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Abstract

Determinantal point processes (DPPs) are a useful probabilistic model for selecting
a small diverse subset out of a large collection of items, with applications in
summarization, stochastic optimization, active learning and more. Given a kernel
function and a subset size k, our goal is to sample k out of n items with probability
proportional to the determinant of the kernel matrix induced by the subset (a.k.a. k-
DPP). Existing k-DPP sampling algorithms require an expensive preprocessing
step which involves multiple passes over all n items, making it infeasible for large
datasets. A naive heuristic addressing this problem is to uniformly subsample a
fraction of the data and perform k-DPP sampling only on those items, however
this method offers no guarantee that the produced sample will even approximately
resemble the target distribution over the original dataset. In this paper, we develop
a-DPP, an algorithm which adaptively builds a sufficiently large uniform sample of
data that is then used to efficiently generate a smaller set of k items, while ensuring
that this set is drawn exactly from the target distribution defined on all n items.
We show empirically that our algorithm produces a k-DPP sample after observing
only a small fraction of all elements, leading to several orders of magnitude faster
performance compared to the state-of-the-art. Our implementation of a-DPP is
provided at https://github.com/guilgautier/DPPy/.

1 Introduction

Selecting k diverse items out of a larger collection of n items is a classical problem in computer science
which naturally emerges in many tasks such as summarization (select k phrases) and recommendation
(select k articles/ads to show to the user). An increasingly popular approach to model and quantify
diversity in this subset selection problem is that of determinantal point processes (DPPs). Given a set

[n] El {1,...,n} of n items and a target size k, one can define a DPP of size k (known as a k-DPP)
through an n x n posivite semi-definite (PSD) similarity matrix L (also known as the kernel matrix).
The matrix L encodes the similarities between items, and the user must choose it so that [L];; is
larger the more the i-th and j-th items are similar. Given k and L, we define S ~ k-DPP(L) as a
distribution over all (}}) index subsets S C [n] of size k, such that Pr(S) o det(Lg) is proportional to
the determinant of the sub-matrix Lg induced by the subset. DPPs have found numerous applications
in machine learning, not only for summarization [32, 23, 21, 7] and recommendation [19, 8], but also
in experimental design [17, 34], stochastic optimization [39, 35, 15], Gaussian Process optimization
[26], low-rank approximation [18, 24, 16], and more (recent surveys include [29, 4, 11]). Note that
early work on DPPs focused on a random-size variant, which we denote S ~ DPP(L), where the
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subset size is allowed to take any value between 0 and n, and the role of parameter k is replaced by
def

the expected size E[|S|] = de(L) = tr (L(L + I)~!). The quantity deg(L) is known in randomized
linear algebra [2, 11] and learning theory [6] as the effective dimension. While random-size DPPs
exhibit deep connections to many scientific domains [25], the fixed-size k-DPPs are typically more
practical from a machine learning stand-point [28].

Sampling from a k-DPP. The first k-DPP samplers scaled poorly, as they all relied on an eigende-
composition [28] of L taking O(n?) time. Replacing the eigendecomposition with a Cholesky factor-
ization can increase numerical stability [30], and empirical performance [36] thanks to dynamically-
scheduled, shared-memory parallelizations, but still ultimately require O(n?) time. A number of
methods have been proposed which use approximate eigendecomposition [31, 1] to reduce the com-
putational cost, however these approaches provide limited guarantees on the accuracy of sampling.

To improve scalability, several approaches based on Monte-Carlo sampling were introduced, using
rejection or Gibbs sampling. The fastest MCMC sampler for k-DPPs, to the best of our knowledge,
is by [3] and has n - poly(k) complexity, i.e., asymptotically much faster than the cost of eigende-
composition. However these MCMC methods do not sample exactly from the k-DPP distribution,
and can only guarantee that the final sample will be close in distribution to a k-DPP. Moreover these
guarantees only hold after mixing, which is difficult to verify and requires at least O(nk?) time,
making MCMC methods not applicable when n is large. )

