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A Proof of Proposition 3.1

In this section, we provide proof for the statement regarding optimal views in proposition 3.1 of the
main text. As a warmup, we firstly recap some properties of mutual information.

A.1 Properties of MI [5]:
(1) Nonnegativity:
I(x;y) = 0;1(x;y]z) > 0
(2) Chain Rule:
I(x;y,2) = I(x;y) + I(x;2ly)
(2) Multivariate Mutual Information:

I(Xl; X2 ---;Xn—&-l) = I(Xl; -~-§Xn) - I(xl; ---;Xn‘xn-&-l)
A.2  Proof

Proposition A.1. According to Proposition 1, the optimal views v, v} for task T with label y, are
views such that I(vi;v3) = I(viy) = I(vyy) = I(x;y)

Proof. Since I(vy;y) = I(ve;y) = I(x;y), and vy, vy are functions of x.

I(y;x) = I(y; v1,v2)
=I(y;v1) + I(y;va|v1)
= I(y;%) + I(y; va[v1)
Therefore I(y; va|v1) = 0, due to the nonnegativity. Then we have:

I(vi;v2) = I(vi;va) + I(y; va|v1)
= I(VQ; Vi, y)
= I(va;y) + I(va;vily)
> I(va;y) = 1(x3y)
Therefore the optimal views vi,v; that minimizes I(vy;va) subject to the constraint yields
I(vi;vsy) = I(x;y). Also note that optimal views v}, vj are conditionally independent given
y,asnow I(v3;vily) =0. O
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Proposition A.2. Given optimal views v7,vs and minimal sufficient encoders fi, fa, then the
learned representations z, (or z) are sufficient statistic of vq (or va) fory, i.e, I(z1;y) = I(v1;y)
or I(z2;y) = I(va3y).

Proof. Let’s prove for z;. Since z; is a function of v;, we have:

I(Y;Vl) :I(Y§V17Z1)
= I(y;21) + I(y; vi|z1)

To prove I(y;vy1) = I(y;z1), we need to prove I(y;vi|z;) = 0.

y;vi) — I(y;vi;21)
y;vi;va) + I(y; vi|ve) — I(y; vi; 21)
yivi;ve) + 1(y;vi|ve) — [I(y; vi; 213 ve) + 1(y; vi;21|va)]
y;vilve) + [[(y;vi; ve) — I(y; vi; 215 ve)] — 1(y; vi; 21| va)
y;vi|ve) + I(y; vi; va|z1) — I(y; vi; 21| va)
)+ I(y;vi; valzi) + 1(y; 21| vi, va2) —1(y; 21| va)
0

A~ N N N~

y;vi|ve

< I(y;vi|va) + I(y; vi; v2|z1)
= I(y;vi|va) + I(vi;val|z1) — I(vi; valy, 21)
0
= I(y;vilv2) + I(vi;v2|z1)

In the above derivation I(y;z1|vy,va) = 0 because z; is a function of vy; I(vy;valy,z1) =0
because optimal views v1, vy are conditional independent given y, see Proposition A.1. Now, we
can easily prove I(y;vi|va) = 0 following a similar procedure in Proposition A.1. If we can
further prove I(vy;va|z;) = 0, then we get I(y;vi|z;) < 0. By nonnegativity, we will have
I(y;vi|z1) = 0.

To see I(v1; va|z1) = 0, recall that our encoders are sufficient. According to Definition 1, we have
I(vyi;ve) = I(va;21):

I(vi;val|z1) = I(vi;va) — I(V1;ve; 21)
= I(vi;ve) — I(va;21) + I(va;21|v1)
—_—— ——
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Proposition A.3. The representations z1 and z are also minimal for y.

Proof. For all sufficient encoders, we have proved z; are sufficient statistic of v; for predicting y.
Namely I(v1;y|z1) = 0. Now:

I(z1;v1) = I(z1;vily) + 1(z1;visy)
I(zy;vily) + I(viyy) — I(visylzy)
—_————
0

= I(z1;v1ly) + I(v1;y)
I(Vl, )
The minimal sufficient encoder will minimize I(z1;vy) to I(vy;y). This is achievable and leads

to I(z1;v1]y) = 0. Therefore, z; is a minimal sufficient statistic for predicting y, thus optimal.
Similarly, z is also optimal. O



B Implementation Details

B.1 Spatial Patches with Different Distance

Why using DIV2K [1]? Recall that we randomly sample patches with a distance of d. During such
sampling process, there is a possible bias that with an image of relatively small size (e.g., 512x512),
a large d (e.g., 384) will always push these two patches around the boundary. To minimize this bias,
we choose to use high resolution images (e.g. 2k) from DIV2K dataset.

