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Figure 1: The convergence in timing (seconds) on GCNs.
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Figure 2: The convergence in timing (seconds) on attentive GNNs.

A.1 Convergences

We show the convergences on validation in terms of timing (seconds) in Figure [T| and Figure [2]
Basically, our algorithms converge to much better results in nearly same duration compared with
other “layer sampling” approaches.

Note that we cannot complete the training of AS-GAT on Reddit because of memory issues.

A.2 Discussions on Timings between Layer Sampling and Graph Sampling Paradigms

Note that the comparisons of timing between “graph sampling” and “layer sampling” paradigms have
been studied recently in [[1, 3]. As a result, we do not compare the timing with “graph sampling”
approaches. Under certain conditions, the graph sampling approaches should be faster than layer
sampling approaches. That is, graph sampling approaches are designed for graph data that all vertices
have labels. Under such condition, the floating point operations analyzed in [1] are maximally utilized
compared with the “layer sampling” paradigm. However, in practice, there are large amount of
graph data with labels only on some types of vertices, such as the graphs in [2]]. “Graph sampling”
approaches are not applicable to cases where only partial vertices have labels. To summarize,
the “layer sampling” approaches are more flexible and general compared with “graph sampling”
approaches in many cases.

B Algorithms

Algorithm 2 EXP3(q!, w!, rt, St).

Require: 7 = 0.4, sample size k, neighbor size n = [N;|, § = /(1 — n)n*k5 In(n/k)/(Tn?).
1: Set

Fij(t) = 75 (t)/qi; (t) if j € S! else 0
wij(t+ 1) = w;;(t) exp(§75(t)/n)

2: Setq;(t+1)«+ (1 fn)% + 1, forjeN;




Algorithm 3 DepRound(k, (¢1, g2, ---, K ))

1: Input: Sample size k(k < K'), sample distribution (q1, ¢, ..., ¢x ) With Zfil g =k
2: Output: Subset of [K] with k elements

3: while there is an ¢ with 0 < ¢; < 1 do

4: Choose distinct 4 and j with0 < ¢; < land 0 < ¢g; <1

5: Set § = min{1 — ¢;,¢;} and v = min{g¢;, 1 — ¢;}

6 Update g; and ¢; as

( - (¢; + B,q; — B) with probability 57—
4i,95) = (q; — 7, qj + ) with probability B%

7: end while
8: return {i:¢q; = 1,1 <i< K}

Algorithm 4 EXP3.M(¢!, wt, rt, S)

Require: 7 = 0.4, sample size k, neighbor size n = |N;|, 6 = /(1 — n)n*k5 In(n/k)/(Tn?),
Ul =0.
1: For j € N set

Fis(t) = rij(t)/qi;(t) if j € S}
" 0 otherwise
it 4 1) = {50 X (0)/m) i) ¢ UL
“ w;;(t) otherwise
2: if max;eN; ’lUlJ(t + 1) > (% — %) EjGNi wij(t + 1)/(1 — ’17) then
3: Decide a; so as to satisfy

ag 1
=(z—2)/(L=n)
Zwij(t+1)2at at+ Zwij(t+1)<at wlj(t + 1) k n

4 SetUM ={j:wi(t+1)>a}

5: else

6 SetU!™ =0

7: end if 1
8: Setwij(t—&-l)—{at iU

9: Setgq;;i(t+1) :k((l—n)%+%) forj e NV;




C Proofs

Proposition 1. fi; =3, . Z’J“ hj, is the unbiased estimator of ji; = 3 ;c v, uijhj given that S;
is sampled from q; using the DepRound sampler QQ;, where S; is the selected k-subset neighbors of
vertex i.

Proof. Let us denote ); s, as the probability of vertex v; choosing any k-element subset S; C N;
from the K-element set N; using DepRound sampler @);. This sampler follows the alternative
sampling distribution ¢; = (s, , --., ¢ij ) Where g;;, denotes the alternative probability of sampling
neighbor v;,. This sampler is guaranteed to satisfy ) S,jeS: Qi,s;, = ij, i.e. the sum over the
probabilities of all subsets .S; that contains element j equals the probability g;;.