) ) ) | Complexity
A recent line of works [13, 10], using the ideas from [28, 30, 36, 24] | n3
[12, 14], developed sampling algorithms specially de- 5
signed for a random-size DPP (as opposed to a k- DPP-VEX [13] | n- k% + k!
DPP), which avoid expensive decomposition of the ~ «a-DPP (this paper) | (6n - k® + k)Vk
kernel while sampling exactly from S ~ DPP(L).
In particular, they showed that it is sufficient to first
choose an intermediate subset o C [n] sampled
i.i.d. from the marginal distribution of the DPP, i.e.,
P(i € o) = P(i € S), and then sample from a DPP restricted to the items indexed by o. Since the
size of o is typically much less than n, this leads to a more efficient algorithm. Note that rescaling
DPP(L) into DPP(aL) using some constant « only changes the expected size of S from deg(L) to
der(aL). By accurately choosing an appropriate «,, one can boost the probability that the random
size of S is exactly k, and convert a DPP sampler into a k-DPP sampler by repeatedly sampling
S ~ DPP(a,L) until S has size k. Based on this reduction, Derezifiski et al. [13] gave the first algo-
rithm (DPP-VFX) which is capable of exact sampling from a k-DPP in time n - poly (k). However,
when sampling from k-DPPs, the approach of [13] has two major limitations:

Table 1: Runtime comparison of exact k-DPP
sampling algorithms. Here, 5 < 1 is the fraction
of items observed by a-DPP (see Theorem 1).

1. DPP-VFX has an 2(n) runtime bottleneck, since it requires computing all n marginals, one for
each item, in order to define the i.i.d. distribution of o, which may be infeasible for very large n.

2. The reduction used by [13] to convert a DPP sampler into a k-DPP sampler increases the time
complexity by a factor of at least k%, resulting in a O(n - k' + k') runtime.

In this paper, we address both of these limitations by introducing a new algorithm called a-DPP,
which 1) does not need to compute all of the marginals, and 2) uses a new efficient reduction to
convert from a random-size DPP to a fixed-size k-DPP (see Table | for comparison).

Main contribution: uniform intermediate sampling for k-DPPs. To resolve the 2(n) runtime
bottleneck, we use an additional intermediate sample p based on uniform sub-sampling. Since
uniform sampling can be implemented without looking at the actual items in the collection, this
means that we do not even have to look at any item outside of p. The only necessary assumption
required by our approach is that the maximum entry (i.e., similarity) of L is bounded by a constant
k2. However, to simplify exposition we also assume w.1.0.g. that degr(L) > k (see Section 3).

In particular, we 1) sample p uniformly out of [n], then 2) only approximate the marginal probabilities
of items in p to compute o, and finally 3) downsample ¢ into a DPP sample S. To guarantee that S is
distributed exactly according to the DPP it is crucial that p is diverse enough. We show that sampling
a k? /der (L) fraction of [n] into p (i.e., |p| =~ k?/deg(L) - n) is enough. Since all the expensive
computation is performed only on p, this gives us a degr(L)/k? speedup over existing methods.



Theorem 1. Given any L = 0 with max;; L;; < Kland1 < k < desr(L), there exists an algorithm
that returns S ~ k-DPP (L), and with probability 1 — § runs in time

O((Bn - kS + k°)Vklog(1/9)),
where 3 < min {k?k?/deit(L), 1} is the fraction of items observed by the algorithm.

In the derivation of Theorem | we make several novel contributions. First, we provide a DPP
sampler that given L and a rescaling < 1 leverages a mixture of uniform and rejection sampling to
sample from DPP (aL) observing only an ax2k fraction of the items. We then show that the optimal
rescaling v, required by the reduction from k-DPP to DPP can be bounded with o, < O(k/deg(L)),
and thus our rescaling-aware sampler can sample from k-DPPs looking only at a k2 /de(L) fraction
of the items. Finally, we provide an efficient search algorithm to find a close approximation & of .