Setup and Training. We use the training framework of CMC [28]. The backbone network is a tiny
AlexNet, following [17, 28]. We train for 3000 epochs, with the learning rate initialized as 0.03 and
decayed with cosine annealing.

Evaluation. We evaluate the learned representation on both STL-10 and CIFAR-10 datasets. For
CIFAR-10, we resize the image to 64 x64 to extract features. The linear classifier is trained for 100
epochs.

B.2 Channel Splitting with Various Color Spaces

Setup and Training. The backbone network is also a tiny AlexNet, with the modification of adapting
the first layer to input of 1 or 2 channels. We follow the training recipe in [28].

Evaluation. For the evaluation on STL-10 dataset, we train a linear classifier for 100 epochs and
report the single-crop classification accuracy. For NYU-Depth-v2 segmentation task, we freeze the
backbone network and train a 4-layer decoder on top of the learned representations. We report the
mean IoU for labeled classes.

B.3 Reducing /(v1; v2) with Frequency Separation
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Figure 1: We create views by splitting images into low- and high-frequency pairs with a blur function
parameterized by 0. IncE is maximized at o = 0.7. Starting from this point, either increasing or decreasing
o will reduce Incr but interestingly they form two different trajectories. When increasing o from 0.7, the
accuracy firstly improves and then drops, forming a reverse-U shape corresponding to (a) in Figure 2 of the main
paper. While decreasing o from 0.7, the accuracy keeps diminishing, corresponding to (b) in Figure 2 of the
main paper.

Another example we consider is to separate images into low- and high-frequency images. To simplify,
we extract vy and vg by Gaussian blur, i.e.,

vi = Blur(x,0)

Vo =X — V7

where Blur is the Gaussian blur function and o is the parameter controlling the kernel. Extremely
small or large o can make the high- or low-frequency image contain little information. In theory, the
maximal I(vq;vz) is obtained with some intermediate o. As shown in Figure 1, we found o = 0.7
leads to the maximal Iy ¢ g on the STL-10 dataset. Either blurring more or less will reduce I y¢c g, but
interestingly blurring more leads to different trajectory in the plot than blurring less. When increasing
o from 0.7, the accuracy firstly improves and then drops, forming a reverse-U shape with a sweet
spot at 0 = 1.0. This situation corresponds to (a) in Figure 2 of the main paper. While decreasing o



c-moving
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Figure 2: Ilustration of the Colorful-Moving-MNIST dataset. In this example, the first view v1 is a sequence
of frames containing the moving digit, e.g., v1 = x1.x. The matched second view v2+ share some factor with z;
that vy can predict, while the unmatched view v, does not share factor with ;.

from 0.7, the accuracy keeps diminishing, corresponding to (b) in Figure 2 of the main paper. This
reminds us of the two aspects in Proposition 3.1: mutual information is not the whole story; what
information is shared between the two views also matters.

Setup and Training. The setup is almost the same as that in color channel splitting experiments,
except that each view consists of three input channels. We follow the training recipe in [28].

Evaluation. We train a linear classifier for 100 epochs on STL-10 dataset and 40 epochs on
TinyImageNet dataset.

B.4 Colorful Moving MNIST

Dataset. Following the original Moving MNIST dataset [27], we use a canvas of size 64 x 64, which
contains a digit of size 28x28. The back ground image is a random crop from original STL-10
images (96x96). The starting position of the digit is uniformly sampled inside the canvas. The
direction of the moving velocity is uniformly sampled in [0, 27], while the magnitude is kept as 0.1
of the canvas size. When the digit touches the boundary, the velocity is reflected.