~ al -S
e =5 | ¥ S, .
Js€S; QZ_]S
QXijs
— Z Qi,Si Z fhjs (2)
S7CN7, jsgsi qz]s
Oéij
JEN; S;:j€S; 4ij

=3 hy Y Qs @

jen, B gles,

Qg
=D —“hjgi 5)
JEN; i
= Z aiih; (6)
JEN;
O

Proposition 2. The effective variance can be approximated by Ve (Q;) < >, c . % 2,
s i Qijg

Js

Proof. The variance is

2
o
V(Q) =E || > —Lhy, = Y ayhy
Js€Si dijs JEN;
2 2
s
= D Qisi|[ D Ehi| — | D euhy
5;CN; joes; dis JEN;

Therefore the effective variance has following upper bound:
2

Ve(Qi) = Y Qis. | > %hjs

S;:CN; Js€S; qus

> Qis, Y o,

SiCN; Jjs€S;i

> > Qisai,

Js€NG Sijs€S;

Qs
= Z ;] hjsH2 Z Qi,s;

2
(Jensen's Inequality)

h

IN

1]s

h-S

J
dijs

2

GsENG s Sitjs€S:
QXij 2
= > ||
js eNi R



O

Proposition 3. The negative derivative of the approximated effective variance 3 _; . 2‘”] 2
. . . _ Qijg 2
w.rt Q;s;, i.e. the reward of v; choosing S; att, is i s,(t) = >, cs, W‘lh] @)=
Proof. Define the upper bound as V. (Q;) = 3 JEN, Z??S h;.||?, then its derivative is
s i Qijg ¢
3 Qijs 2
in,siVe(Qi) = VQi,Si Z B hj,
jeen &
_ aijs h 2
=Va.s, Y, —=—2——1|h,
JoEN; ng:jsesg Qi,s;
s
=V, Y =5l
Per) ZS(<_ja.eS( Qi,s:
o,
=— Z | |hj, |7 (chainrule)
Js€S;s Us
O

Before we give the proof of Theorem|[T] we first prove the following Lemma [T] that will be used later.

Lemma 1. For any real value constant < 1 and any valid distributions Q% and Q} we have
(1= 2n)Ve(Qi) — (1 = n)Ve(QF) < (Qf — QF, Vo Ve(Q7)) + m(Q;, Vo Ve(Q7)) (D

Proof. The function V(Q) is convex with respect to @, hence for any Q° and Q7 we have

Ve(Qi) = Ve(Q)) <(Qi — QF, Vi Ve Q7)) (®)

Multiplying both sides of this inequality by 1 — 7, we have
(1 =m)Ve(Qf) — (1L —n)Ve(QF) 9
<{QF — Q7 Vi Ve Q) — (@i — Q7 Vo Ve(Q7))- (10

In the following, we prove this Lemma in our two bandit settings: adversary MAB setting and
adversary MAB with multiple plays setting.

In adversary MAB setting, we have

<Q§7VQ3VZ(Q§)> = - Z QZJ )2 ”h ( )”2 (11)
JEN; ij
= —Ve(Qd) (12)

In adversary MAB with multiple plays setting, we use the approximated effective variance

D ieN: Z] h;_||? derived in Proposition [2| For notational simplicity, we denote the approxi-
s i Qijg

mated effective variance as V. in the following. We have

QG B
QL VaVEQ)) == > Qs D ~s s (13)
S;CN; Je€S; Qg (
Q5 B
=—Z{JIIJS > Qs (14)
jsEM, QUS Si: ]eES
Q4 B
== > 7J|| j (15)
JaEN ql]s( )
= -V(Q). (16)

The equation (I3) holds because of Proposition 3]



At last, we conclude the proof

(1=n)VL(Q]) — (1 —n)Ve(Q7) (17)
<{Q — QF, Vg V(@) — (@ — QF, Vu Ve (@) (18)
=(QF — QF, Vu Ve (Q0)) +1(Q7, Vo VI(Q7)) + Ve (QF) (19)

O

Theorem 1. Using Algorithmwith n=0.4and s = /(1 —n)n*k5In(n/k)/(Tn*) to minimize
effective variance with respect to {Q'}1<¢<7, we have

Tn*In(n/k)

T T
SVH@) 3D VHQ;) + 10—

t=1 t=1

where T > In(n/k)n?(1 —n)/(kn?) and n = |Nj].

(20)

Proof. Without loss of generality, we prove the result by following the adversary MAB setting with
DepRound and EXP3.M. First we explain why condition 7' > In(n/k)n?(1 — n)/(kn?) ensures that
07;(t) <1,

57 (2 :\/(1—n)n4k5ln(n/k}) Co(t) .

Fij (t) T 20 Il ()] 1)
(1 —n)n*kdIn(n/k) n?

: \/ Tt g 22

<1 (23)

Assuming ||h;(t)|| < 1, inequality (22) holds because «;;(t) < 1 and ¢;;(t) > kn/n. Then replace
T by the condition, we get 7;,(t) < 1.