Model misspecification and computational free lunch. Our result can be also interpreted from
a perspective of model misspecification. Note that every time the users define a k-DPP they also
implicitly define a random size DPP(L). Moreover, the natural expected sample size (i.e., implicit
number of unique items in [n]) of DPP(L) is deg(L), which does not depend on the desired size k.
Therefore, if L is not chosen appropriately dg(L) might be much larger than k, and the k-DPP is
selecting & unique items out of a much larger implicit pool of deg(L) > k unique items. In this case,
it is possible to consider only a small k2 /de(L) fraction of the items selected uniformly at random
and still have enough unique items to sample a diverse k-subset. Our result shows for the first time
that it is possible to take advantage of this modeling disagreement between & and deg(L) to gain
computational savings while still sampling exactly from the DPP, i.e., a computational free lunch.

Binary search reduction from k-DPP to DPP. Both our approach and the one of Dereziniski et al.
[13] rely on first implementing an efficient random-size DPP sampler, followed by the usage of a
black-box construction based on rejection sampling to transform the DPP sampler into a k-DPP
sampler. However the reduction of Derezinski et al. [13] requires access to a high-precision estimate
of degr(aL) in order to appropriately tune «. This makes optimizing « the bottleneck in the reduction
from k-DPP to DPP, and therefore there is a large computational gap between the two problems. We
close this gap thanks to a novel approach to find a suitable rescaling o based not on optimization but
rather on binary search. Crucially, to find a suitable « this approach does not require an estimate of

der (L), but only O(v/k log(n)) black-box calls to a DPP sampler. Therefore, it can transform any

random size DPP sampler into a k-DPP sampler with only a v/k overhead, and could be applied to
any future improved sampler beyond this paper.

2 Sampling from a rescaled DPP with intermediate uniform subsampling

In this section we focus on a specific class of DPPs, S ~ DPP(aL), specified using a rescaling
a < 1 and a similarity matrix L, which we refer to as rescaled DPPs. The main result of the section is
showing that a sufficiently large subset selected uniformly at random can be used as an intermediate
sample to sample from a rescaled DPP without looking at all of the items. The main reason to focus
on rescaled DPPs is because they naturally appear when reducing k-DPP sampling to DPP sampling,
where rescaling is used to align the random size of the DPP and k. This is going to be the focus of
the next section. However the approach proposed in this section is not limited to rescaled DPPs, but
under the right assumptions can be extended to accelerate sampling from generic DPPs. We will
discuss these extensions at the end of the section.

Notation We use [n] to denote the set {1,...,n}. For a matrix B € R™*" and index sets C, D,
we use B¢ p to denote the submatrix of B consisting of the intersection of rows indexed by C' with
columns indexed by D. If C' = D, we use a shorthand B¢ and if D = [m], we may write B¢, [,
Finally, we also allow C, D to be multisets or sequences, in which case each row/column is duplicated
in the matrix according to its multiplicity (and in the case of sequences, we order the rows/columns as
they appear in the sequence). Note that with this notation if L = BB then L¢ p = Bc_’[n]BB[n].

2.1 Background: distortion-free intermediate sampling.
Rather than sampling directly from the target DPP, intermediate sampling [10, 12] first selects an

intermediate subset o from [n], and then refines it by extracting S from o. Crucially, if o is selected
according to a so-called Regularized DPP (R-DPP), this is equivalent to sampling .S from a DPP.



Definition 1. For any psd matrix L € R™*", distribution p 4 {p:}_, and r > 0, define L € Rnxn
with ii,j 4 T;}%. We define an R-DPP}, (L) as distribution over events A C | J;—,[n]* such that
iid

Pr(A) YR, [1[5c.4; det(I+ ig)]/det(l +L), for o= (o1,...,0¢) ~ p, t~ Poisson(r).

Proposition 1 (10, Theorem 8). For any L, p, r, and L defined as in Definition 1,

if o~R-DPP,(L) and S~ DPP(L,) then {o;:i€S}~ DPP(L).

A computationally inefficient but conceptually simple approach to rejection sample o is the following:
def

1) compute all marginals P(i € S) = ¢;(L) = [L(I+ L)~ !]; and sum to ", £;(L) = dege(L) [2];

i=1
2) sample ¢ ~ Poisson(c) and o ~ Multinomial (t, %, e ﬁff((li))) for an appropriate constant c;

det(I+L,)

3) accept o w.p. Cdet(T4L)” where C is an appropriate constant used to make the rejection step valid.