Setup. We use the first 10 frames as v; (namely k£ = 10), and we construct vo by referring to the
20-th frame (namely ¢ = 20). During the contrastive learning phase, we employ a 4-layer ConvNet
to encode images and use a single layer LSTM [18] on top of the ConvINet to aggregate features
of continuous frames. The CNN backbone consists of 4 layers with 8, 16, 32, 64 filters from low to
high. Average pooling is applied after the last convolutional layer, resulting in a 64 dimensional
representation. The dimensions of the hidden layer and output in LSTM are both 64.

Examples. The examples of v; and v are shown in Figure 2, where the three rows on the RHS
shows cases that only a single factor (digit, position, or background) is shared.

Training. We perform intra-batch contrast. Namely, inside each batch of size 128, we contrast each
sample with the other 127 samples. We train for 200 epochs, with the learning rate initialized as 0.03
and decayed with cosine annealing.

B.5 Un-/Semi-supervised View Learning

e . g

(a) Volume-Preserving b) None Volume-Preserving

Figure 3: Volume-preserving (a), and none volume-preserving (b) invertible model.

Invertible Generator. Figure 3 shows the basic building block for the Volume-Preserving (VP) and
None-Volume-Preserving (NVP) invertible view generator. The F' and G are pixel-wise convolutional
function, i.e., convolutional layers with 1x1 kernel. X; and Y represent a single channel of the
input and output respectively, while X5 and Y5 represent the other two channels. While stacking



basic building blocks, we alternatively select the first, second, and the third channel as X, to enhance
the expressivity of view generator.

Setup and Training. For unsupervised view learning that only uses the adversarial Iycg loss,
we found the training is relatively unstable, as also observed in GAN [12]. We found the learning
rate of view generator should be larger than that of /g approximator. Concretely, we use Adam
optimizer [19], and we set the learning rates of view generator and I ¢ g approximator as 2e-4 and
6e-4, respectively. For the semi-supervised view learning, we found the training is stable across
different learning rate combinations, which we considered as an advantage. To be fair, we still use
the same learning rates for both view generator and /¢ g approximator.

Contrastive Learning and Evaluation. After the view learning stage, we perform contrastive
learning and evaluation by following the recipe in Section B.2.

C Data Augmentation as InfoMin

C.1 InfoMin Augmentation

RA-CJ-Blur RAC) PyTorch-style data augmentation

o
w
L

RandomResizedCrop (scale=(0.2, 1.0))
£)-Blur RandomHorizontalFlip ()

RA # CJ(x): random color jitter with x

£)(1.0) cj = ColorJitter([0.8,0.8,0.8,0.4]x*x)

RandomApply ([cj], p=0.8)
# Blur: random blurring
£)(0.5) blur = Blur(sigma=(0.1,2.0))
RandomApply ([blur], p=0.5)
£)(0]25) # RA: RandAugment
rnd_augment ()
RandomGrayscale (p=0.2),

ImageNet Accuracy (%)
w w o o [«)]
© o o = N

v
~
L

A Augmentation CJ(Q.125)

T T T T T

,
9.6 9.8 10.0 10.2 104 106
Ince

(a) Iycg v- s Accuracy (b) Data Augmentation

Figure 4: (a) data augmentation as InfoMin on ImageNet with linear projection head; (b) illustration
of step-by-step data augmentation used in InfoMin.

InfoMin Aug. We gradually strengthen the family of data augmentation functions T, and plot the
trend between accuracy in downstream linear evaluation benchmarks and I ¢ . The overall results
are shown in Figure 4(a), where the plot is generated by only varying data augmentation while
keeping all other settings fixed. We consider Color Jittering with various strengths, Gaussian Blur,
RandAugment [6], and their combinations, as illustrated in Figure 4(b). The results suggest that as we
reduce Incg(vi;Vvy), via stronger T (in theory, I(vq; vy) also decreases), the downstream accuracy
keeps improving.

C.2 Analysis of Data Augmentation as it relates to MI and Transfer Performance

We also investigate how sliding the strength parameter of individual augmentation functions leads to
a practical reverse-U curves, as shown in Figures 5 and 6.

