8 Q
D-Q avg with twice the step size
D-Q with twice the step size
D-Q Algorithm Mean Hit Time

Q 645.0± 12.93
D-Q avg with twice the step size 487.5± 12.19
D-Q with twice the step size 518.0± 14.77

Figure 3 & Table 1: Distribution of "hit time", i.e., number of episodes needed to obtain a mean
reward of 195 in CartPole-v0, with the number of episodes capped at 1000. The mean hit time of
each algorithm is summarized with its standard deviation.

4.4 Maximization Bias of Q-learning

The fourth example we investigate is the maximization bias example similar to that in [31, Page 135].
Since Double Q-learning was proposed to alleviate the maximization bias from Q-learning. we study
how the proposed modification, doubling the step size and averaging the two estimators in Double
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Q-learning, affects the performance in an example where Double Q-learning is known to be helpful.
To be specific, there are M + 1 states labelled as {0, · · · ,M} with two actions, left and right. The
agent starts at state 0. If the agent goes to the right, the game ends, but if she moves to the left, she
goes with equal probability to one of the other M states. Both actions result in zero reward. When
the agent is at state 1 to state M , if she goes to the right, she returns to state 0; if she goes to the left,
the game ends. Both actions result in a reward independently sampled from a normal distribution
with mean −0.1 and standard deviation 1.

We first test the algorithms in a tabular setting with M = 8. The exploration policy is set to be
ε-greedy with ε = 0.1. In the nth episode, αn = 10

n+100 . We train the algorithms for 200 episodes.
All estimators are initialized as zero. To evaluate the algorithms, we plot the probability of the
agent going left after every episode. In particular, at the end of n episodes, we count how often
the estimated Q-function of a left action is larger than that of a right action at state 0. In addition,
the probability is taken to be the average of 1000 independent runs. Notice that going right always
maximizes the mean reward for the agent, so a larger probability to go left indicates that the algorithm
has learned a worse policy. The result is shown in Fig. 4a. As we can see, Q-learning suffers from the
maximization bias when the number of episodes is small since there is a large probability of going to
the left. On the other hand, there is no such problem with Double Q-learning. Furthermore, Double
Q-learning with twice the step size and averaging improves performance even more.

In addition to the tabular setting, we also explore a setting where neural networks are used for function
approximations. In particular, we consider the same environment as before, but with M = 109. In
this way, it is infeasible to use a table for the whole Q−function. We assume that the Q−function
is approximated by a neural network with two hidden layers of dimension 4 and 8. Each pair of
adjacent layers is fully connected, with ReLU as the activation function. We use stochastic gradient
descent with no momentum as the optimizer. Other settings are the same as those in the tabular
setting. The result is shown in Fig. 4b. We can see that although Q-learning does not seem to suffer
from maximization bias any more, it performs worse than Double Q-Learning. In addition, Double
Q-Learning with twice the step size and averaging helps improve the performance.
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(a) In a tabular setting with M = 8
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(b) In a setting with neural network function approxima-
tions and M = 109

Figure 4: The probability to go to the left for different algorithms in an environment similar to the
maximization bias example from [31]. A lower probability indicates a better policy.

5 Conclusion

It is known from prior work that Q-learning has faster convergence rate while Double Q-learning
has better mean-squared error. A natural attempt to improve the convergence rate of Double Q-
learning is to increase its stepsize (also called learning rate), but this leads to worse mean-squared
error. We theoretically showed that increasing the learning rate of Double Q-learning while using a
simple averaging at the output improves its convergence rate while making the mean-squared error
equal to that of Q-learning. In the supplementary material, we further expand on our theoretical
results. Our theoretical results are further supported by numerical experiments which also provide
some useful guidelines for implementations of Double Q-learning. However, these results do not
immediately apply to Double Q-learning with nonlinear function approximation, which we leave for
future investigation.
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Broader Impact

Reinforcement learning (RL) has been the driving force behind many recent breakthroughs in
Artificial Intelligence, including defeating humans in games (e.g., chess, Go, StarCraft), self-driving
cars, smart home automation, among many others. However, much of the successes build on efficient
heuristics and empirical explorations, lacking sufficient theoretical understanding. One such example
is Double Q-learning, which is the common practice used in deep reinforcement learning. This
work establishes a theoretical analysis of the mean-squared error of double Q-learning, and provides
principled guidelines for its implementation. These contributions have the potential to promote a
stronger understanding of common RL algorithms both in theory and practice, accelerate the design
of more efficient, interpretable RL algorithms, and benefit tremendous RL-driven applications that
are societally impactful.
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