All existing intermediate sampling algorithms [10, 13, 12, 14] rely on this approach, refining it to
make use of efficient approximations of the marginals ¢;(L) and adapting the constants ¢ and C' to
the data. However they all share a common bottleneck: to sample ¢ i.i.d. they need to approximate
all marginals ¢;(L) and the normalization constant dg(L), and therefore the final runtime scales as
n - poly (k). While this is much smaller than the O(n?) required by an exact sampler, it still becomes
quickly unfeasible when n is very large. In what follows we will introduce another approach to
sample from an R-DPP that does not require to approximate the marginals of all items, but only the
items selected in a preliminary uniform intermediate sample.

2.2 Faster DPP sampling with uniform intermediate sampling

We now introduce our novel a-rescaled DPP sampler,

called a-DPP (see Algorithm 1). It requires as input Algorithm 1 a-DPP sampler

a rescaling «, a similarity matrix L and a parame- Input: o, L, D, W, r > 1

ter  that will be used to tune the Poisson sampling  1: Set I = W1/2Lp pW1/2 ¢ RTX™
step of Proposition 1 approach. It also requires as  2: repeat

input a dictionary D containing m elements, and set ~ 3: | Sample u ~ Poisson(re'/"ank?)

of weights stored in a diagonal matrix W € R™*™, Sample p = Uniform(u, [n])

A dictionary is a subset of items D C [n] such that forj ={1,...,u} do

reweighting the items in D by W provides a good ap- Compute /,,; using Eq. (1)
proximation of L, so that the approximate marginals Sample z; ~ Bernoulli(l,,, /(a )
end for

Seto = {p;:z; =1} t=|0]

def

l; = a[L — aL, p(alp + WYLy, pli (1)

D A A

computed using D and W are close to the true 10: | Set[Lo]i; = ﬁ [L]o;o;
marginals ¢; (see Appendix E). Compared to the meta- i ;def:(am det(I+ak.,)
approach of Proposition 1, the main technical differ- 11: | Acc ~Bernoulli (m)
ence is that rather than sampling directly ¢ from an  12: until Acc = true

appropriate Poisson, and then o from a Multinomial, 13; Sample S ~ DPP (af,g)

we 1ntrpduce an intermediate umfopn sampling step. 14: return S = {0, : i€ §}

In particular, we first sample a Poisson u, and then

uniformly sample a subset p containing u items. We
then compute an approximation /; of the marginal ¢; only for the items in p, and downsample p into
o using rejection sampling (Line 7). Finally, we accept or reject o (Line 11) and then downsample o

into S using a standard DPP sampler on the smaller L,,.

Algorithm | is not simply a different implementation of the approach of Proposition 1, since even if
Multinomial sampling is implemented with lazy evaluations of /;, we would still need to compute the
normalization constant of the Multinomial, which strictly requires computing all /;. Similarly, the
rejection test of Line 11 is also designed to accept as many candidates as possible without requiring
the computation of the normalization constant as in [13]. Rather our approach is a novel method to
sample from an R-DPP using Poisson rejection sampling. In particular, we prove not only that it
always returns an S sampled according to the exact DPP distribution, but also that if the dictionary
satisfies certain conditions, the main of which is (&, «)-accuracy (see Appendix E and [5]), then the
algorithm will generate .S quickly.



Theorem 2. Given any L = O, dictionary D, W = 0, r > 1 and o > 0, a-DPP returns
S ~ DPP(aL). Moreover, if r > degt(aLl) > 1/2, D and W are (1/det(aL), o)-accurate, D
satisfies | D) < 10der(aL), and der(aLl) < 10deg(aLl), w.p. 1 — 6 a-DPP runs in time

(9( [min{ardegr(aL), 1} - 1 - degr(aL)® log?(n/0) + degs(aL)® logg(n/é)] . log(l/é)).