Cropping. In PyTorch, the RandomResizedCrop (scale=(c, 1.0)) data augmentation
function sets a low-area cropping bound c. Smaller ¢ means more aggressive data augmentation.
We vary c for both a linear critic head [30] (with temperature 0.07) and nonlinear critic head [3]
(with temperature 0.15), as shown in Figure 5. In both cases, decreasing ¢ forms a reverse-U shape
between I ¢ g and linear classification accuracy, with a sweet spot at ¢ = 0.2. This is different from
the widely used 0.08 in the supervised learning setting. Using 0.08 can lead to more than 1% drop in
accuracy compared to the optimal 0.2 when a nonlinear projection head is applied.

Color Jittering. As shown in Figure 4(b), we adopt a parameter x to control the strengths of color
jittering function. As shown in Figure 6, increasing = from 0.125 to 2.5 also traces a reverse-U shape,
no matter whether a linear or nonlinear projection head is used. The sweet spot lies around x = 1.0,
which is the same value as used in SImCLR [3]. Practically, we see the accuracy is more sensitive
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Figure 6: Different magnitudes of Color Jittering.

around the sweet spot for the nonlinear projection head, which also happens for cropping. This
implies that it is important to find the sweet spot for future design of augmentation functions.

Details. These plots are based on the MoCo [13] framework. We use 65536 negatives and pre-train
for 100 epochs on 8 GPUs with a batch size of 256. The learning rate starts as 0.03 and decays
following a cosine annealing schedule. For the downstream task of linear evaluation, we train the
linear classifier for 60 epochs with an initial learning rate of 30, following [28].

C.3 Results on ImageNet Benchmark

Table 1: Single-crop ImageNet accuracies (%) of linear classifiers [33] trained on representations learned
with different contrastive methods using ResNet-50 [15]. InfoMin Aug. refers to data augmentation using
RandomResizedCrop, Color Jittering, Gaussian Blur, RandAugment, Color Dropping, and a JigSaw branch as in

PIRL [23]. * indicates splitting the network into two halves.

Method Architecture Param. Head Epochs Top-1 Top-5
InstDis [30] ResNet-50 24 Linear 200 56.5 -
Local Agg. [34] ResNet-50 24 Linear 200 58.8 -
CMC [28] ResNet-50* 12 Linear 240 60.0 82.3
MoCo [13] ResNet-50 24 Linear 200 60.6 -
PIRL [23] ResNet-50 24 Linear 800 63.6 -
CPC v2[16] ResNet-50 24 - - 63.8 85.3
SimCLR [3] ResNet-50 24 MLP 1000 69.3 89.0
InfoMin Aug. (Ours) ResNet-50 24 MLP 200 70.1 89.4
InfoMin Aug. (Ours) ResNet-50 24 MLP 800 73.0 91.1




Table 2: Single-crop ImageNet accuracies (%) of linear classifiers [

different methods using various architectures.

] trained on representations learned with

Method Architecture Param. Head  Epochs Top-1 Top-5
Methods using contrastive learning:

InstDis [30] ResNet-50 24 Linear 200 56.5 -
Local Agg. [ ResNet-50 24 Linear 200 58.8 -
CPC v2[16] ResNet-50 24 - - 63.8 85.3
CMC [28] 2x ResNet-50(0.5x) 12 Linear 240 60.0 82.3
CMC [28] 2x ResNet-50(1x) 47 Linear 240 66.2 87.0
CMC [28] 2x ResNet-50(2x) 188 Linear 240 70.6 89.7
MoCo [13] ResNet-50 24 Linear 200 60.6 -
MoCo [13] ResNet-50 (2x) 94 Linear 200 65.4 -
MoCo [13] ResNet-50 (4x) 375 Linear 200 68.6 -
PIRL [23] ResNet-50 24 Linear 800 63.6 -
PIRL [23] ResNet-50 (2x) 94 Linear 800 67.4 -
SimCLR [3] ResNet-50 24 MLP 1000 69.3 -
SimCLR [3] ResNet-50 (2x) 94 MLP 1000 74.2 -
SimCLR [3] ResNet-50 (4x) 375 MLP 1000 76.5 -
MoCo V2 [4] ResNet-50 24 MLP 800 71.1 -
InfoMin Aug. ResNet-50 24 MLP 100 67.4 87.9
InfoMin Aug. ResNet-50 24 MLP 200 70.1 89.4
InfoMin Aug. ResNet-50 24 MLP 800 73.0 91.1
InfoMin Aug. ResNet-101 43 MLP 300 73.4 -
InfoMin Aug. ResNet-152 58 MLP 200 73.4 -
InfoMin Aug. ResNeXt-101 87 MLP 200 74.5 -
InfoMin Aug. ResNeXt-152 120 MLP 200 75.2 -
Methods NOT using contrastive learning:

