
Exchangeable Neural ODE for Set Modeling

Yang Li∗
Department of Computer Science

University of North Carolina at Chapel Hill
yangli95@cs.unc.edu

Haidong Yi∗
Department of Computer Science

University of North Carolina at Chapel Hill
haidyi@cs.unc.edu

Christopher M. Bender
Department of Computer Science

University of North Carolina at Chapel Hill
bender@cs.unc.edu

Siyuan Shan
Department of Computer Science

University of North Carolina at Chapel Hill
siyuanshan@cs.unc.edu

Junier B. Oliva
Department of Computer Science

University of North Carolina at Chapel Hill
joliva@cs.unc.edu

Abstract

Reasoning over an instance composed of a set of vectors, like a point cloud, requires
that one accounts for intra-set dependent features among elements. However, since
such instances are unordered, the elements’ features should remain unchanged
when the input’s order is permuted. This property, permutation equivariance, is
a challenging constraint for most neural architectures. While recent work has
proposed global pooling and attention-based solutions, these may be limited in the
way that intradependencies are captured in practice. In this work we propose a
more general formulation to achieve permutation equivariance through ordinary
differential equations (ODE). Our proposed module, Exchangeable Neural ODE
(ExNODE), can be seamlessly applied for both discriminative and generative tasks.
We also extend set modeling in the temporal dimension and propose a VAE based
model for temporal set modeling. Extensive experiments demonstrate the efficacy
of our method over strong baselines.

1 Introduction

The vast majority of machine learning models operate on an independent and identically distributed
(i.i.d.) vector, x ∈ Rd. In some cases, however, the inputs may contain a set of instances, x = {xi}ni=1,
which jointly determine the target. We note that instances within a set may interact with each other.
For instance, the points inside a point cloud jointly determine the global structure. In this work, we
build both discriminative and generative models on sets, which explore the intradependencies within
a set to capture both global and local structures.

A set is a collection of data that does not possess any inherent ordering of its elements. In statistics, a
set is described as an exchangeable sequence of random variables whose joint probability distribution
does not change under any permutation π, i.e.,

p(x1, . . . , xn) = p(xπ1 , . . . , xπn). (1)

∗equal contribution

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Discriminative models that operate on a set must predict a target y that is invariant to all permutations.
Applications for such models include population statistics estimation, point cloud classification,
etc. A naive approach where training data are augmented with random permutations and treated
as sequences has been empirically proven insufficient [1]. Previous works [2, 3] developed simple
permutation invariant operations by processing each element independently and then aggregating
them using a pooling operation (max, mean, etc). However, such an operation largely ignores the
intradependencies between elements within the set. In this work, we introduce an inductive bias into
the model to exploit said intradependencies across elements. Specifically, we introduce a permutation
equivariant module to explicitly model the dependencies among set elements.

Set generative models with tractable, exchangeable likelihoods have recently been investigated
(that is, likelihoods which are invariant to permutations) [3, 4, 5]. Simple approaches that estimate
likelihood for each instance independently are insufficient since global structures cannot be inferred.
To overcome this shortcoming, we construct a flow-based generative model for tractable likelihood
estimation on sets.

The key for both discriminative and generative set models is a powerful equivariant transformation that
captures set intradependencies. In order to compute the likelihood for a flow based generative model,
the transformation additionally requires to be invertible. In this work, we propose an exchangeable,
invertible flow transformation, ExNODE, based on Neural Ordinary Differential Equation (NODE)
[6]. Invertibility is guaranteed via the NODE framework since integration backward in time is always
possible. We implement ExNODE by parametrizing a differential equation with a permutation
equivariant architecture.

In addition to modeling the sets in spatial dimensions, we extend ExNODE to the temporal dimension
and propose a temporal set modeling task. Such a set model has many potential applications, including
modeling the evolution of galaxies, pedestrian tracking, etc. Here, we utilize a VAE-based framework
with our proposed set generative model as the decoder. The temporal evolution is captured by another
ODE in the latent space. After training, our model can interpolate and extrapolate to generate sets at
unseen (potentially fractional) time steps.

Our contributions are as follows: 1) We propose ExNODE, an exchangeable module for set modeling,
which explicitly captures the intradependencies among set elements. 2) ExNODE represents a type of
invertible flow transformation on which the invariant set likelihood can be achieved. 3) We propose
a temporal set modeling task and a VAE-based model for time variant set modeling. The temporal
VAE utilizes differential equations to transit hidden states in time. To the best of our knowledge, our
model is the first one designed for temporal sets. 4) We achieve state-of-the-art performance for both
point cloud classification and likelihood estimation.