The main implication of our result is that the intermediate distribution based on marginals can be
replaced more and more accurately with a uniform distribution as o becomes smaller. This results in
having to compute marginals only for a min{ax?deg(aL), 1} fraction of the n items. This speedup
can be significant when the rescaling « is very small, as is the case when we want to sample a
small number of items out of a large collection. Compared to other exact DPP samplers, such as
DPP-VFX, our a-DPP is strictly faster by roughly a 1/(ax?deg(aL)) factor when implemented
with an appropriate caching strategy for the estimates /; (see Appendix E). Further, unlike MCMC
samplers, a-DPP is an exact sampler. Moreover, there is no known MCMC approach that can achieve
a runtime sub-linear in n when « is small as a-DPP.

An (e, «)-accurate dictionary that also satisfies the other conditions can be generated using a slight
modification of the BLESS algorithm [37], that we call BLESS-I algorithm, presented in Appendix C.
However, note that since the marginals ¢; are equivalent to the ridge leverage scores [2] of item i,
we can replace BLESS-I with any present or future algorithm for leverage score sampling that can
be modified to be rescaling-aware [5, 37]. Moreover, note that BLESS-I also returns an estimate
of der(aLl) that is sufficiently accurate to tune r and €. At the same time, our analysis could
be excessively conservative, and instead of trying to set r and ¢ using di(aL) as suggested by
Theorem 2, a more practical strategy is to start with a constant r and increase it slowly if the sampler
is rejecting with a too low probability, using a doubling schedule to preserve overall time complexity.

Proof sketch. The proof is divided in two parts, proving that a-DPP is an exact sampler (Lemma 6)
and that under the right conditions it is efficient (Lemma 7).

For the first part we once again rely on the approach of Proposition 1, but with the added difficulty of
not being allowed to compute all the marginals. To avoid this bottleneck, we show that:

A) sampling ¢ ~ Poisson(r) and o ~ Multinomial(t, {¢; /deg(aL)}?,); and
B) sampling n independent s; ~ Poisson(r'¢;(aL)), and adding s; copies of item i to o,

are equivalent for an appropriate choice of r and 7/, i.e., we prove that the o generated by both
approach A and B follow the same distribution. However, unlike approach A, approach B does
not require computing a normalization constant, i.e., it samples from unnormalized probabilities.
Moreover, if we know an upper bound on the marginals we can further reduce the number of marginals
that need to be computed. In our case we use the bound ¢; < ax?, and show that

C) sampling n Poisson independently u; ~ Poisson(r’'ax?), only if u; > 0 computing ¢; and
sampling s; ~ Binomial(u;, ¢;/(ar?)), and adding s; copies of item i to o

once again generates o strictly equivalent to the ones of approach B and A. The added advantage of
approach C over the others is that only the marginals of items with u; > 0 are actually computed, and
there is no need to compute a normalization constant. Starting from this new approach, to obtain our
a-DPP sampler (Algorithm 1) we simply replace the n Poisson u; ~ Poisson(r’ax?) with a single
u ~ Poisson(r’ax?n) followed by uniform sampling, and replace the exact ¢; with approximate /;.

For the second part we derive a lower bound on the acceptance probability similar to the one from
Derezinski et al. [13]. However, while they use an n X de(aL) Nystrom approximation of the matrix

L, to avoid direct dependencies on n we are forced to use a less stable approximation L. As a result,
controlling def(aLi) requires a more careful analysis.

Beyond uniform subsampling. One of the implications of our analysis is that more adaptive upper
bounds on the marginals ¢; could further speedup our a.-DPP sampling approach. In particular,
we chose uniform sampling, i.e., a uniform upper bound, for its conceptual simplicity and because
knowing an upper bound x? on the entries of the similarity matrix usually does not require looking
at the items, e.g., x? is always equal to 1 for Gaussian similarity, Cosine similarity or other self
normalized similarities. However for other similarities, such as linear similarity, this bound could
be very loose. A simple replacement is using the actual diagonal of L, which requires to look at all
items and O(n) time to compute but is usually very scalable. Ideally, one could imagine designing a



sequence of upper bounds starting from cheaper to more computationally expensive, where more
advanced techniques such as random projection are used near the end to further filter candidate items.

