
We thank all reviewers for their comments, which overall were positive on novelty, our empirical sample quality results1

and ablations, and our connection between diffusion models and denoising score matching (DSM) with Langevin2

dynamics. Reviewers generally asked for more discussion on the relationship to other models (e.g. NCSN and GANs).3

R1: Slow sampling speed: this is indeed a disadvantage of diffusion models, just like autoregressive models and score4

matching/energy based models with MCMC samplers. We’ll discuss this, and we’d like to improve this in future work.5

R2: Explanation of empirical advantages over NCSNv1 [2], v2 [3]: (Note that NCSNv2 [3] appeared on arXiv after6

the NeurIPS deadline.) Apart from differences R2 mentioned, our architecture, forward process definition and prior7

are subtle but important choices that improve sample quality, and most importantly, we directly train the sampler8

as a latent variable model rather than adding it post-hoc. Details: (1) We use a U-Net with self-attention; NCSN9

uses a RefineNet with dilated convolutions. We condition all layers on t by adding in the Transformer sinusoidal10

position embedding, rather than only in normalization layers (NCSNv1) or only at the output (v2). (2) Diffusion11

models scale down the data with each forward process step (the
√
1− βt factor in Eq 2) so that variance does not12

grow when adding noise, thus providing consistently scaled inputs to the neural net reverse process. NCSN omits this13

scaling factor. (3) Unlike NCSN, our forward process destroys signal (DKL(q(xT |x0) ‖ N (0, I)) ≈ 0), ensuring a14

close match between the prior and aggregate posterior of xT . Also unlike NCSN, our βt are very small, which ensures15

that the forward process is reversible by a Markov chain with conditional Gaussians. Both of these factors prevent16

distribution shift when sampling. (4) Our Langevin-like sampler (Eq 11, L87) has coefficients derived rigorously17

from βt in the forward process. Thus, our training procedure directly trains our sampler to match the data distribution18

after T steps: it trains the sampler as a latent variable model using variational inference (see L90-93). In contrast,19

NCSN’s sampler coefficients are set by hand post-hoc, and their training procedure is not guaranteed to directly20

optimize a quality metric of their sampler. Explanation of loss weighting: the NCSN loss (Eq 5-6 of [2]), combined21

with their choice λ(σi) = σ2
i , simplifies to 1

L

∑L
i=1 ExEε∼N (0,I)

[
1
2
‖σisθ(x+ σiε, σi) + ε‖2

]
. These MSE terms are22

equally weighted, analogous to our “unweighted” Eq 14. NCSNv2 defines sθ(·, σi) = sθ(·)/σi, so their loss becomes23
1
L

∑L
i=1 ExEε∼N (0,I)

[
1
2
‖sθ(x+ σiε) + ε‖2

]
, which is similar to ours. Experimental details: see Appendix B. Like24

GAN literature, we picked the best checkpoints according to FID (50k samples on CIFAR10, 2048 on LSUN/CelebA-25

HQ). We used 35.7M parameters on CIFAR10, and NCSN used 29.7M. NCSNv2 used 80M-95M parameters for LSUN26

(1282) and FFHQ (2562); we used 114M for LSUN (2562) and CelebA-HQ (2562). On TPU v3-8 (similar to 8 V10027

GPUs), our CIFAR model trains at 21 steps/sec at batch size 128 (10.6 hours to train to completion at 800k steps), and28

sampling a batch of 256 images takes 17 sec; our CelebA-HQ/LSUN (2562) models train at 2.2 steps/sec at batch size29

64, and sampling a batch of 128 images takes 300 sec. Sampling time vs. data dimension: sampling time (Alg. 2)30

depends on T and the neural net, which are fixed before training (like how they are fixed before training a hierarchical31

VAE). We’d like to investigate how existing MCMC theory on this topic applies to our models.32

R3: Performance at high resolution: since submission, we trained a larger 256M parameter model for 2562 LSUN33

Bedroom (vs 114M in the submission), improving FID from 6.36 to 4.90. We expect more improvements are34

possible for high resolutions via model scaling. GANs: GANs have fast generation, whereas we used T = 100035

steps. Downsides of GANs are training instability, difficulty in capturing the whole data distribution, and difficulty36

in evaluating overfitting. In contrast, our model is trained on a simple, stable non-adversarial MSE loss. Like other37

likelihood-based models (autoregressive, VAE, flows), our model captures all modes and we can easily check overfitting38

by computing test set log likelihood. Qualitative comparison w/ the original diffusion model: the baseline (first two39

rows in Table 2) is our reimplementation of the original model with a modern neural net; we’ll add a qualitative figure.40

R4: Comparisons to models with similar hierarchical structures: the closest is NVAE [4] (appeared on arXiv after41

the NeurIPS deadline). NVAE achieves better log likelihoods and has faster generation, but we attain better sample42

quality (IS/FID) and provide rate-distortion curves. DSM on other models: this is not straightforward because our43

equivalence between DSM and the diffusion objective (Eq 8-12) relies on the Gaussian forward process (Eq 4, 6, 7),44

which is unique to the diffusion model. However, loss reweighting (Eq 14) could be useful for other models, as shown45

in prior work (e.g. beta-VAE, ConvDRAW). “Is the diffusion setup key to the improvement?” We believe so: see46

the discussion above with R2. “Why is the variational bound a lossless codelength of discrete data?” Due to the47

bits-back argument [1]. We will add details. Connection to IAF: we are not aware of a direct connection. Since IAF is48

a flow, it preserves information between data and latents, but diffusion models destroy information between x0 and49

xT (as we stated in L213-215). Reweighting and sample quality: reweighting variational bounds has been shown to50

impact sample quality in prior work (e.g. beta-VAE, ConvDRAW). In our case, terms for small t ask the network to51

denoise data with very small amounts of noise; since such data is already clean, we down-weight these terms so that the52

network can focus on more difficult denoising tasks at larger t terms. We’ll add this intuition to the paper.53

[1] Keeping Neural Networks Simple by Minimizing the Description Length of the Weights (1993) [2] Generative Modeling by54

Estimating Gradients of the Data Distribution (2019) [3] Improved Techniques for Training Score-Based Generative Models (2020)55

[4] NVAE: A Deep Hierarchical Variational Autoencoder (2020)56