Exemplar [9, 20] ResNet-50 (3x) 211 - 35 46.0 -
JigSaw [24, 20] ResNet-50 (2x) 94 - 35 44.6 -
Relative Position [7, 20]  ResNet-50 (2x) 94 - 35 514 -
Rotation [11, 20] RevNet-50 (4x) 86 - 35 55.4 -
BigBiGAN [&] RevNet-50 (4x) 86 - - 61.3 81.9
SeLa [32] ResNet-50 24 - 400 61.5 84.0

On top of the “RA-CJ-Blur” augmentations shown in Figure 4, we further reduce the mutual
information (or enhance the invariance) of views by using PIRL [23], i.e., adding JigSaw [24].
This improves the accuracy of the linear classifier from 63.6% to 65.9%. Replacing the widely-used
linear projection head [30, 28, 13] with a 2-layer MLP [3] increases the accuracy to 67.3%. When
using this nonlinear projection head, we found a larger temperature is beneficial for downstream linear
readout (as also reported in [4]). All these numbers are obtained with 100 epochs of pre-training. For
simplicity, we call such unsupervised pre-training as InfoMin pre-training (i.e., pre-training with our
InfoMin inspired augmentation). As shown in Table 2, our InfoMin model trained with 200 epochs
achieves 70.1%, outperforming SimCLR with 1000 epochs. Finally, a new state-of-the-art, 73.0%
is obtained by training for 800 epochs. Compared to SimCLR requiring 128 TPUs for large batch
training, our model can be trained with as less as 4 GPUs on a single machine.

For future improvement, there is still room for manually designing better data augmentation. As
shown in Figure 4(a), using “RA-CJ-Blur” has not touched the sweet spot yet. Another way to
is to learn to synthesize better views (augmentations) by following (and expanding) the idea of
semi-supervised view learning method presented in Section 4.2.2 of the main paper.

Different Architectures. We further include the performance of InfoMin as well as other SoTA
methods with different architectures in Table 2. Increasing the network capacity leads to significant
improvement of linear readout performance on ImageNet for InfoMin, which is consistent with
previous literature [28, 13, 3, 23].



Table 3: Results of object detection and instance segmentation fine-tuned on COCO. We adopt Mask R-CNN
R50-FPN, and report the bounding box AP and mask AP on val2017. In the brackets are the gaps to the

ImageNet supervised pre-training counterpart. For fair comparison, InstDis [30], PIRL [23], MoCo [13], and
InfoMin are all pre-trained for 200 epochs.
(a) Mask R-CNN, R50-FPN, 1x schedule
pre-train AP AP'S’B AP?'; AP™K AP;‘})k AP’7‘“5k
random init 32.8 50.9 35.3 29.9 479 32.0
supervised 39.7 59.5 43.3 35.9 56.6 38.6
InstDis [30] | 38.8(]0.9) 58.4(/1.1) 42.5(]0.8) | 35.2(]0.7) 55.8(10.8) 37.8(]0.8)
PIRL [23] 38.6(J1.1) 58.2(}1.3) 42.1(/1.2) | 35.1(10.8) 55.5(/1.1) 37.7(1/0.9)
MoCo [13] 39.4(10.3) 59.1(]0.4) 42.9(0.4) | 35.6(10.3) 56.2(/0.4) 38.0(/0.6)
InfoMin Aug. | 40.6(70.9) 60.6(11.1) 44.6(11.3) | 36.7(10.8) 57.7(11.1) 39.4(10.8)
(b) Mask R-CNN, R50-FPN, 2x schedule
pre-train AP AP APL? APk APIX APZK
random init 38.4 57.5 42.0 34.7 54.8 37.2
supervised 41.6 61.7 453 37.6 58.7 40.4
InstDis [30] | 41.3(J0.3) 61.0(/0.7) 45.3(/0.0) | 37.3(J0.3) 58.3(]0.4) 39.9(]0.5)
PIRL [23] 41.2(/0.4) 61.2(J0.5) 45.2(/0.1) | 37.4(]0.2) 58.5(/0.2) 40.3(]0.1)
MoCo [13] 41.7(70.1) 61.4(J0.3) 45.7(10.4) | 37.5(]0.1) 58.6(/0.1) 40.5(10.1)
InfoMin Aug. | 42.5(70.9) 62.7(11.0) 46.8(11.5) | 38.4(10.8) 59.7(11.0) 41.4(11.0)