3 Efficient reduction from k-DPP to rescaled DPP via binary search

Given our fast DPP sampler, we can see a k-DPP as a sampling process where we first sample
S ~ DPP(aL), check if the sample size |S| is equal to k, and then accept or reject the sample
accordingly. Rescaling L by a constant factor « only changes the expected size defr(Li) (and not the k-
DPP), with « > 1 increasing the expected size and o < 1 decreasing it. Thus, it is natural to imagine
that there exists some o, for which the acceptance probability is high. Indeed this was recently proven
to be possible. Dereziriski et al. [13] show that if the mode m,,, of S,, ~ DPP(«,L) is equal to k,

then we will accept with probability at least £2(1/ \/E) They also provide an algorithm to find such

an «,. However, this algorithm has a prohibitively high computational cost, O(nk'? + k'%), because
ensuring that the mode of DPP(«, L) is exactly k requires an extremely accurate approximation of L.
Instead, our approach is to run a binary search to find a good rescaling «, which will terminate once
the acceptance probability is high enough, regardless of whether k is exactly the mode. Crucially, this
binary search only requires a black box DPP(«Li) sampler (such as our a-DPP), and it only queries
the sampler (’)(\/E) many times. To prove that the binary search finds a good « in a small number of

steps, we establish a new property (Lemma 3) of the Poisson Binomial distribution (the distribution
of the subset sizes of DPP(aL)), which should be of independent interest.

3.1 Binary search

Our main result in this subsection is Algorithm 2, which requires only oracle access to the samples
from a random-size DPP, and finds a rescaling & which enables efficient rejection sampling from
a k-DPP. Note that the provided oracle sampler does not have to be our a-DPP sampler, so the
algorithm could be paired with other samplers.

Lemma 1. Suppose that we are given an integer k, a range I = [Qimin, Qmax) Where Gmax = Ymin,
and access to an oracle which, for any o € I, returns S ~ DPP(aL). If there exists o, € I such
that k is the mode of | S| for S ~ DPP(a, L), then using O(\/Elog2(k log(v)/d)) calls to the oracle
we can find & € I such that with probability 1 — § we have
Pr(|S|=k) = Q(ﬁ% for S~ DPP(aL).

The distribution of subset size |.S| for S ~ DPP(L) can be defined via the eigenvalues Ay > Ao > ...
of L (see [25]): if we let b; ~ Bernoulli( /\’\jrl) for ¢ > 1, then ), b; is distributed identically to
|S]. This distribution is known as the Poisson Binomial, and it has been extensively studied in the
probability literature [38]. The recent result of [13] on the probability of the mode of a Poisson
Binomial shows that it is possible to find & satisfying the condition of Lemma 1.

Lemma 2. There is an absolute constant 0 < ¢ < 1 such that for any Poisson Binomial distribution

p: Lo = Rxo, with mode k* we have p(k*) > — &

This result, however, does not provide an efficient way of finding an & such that the mode of the
subset size distribution of DPP(AL) is k. We circumvent this problem by performing a binary search
(Algorithm 2) that looks for such an &, but stops early when it reaches a sufficiently good candidate,
avoiding excess computations. To make this rigorous, we establish the following new property of the
Poisson Binomial distribution, which should be of independent interest.

Lemma 3. Let p : Z>o — R>¢ be a Poisson Binomial distribution, and let k > 1 satisfy p(k) <
< » where c comes from Lemma 2. Then, Py, =, _, p(k) and P~y = ), p(k) satisfy:

124/3(k+1)
C .
ﬁ,

1. if the mode of p is less than k, then P~j, < % —

2. if the mode of p is greater than k, then P.j, < % — 13
Informally, the above result states the following: For any k, either its probability under the given
Poisson Binomial is at least Q(ﬁ), or this £ splits the probability mass into two uneven parts, with

the larger one containing the mode. Thus, as long as our candidate o does not yield high acceptance
probability for k, it is easy to make the branching decision in the binary search by estimating the
quantities P~ and Py simply by repeated sampling from DPP(aL). Note that if the condition