Let W;(t), W] (t) denote 3 c v, wij(t), 3 p, wi;(t) respectively. Then forany ¢ = 1,2,..., T,

Wilt+1) _ wig(t+1) wig(t+1)
Wi je/\Ef;\U? Wit) + gl;‘ Wil t) -
wi; (t) wij (t)
- Wi POn+ D /| (1) @
JEN;\U? JeUt
< wi; (1) [1+ 0745 (t) + (5,;.(,5))2} + Z wij (t) (26)
< 2 W O 2 Wih)
JEN;\U} jeu
Wi (t) wig(t) rs. b (1)2
=1+ 075 (t) + (074 ( 27
Wio) | 2o Wi O] 0
Wi (t) i (t)/k = n/n 5. i (1))
=1 = [0745(t) + (0745(t 28
+Wi(t)j6/%w 1-n [0735(2) + (5, (0))'] )
o . 5? .2
<1+ Wi i ()75 () + Kl-1n) > @) 9)
JEN\UY JENINUY

Inequality (26) uses e* < 1 + a + a? for a < 1. Equality (28) holds because of update equation of
¢ (t) defined in EXP3.M. Inequality (29) holds because Vm[i Eg < 1. Sincel+z <e”forxz > 0, we
have

Wi(t+1) 5 .
Wi < R 2 WO

In

> a5 (30)

JEN\UE



If we sum, for 1 <t < T, we get the following telescopic sum

W T + 1) Wit +1)
g Zl Wi(t) @1
T 52 T
<z )75 (t) + R > ai; ()P (8) (32
t=1 jeN;\U? gt FEN;\U?
T 52 T
<z = D> au i) (33)
t=1 jeN;\U} n t=1jeN;
On the other hand, for any subset .S containing k elements,
Wi(T +1) Yjeswii(T+1)
1 >1 J 4
w2 Wi(1) (34)
> deslnwij(T+1) T (35)
k
> = Z Z Fij (t 1n7 (36)

JGStjguf

The inequality (33)) uses the fact that

Y wii (T +1) = k([ [ wi (T + 1)
JES JES

The equation (36) uses the fact that

wi;(T+1) =exp(d Y 74;(t))
t:j U}

From (33) and (B6)), we get
6 R n a
% Z Z Fiz (L) — E Z Qij r” ) 37)

JES t:j¢U}t t=1 jeN;\U! t=1jeN;\U}

~
l\.’)

And we have the following inequality

%Z D> orilt) = %Z > a(t)ri(t) (38)

jESt:jEUZ.t .7‘€St:jEU,lff
E § QZ] Tz] (39)
t=1jeu}

The equality (38) holds beacuse 7;;(t) = g;;7;(t) when j € S} and U} C S} bacause ¢;; = 1 for
all j € U?.
Then add inequality (39) in (37) we have

I IRIUET S DD BENCE: @0

JES t:jeut JGSta¢Uf

5 R 52
< E T STNT qit)rt) + ") SN a0t @1

Given ¢;;(t) we have E[#3; ()] = r;(t)/qi;(t), hence, taking expectation of [@0) yields that

% S ) - < k(l‘i 52 Z. g5 ()ris () + k(% > Z_ i @)

t=1jeS




By multiplying @#2) by Q; 5 and summing over S, we get

PR 82 &
Qis > ri no< qi; ()i (£) + P2 (43)
(T Qe X Sy U w0+ g 3 5
As
Z qi; (U)ri; (L Z Z st rij(t (44)
JEN; JEN; S;:j€S;
= > Qis, Y riu(t) (45)
S; CN; JES;
- D Qis Vo, Ve(@is) (46)
S; CN;
—(Q1 Vg Ve(QD)) @7)

By plugging in (@3) and rearranging it, we find

T T
D Q= Q1 Vg Ve(QD) + 1y (QF, Vi Ve(QY)) (48)
t=1 t=1
< 62 > it In(n/k)
t=1jeN;

Using Lemmal(I] we have
T T (1_ )k}
(1—2n) Y VL@ — th Q<6 Z S+ S In/k) @9)
t=1 t=1jeN;

Finally, we know that

> aij ()
2.(t) = 50
207 o “
4

< Z aij(t)];f—n4 (because q;;(t) > kn/n) (51)

JEN;

4
= 4 (52)

By setting 7 = 0.4 and § = /(1 — n)n*k5 In(n/k)/(Tn*), we get the upper bound.
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