C.4 Comparing with SoTA in Transfer Learning

One goal of unsupervised pre-training is to learn transferable representations that are beneficial for
downstream tasks. The rapid progress of many vision tasks in past years can be ascribed to the
paradigm of fine-tuning models that are initialized from supervised pre-training on ImageNet. When
transferring to PASCAL VOC [10] and COCO [22], we found our InfoMin pre-training consistently
outperforms supervised pre-training as well as other unsupervised pre-training methods.

COCO Object Detection/Segmentation. Feature normalization has been shown to be important
during fine-tuning [ 13]. Therefore, we fine-tune the backbone with Synchronized BN (SyncBN [25])
and add SyncBN to newly initialized layers (e.g., FPN [21]). Table 3 reports the bounding box AP
and mask AP on va12017 on COCO, using the Mask R-CNN [14] R50-FPN pipeline. All results
are reported on Detectron?2 [29]. We notice that, among unsupervised approaches, only ours
consistently outperforms supervised pre-training.

We have tried different popular detection frameworks with various backbones, extended the fine-tuning
schedule (e.g., 6x schedule), and compared InfoMin ResNeXt-152 [3 1] trained on ImageNet-1k with
supervised ResNeXt-152 trained on ImageNet-5k (6 times larger than ImageNet-1k). In all cases,
InfoMin consistently outperforms supervised pre-training. Please see Section D for more detailed
comparisons.

Pascal VOC Object Detection. We strictly follow the setting introduced in [13]. Specifically, We
use Faster R-CNN [26] with R50-C4 architecture. We fine-tune all layers with 24000 iterations, each
consisting of 16 images.

Table 4: Pascal VOC object detection. All contrastive models are pretrained for 200 epochs on ImageNet for
fair comparison. We use Faster R-CNN R50-C4 architecture for object detection. APs are reported using the
average of 5 runs. * we use numbers from [13] since the setting is exactly the same.

pre-train APs AP AP ImageNet Acc(%)
random init.* 60.2 33.8 33.1 -
supervised* 81.3 53.5 58.8 76.1
InstDis 80.9 55.2 61.2 59.5

PIRL 81.0 55.5 61.3 61.7
MoCo* 81.5 559 62.6 60.6
InfoMin Aug. (ours) 82.7 57.6 64.6 70.1




D Transfer Learning with Various Backbones and Detectors on COCO

We evaluated the transferability of various models pre-trained with InfoMin, under different detection
frameworks and fine-tuning schedules. In all cases we tested, models pre-trained with InfoMin
outperform those pre-trained with supervised cross-entropy loss. Interestingly, ResNeXt-152 trained
with InfoMin on ImageNet-1K beats its supervised counterpart trained on ImageNet SK, which is
6x times larger. Bounding box AP and mask Ap are reported on va1l2017

D.1 ResNet-50 with Mask R-CNN, C4 architecture

The results of Mask R-CNN with R-50 C4 backbone are shown in Table 5. We experimented with 1x
and 2x schedule.

Table 5: COCO object detection and instance segmentation. R50-C4. In the brackets are the gaps to the