Algorithm 2 Binary search for initializing the k-DPP (L) sampler

Input: 0 < min < Omax, sampling oracle for DPP(aL), integer k and constants C' > 0,6 € (0,1)
Output: & such that DPP(AL) can be used to efficiently sample k-DPP(L)
1: for s ={1,...,[log(v)]} do
2: | if amax/0min < (14 ﬁ) then return & = o,
3: Q $— /OminOmax
4: | Sample Sy, ..., S; " DPP(aL) where ¢ = Cvklog(s/d)
50| Pe = 3000 1su=n
6: | if P, > 3+ —7——thenreturnd = &

124/3(k+1)
7| (Pak, Pok) = (3 021 Lysu<rps + e Lsi>k))

8: if p<k > p>k then (amin7 amax) = (d7 amax) else (amirn amax) = (amin; 64)

9: end for

on p(k) is not satisfied, then performing the branching decision could be very expensive, but our
algorithm avoids this possibility. The proof of Lemma | (Appendix B) follows from Lemmas 2 and 3.

3.2 Constructing the initial interval

To initiate our binary search, we must first find a range of values [min, Qmax], Which contains the
desired «,, and also construct a sampling oracle for DPP(aL). The binary search procedure is
deliberately presented in a way that is agnostic to how these two steps are accomplished, because
a number of existing DPP samplers could be adapted to take advantage of Algorithm 2, including
[30, 36, 10, 13]. Our implementation of these two steps is different than these previous approaches in
that it takes advantage of the structure of the kernel so that it only has to look at a potentially small
fraction of the data points. We achieve this with a modified version of the BLESS algorithm [37].

Lemma 4. Wp. 1 — § BLESS-I runs in time O (min{amaxk?, 1}nkS + k%) and satisfies:

1. The interval [Oimin, Qmax] is bounded by %(k— 1)/tr(L) < amin < Omax < 8(k+2)/degr(L)
2. There is oy € [Qmin, Qmax] for which k is the mode of |S| where S ~ DPP(«, L),

3. The dictionary D= satisfies the conditions from Theorem 2 for any & € [Qmin, Qmax)-

The first two parts of the lemma ensure that the interval I = [qpin, &max] i$ @ valid input for the
binary search in Algorithm 2 and that its size 7 = @max/Qmin < 4tr(L)/der(L) is bounded in the
log-scale. The last part implies that a-DPP can be used by that algorithm as the oracle sampler.

At a high level, Algorithm 6 proceeds by starting with a small o that is guaranteed to be a valid
lower bound for the interval, and for which a dictionary D can be constructed simply via uniform
sampling. Then we repeatedly double the « and refine the dictionary, until we reach o such that we
can ensure that with high probability deg(’L) > k + 1 which makes it a valid upper bound for the
interval (then, this o becomes (yax).

3.3 Overall time complexity of £-DPP sampling

Putting together all the results from the previous sections, we can finally bound the computational
complexity of our k-DPP sampler, which first uses BLESS-I (Algorithm 6) to construct a dictionary
and search interval, and then applies the binary search of (Algorithm 2) using our a-DPP sampler
(Algorithm 1) as the sampling oracle. Once again note that in the following computational analysis
we will use conservative values for many parameters, notably r from a-DPP and ¢ from BLESS-
I, as they are suggested from the theory. However in practice it is always better to start from
a more optimistic value, and keep doubling them only if the sampler repeatedly fails to accept.
Importantly, samples generated this way will still be exactly distributed according to the DPP, as all
the approximations used in our approach only influence the runtime of our algorithm, and not the
correctness of its acceptance, which always holds.



By Lemma 4, the preprocessing step of running BLESS-I takes O (min{aumaxs?, 1}nkS + &9)

and generates a dictionary D with size (5(k3) Since der(all) < der(amaxk) < O(k)
for all o in the search interval, each call to the a-DPP sampler also requires at most

9] (min{amaxk?k, 1}nk® + k). Finally, the binary search invokes a-DPP at most O(Vk) times so
the overall runtime is O ((min{amaxnzk‘, 1}nk® + k°) - \/E) We now provide a bound on oy .

Lemma 5. For any matrix L and 0 < o < 1, we have degr(aLl) /dee(L) > o > dege(aL) /tr(L).

Applied to apax, We obtain amax < de(@maxL)/der(L) < O(k/deg(L)), giving us the final

runtime of O ((min{k?x?/derr(L), 1}nk® + k°) - Vk) reported in Theorem 1.
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Figure 1: Small scale experiment Figure 2: Large scale experiment.

4 Experiments

In this section, we evaluate our a-DPP sampler on a benchmark” introduced by [13] (see Appendix D).
The benchmark uses subsets of the infinite MNIST dataset [33] with d = 784 and n varying up to
105. All experiments are executed on a 28 core Xeon E5-2680 v4. Each experiment is repeated
multiple times, and we report mean values and a 95% confidence interval.

Baselines: we compare o-DPP with DPP-VFEX [13], an MCMC sampler [3] and a sampler based
on eigendecompositions [25, 22]. All algorithms are implemented in python as part’ of DPPy [20].
Due to their similar input, we use the same oversampling parameters (see Appendix D) for a-DPP
and DPP-VFX. We run the MCMC sampler for O(nk) iterations to guarantee mixing [3]. For more
details on hyperparameter tuning we refer to Appendix D.

Results We begin by reporting results on a smaller subset of data (Figure 1) where even the non-

efficient samplers can be run. We use an rbf similarity with 0 = v/3d, and set & = 10 to match
the number of digit classes in MNIST. Note that for n = 70000 BLESS-I estimates d.r(L) = 300,
validating our assumption of deg(L) > k. Thanks to this mismatch, we can see how a-DPP
maintains a constant runtime as n grows, and increasingly matches or outpaces competing baselines
as n grows. In particular, it becomes faster than the eigendecomposition based sampler (which cannot
scale beyond n = 24000) or the MCMC sampler. However, the gap is still sufficiently small that
DPP-VFX, the previously fastest k-DPP sampler available, remains competitive. Note that, unlike
the MCMC and eigendecomposition based samplers, a-DPP and DPP-VFX sample from a k-DPP
by repeatedly sampling from a random-size DPP until they generate a sample with size exactly k.
While our theory ensures that this will happen after only a small number of rejections, this creates
some overhead cost relative to the other two methods, which is noticeable for small values of n.

For larger datasets we consider only the scalable samplers, a-DPP and DPP-VFX. We consider
again an rbf similarity, but this time we choose 7 up to 10% and & = +/10. This further increases the
gap between k and der(L), with BLESS-I estimating deg(L) =~ 1000. We report results in Figure 2,
with runtime shown in log-scale. In this regime, the gap between DPP-VFX and a-DPP widens, as
DPP-VFX cannot use rescaling to reduce the final dictionary size from deg(L) to degr(GL) ~ k, and
has to compute n marginal probabilities since it does not leverage uniform intermediate subsampling.
In particular, thanks to the uniform sampling step, we see that a-DPP’s runtime does not grow as n

*https://github.com/LCSL/dpp-vEx
*Our implementation of a-DPP is included in the supplementary material, and it is also available in DPPy.


https://github.com/LCSL/dpp-vfx

grows, since all the expensive computations are performed in the small intermediate subset which is
hardly sensitive to n. We note that, due to using a smaller dictionary, c.-DPP requires about 2-5x
more trials in the rejection sampling step, which leads to larger variance in the runtime.

In Figure 3, we report the fraction of data that is ob- 012
served by a-DPP in the large scale experiment. This
quantity, denoted as /3 in Theorem 1, is responsible for RN
much of the computational gains of the algorithm over
DPP-VFX, reported in Figure 2. Note that the remain-
ing 1 — 3 portion of the data does not ever need to be
loaded into the program’s memory, which leads to a
significant reduction in memory accesses. We observe
that as the data size increases, the fraction of items : -
observed by a-DPP goes down to as little as 1% for T TR TTI T
n = 105, which is why the runtime of a-DPP stays n

roughly flat, whereas the runtime of DPP-VFX grows. Figure 3: Fraction of items observed by a-DPP.
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Broader impact

DPPs were discovered in the 70s by Odile Macchi to model repulsion of particle distributions in
fermions, so improvements in samplers may help in modelling physical simulations. In bringing
faster DPP samplers to machine learning we aim to enable a better handling of diversity through this
rigorous theoretical framework.
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