ImageNet supervised pre-training counterpart. In green are gaps of > 0.5 point. * numbers are from [ 3] since
we use exactly the same fine-tuning setting.
(a) Mask R-CNN, R50-C4, 1x schedule
pre-train AP AP APS® APk APIX AP
random init* 26.4 44.0 27.8 29.3 46.9 30.8
supervised* 38.2 58.2 41.2 333 54.7 35.2
MoCo* 38.5(10.3)  58.3(10.1) 41.6(10.4) | 33.6(10.1) 54.8(10.1) 35.6(10.1)
InfoMin Aug. | 39.0(70.8) 58.5(10.3) 42.0(10.8) | 34.1(10.8) 55.2(10.5) 36.3(11.1)
(b) Mask R-CNN, R50-C4, 2x schedule
pre-train AP AP2 APS? APk APZX AP
random init* 35.6 54.6 38.2 314 51.5 335
supervised* 40.0 59.9 43.1 34.7 56.5 36.9
MoCo* 40.7(70.7)  60.5(10.6) 44.1(71.0) | 35.6(/0.7) 57.4(/0.8) 38.1(10.7)
InfoMin Aug. | 41.3(11.3) 61.2(71.3) 45.0(11.9) | 36.0(11.3) 57.9(11.4) 383(11.4)

D.2 ResNet-50 with Mask R-CNN, FPN architecture

The results of Mask R-CNN with R-50 FPN backbone are shown in Table 6. We compared with
MoCo [13] and MoCo v2 [4] under 2x schedule, and also experimented with 6x schedule.

Table 6: COCO object detection and instance segmentation. R50-FPN. In the brackets are the gaps to the
ImageNet supervised pre-training counterpart. In green are gaps of > 0.5 point.

(a) Mask R-CNN, R50-FPN, 2x schedule

pre-train AP AP AP AP™k APZE APZX
random init 38.4 57.5 42.0 347 54.8 37.2
supervised 41.6 61.7 45.3 37.6 58.7 40.4
MoCo [13] | 41.7(10.1) 61.4(40.3) 45.7(10.4) | 37.5(0.1) 58.6(]0.1) 40.5(10.1)
MoCo v2 [4] | 41.7(10.1) 61.6(]0.1) 45.6(10.3) | 37.6(J0.0) 58.7(10.0) 40.5(10.1)
InfoMin Aug. | 42.5(10.9) 62.7(11.0) 46.8(71.5) | 38.4(10.8) 59.7(11.0) 41.4(11.0)

(b) Mask R-CNN, R50-FPN, 6x schedule

pre-train AP AP APY? APk APZK APZE
random init 42.7 62.6 46.7 38.6 59.9 41.6
supervised 42.6 62.4 46.5 38.5 59.9 41.5
InfoMin Aug. | 43.6(71.0) 63.6(11.2) 47.3(70.8) | 39.2(10.7) 60.6(10.7) 42.3(10.8)




D.3 ResNet-101 with Mask R-CNN, C4 architecture

The results of Mask R-CNN with R-101 C4 backbone are shown in Table 7. We experimented with
1x and 1x schedule.

Table 7: COCO object detection and instance segmentation. R101-C4. In the brackets are the gaps to the

ImageNet supervised pre-training counterpart.
(a) Mask R-CNN, R101-C4, 1x schedule

pre-train AP AP APY? AP™K APZK APZX
supervised 40.9 60.6 442 35.1 56.8 373
InfoMin Aug. | 42.5(11.6) 62.1(71.5) 46.1(71.9) | 36.7(11.6) 58.7(11.9) 39.2(11.9)

(b) Mask R-CNN, R101-C4, 2x schedule

pre-train AP AP APS? AP™E APZK APZK
supervised 42.5 62.3 46.1 36.4 58.7 38.7
InfoMin Aug. | 43.9(11.4) 63.5(11.2) 47.5(71.4) | 37.8(11.4) 60.4(11.7) 40.2(11.5)

D.4 ResNet-101 with Mask R-CNN, FPN architecture

The results of Mask R-CNN with R-101 FPN backbone are shown in Table 8. We experimented with
1x, 2x, and 6x schedule.

Table 8: COCO object detection and instance segmentation. R101-FPN. In the brackets are the gaps to the

ImageNet supervised pre-training counterpart.
(a) Mask R-CNN, R101-FPN, 1x schedule

pre-train |  AP™ APRP APY® | ApP™ APIK AP
supervised 42.0 62.3 46.0 37.6 59.1 40.1
InfoMin Aug. | 42.9(10.9) 62.6(10.3) 47.2(71.2) | 38.6(11.0) 59.7(10.6) 41.6(11.5)

(b) Mask R-CNN, R101-FPN, 2x schedule

pre-train APPP APR® APH? AP™K APZX AP
supervised 433 63.3 47.1 38.8 60.1 42.1

InfoMin Aug. | 44.5(11.2) 64.4(71.1) 48.8(TL.7) | 39.9(T1.1) 61.5(11.4) 42.9(10.8)

(c) Mask R-CNN, R101-FPN, 6x schedule

pre-train AP AP APY? APk APZK APZX
supervised 44.1 63.7 48.0 39.5 61.0 424

InfoMin Aug. | 45.3(71.2) 65.0(71.3) 49.3(71.3) | 40.5(11.0) 62.5(11.5) 43.7(11.3)

D.5 ResNet-101 with Cascade Mask R-CNN, FPN architecture

The results of Cascade [2] Mask R-CNN with R-101 FPN backbone are shown in Table 9. We
experimented with 1x, 2x, and 6x schedule.

D.6 ResNeXt-101 with Mask R-CNN, FPN architecture

The results of Mask R-CNN with X-101 FPN backbone are shown in Table 10. We experimented
with 1x and 2x schedule.
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Table 9: COCO object detection and instance segmentation. Cascade R101-FPN. In the brackets are the gaps
to the ImageNet supervised pre-training counterpart.
(a) Cascade Mask R-CNN, R101-FPN, 1x schedule

pre-train AP AP APY? APk APZK APZK
supervised 44.9 62.3 48.8 38.8 59.9 42.0
InfoMin Aug. | 45.8(10.9) 63.1(10.8) 49.5(10.7) | 39.6(10.8) 60.4(70.5) 42.9(10.9)

(b) Cascade Mask R-CNN, R101-FPN, 2x schedule

pre-train AP AP APL? APk APIX APZK
supervised 45.9 63.4 49.7 39.8 60.9 43.0
InfoMin Aug. | 47.3(11.4) 64.6(71.2) 51.5(11.8) | 40.9(T1.1) 62.1(11.2) 44.6(11.6)

(c) Cascade Mask R-CNN, R101-FPN, 6x schedule

pre-train \ AP AP APS? \ APk APIX AP
supervised 46.6 64.0 50.6 40.5 61.9 441
InfoMin Aug. | 48.2(11.6) 65.8(71.8) 52.7(12.1) | 41.8(11.3) 63.5(11.6) 45.6(11.5)

Table 10: COCO object detection and instance segmentation. X101-FPN. In the brackets are the gaps to the

ImageNet supervised pre-training counterpart.
(a) Mask R-CNN, X101-FPN, 1x schedule

pre-train |  AP™ AP2 AP | AP™ APZX APIK
supervised 44.1 64.8 48.3 39.3 61.5 423
InfoMin Aug. | 45.0(10.9) 65.3(10.5) 49.5(11.2) | 40.1(10.8) 62.3(10.8) 43.1(10.8)

(b) Mask R-CNN, X101-FPN, 2x schedule

pre-train |  AP™ AP2 AP | AP™ APZX APIK
supervised 44.6 64.4 49.0 39.8 61.6 43.0
InfoMin Aug. | 45.4(10.8) 65.3(10.9) 49.6(10.6) | 40.5(10.7) 62.5(10.9) 43.8(10.8)

D.7 ResNeXt-152 with Mask R-CNN, FPN architecture

The results of Mask R-CNN with X-152 FPN backbone are shown in Table 11. We experimented with
1x schedule.. Note in this case, while InfoMin model is pre-trained on the standard ImageNet-1K
dataset, supervised model is pre-trained on ImageNet-5K, which is 6x times larger than ImageNet-1K.
That said, we found InfoMin still outperforms the supervised pre-training.

Table 11: COCO object detection and instance segmentation. X152-FPN. In the brackets are the gaps to the
ImageNet supervised pre-training counterpart. Supervised model is pre-trained on ImageNet-5K, while InfoMin

model is only pre-trained on ImageNet-1K.
(a) Mask R-CNN, X152-FPN, 1x schedule

pre-train |  AP™ AP APY® | AP™ APZE APIE
supervised 45.6 65.7 50.1 40.6 63.0 43.5
InfoMin Aug. | 46.4(10.8) 66.5(0.8) 50.8(0.7) | 41.3(:0.7) 63.6(10.6) 44.4(10.9)
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