2 Background and Related Works

2.1 Set Modeling

A set is a collection that does not impose ordering among its elements. Models over sets must preserve
this property. We list the commonly used terminology for set modeling below. We denote a set as
x = {xi}ni=1 ∈ Xn, where n is the cardinality of the set and the calligraphic letter X represents the
domain of each element xi.
Definition 1. (Permutation Equivariant) Let f : Xn → Yn be a function, then f is permutation
equivariant iff for any permutation π(·), f(π(x)) = π(f(x)).
Definition 2. (Permutation Invariant) Let f : Xn → Y be a function, then f is permutation invariant
iff for any permutation π(·), f(π(x)) = f(x).

A naive method to encourage permutation invariance is to augment the training data with randomly
permuted sets and treat them as sequences. One could then train a neural network mapping the
permuted inputs to the same output. Due to the universal approximation ability of neural network, the
final model could be invariant to permutations given an infinite amount of training data and model
capacity. However, this simple approach does not guarantee invariance for real-world finite datasets.
As pointed out in [1], the order cannot be discarded for a sequence model.

DeepSet [2] proves that any permutation invariant function for a set with finite number of elements
can be decomposed as ρ(

�
x∈Xn φ(x)), where the summation is over the set elements. Based on this

2

decomposition, they propose using two neural networks for both ρ and φ to learn flexible permutation
invariant functions. They also propose an equivariant model, where independent processing combined
with a pooling operation is used to capture the intradependencies. Although deep sets are universal
approximators, there are some constraints with respect to the dimensionality of latent representation
as shown by [7].

Set Transformer [8] proposes to use an attention mechanism over set elements to model the intrade-
pendencies between each pair of elements. Since the attention is a weighted sum over all set elements,
this operation is naturally equivariant. They also propose an attention based pooling operation to
achieve invariant representations.

Set likelihood estimation requires the likelihood to be invariant to permutations, i.e.
Definition 3. (Exchangeable Likelihood) Given any permutation π and finite random variables
xi, i = 1, . . . , n, then the likelihood of {xi}ni=1 is exchangeable iff

p(x1, . . . , xn) = p(xπ1
, . . . , xπn

)

A naive approach might be to estimate the likelihood independently for each element. Neural
Statistician [3] utilizes a VAE-based model inspired by the de Finetti’s theorem, where conditionally
independent likelihoods are estimated for each element by conditioning on a permutation invariant
latent code. PointFlow [9] extends the Neural Statistician by using normalizing flow for both the
encoder and decoder. Both flow models operate independently on each element. BRUNO [4] employs
an independent flow transformation for each element and an exchangeable student-t process for the
invariant likelihood. FlowScan [5] transforms the set likelihood problem to the familiar sequence
likelihood problem via a scan sorting operation. In this work, we extend a flow based generative
model for exchangeable sets with a tractable invariant likelihood.

Modeling sets is an example of a bigger family of models that integrate prior knowledge about the
underlying data distribution. Some existing works [10, 11, 12] have also explored the equivariant and
invariant properties, but they are not built particularly for sets.

2.2 Neural ODE

Connection between neural networks and differential equations has been studied in [13, 14], where
classic neural network architectures are interpreted as discretizations of differential equations. Built
upon those works, [6] proposed the Neural ODE, which employs the adjoint method to optimize the
model in a memory efficient way. Based on the connection between ResNet [15] and Euler discretized
ODE solver, they propose to use other ODE solvers to implicitly build more advanced architectures.
A basic formulation of Neural ODE is shown as:

dh(t)

dt
= fθ(h(t), t), h(t0) = x, (2)

where fθ is parametrized as a neural network. Neural ODE blocks process input h(t0) using a
black-box ODE solver so that

h(t1) = h(t0) +

� t1

t0

fθ(h(t), t)dt. (3)

Neural ODE represents a type of continuous depth neural network. Comparing with discrete depth
neural networks, Neural ODE has several advantages: 1) In theory, there could be infinite number of
layers that share the same set of parameters. Hence, Neural ODE is more parameter efficient. 2) The
gradients w.r.t. θ can be computed using adjoint method [6] that only requires O(1) memory usage,
since the intermediate variables do not need to be stored during forward pass; they can be recovered
during back propagation. 3) Neural ODE is naturally invertible if fθ satisfies certain conditions, such
as Lipschitz continuity.

2.3 Continuous Normalizing Flow (CNF)

Normalizing flows (NFs) [16, 17, 18] are a family of methods for modeling complex distributions
in which both sampling and density evaluation can be efficient and exact. NFs use the change of
variable theorem to calculate the likelihood of training data:

log pX (x) = log pZ(z) + log

����det
∂q(x)

∂x

���� , (4)

3

where pX (x) is the likelihood in input space, pZ(z) is the likelihood evaluated on a base distribution,
and z = q(x) is an invertible transformation which transforms inputs to latent space. The base
distribution is typically chosen as a simple distribution such as isotropic Gaussian. To allow efficient
likelihood evaluation, NFs typically employ transformations q(·) with a triangular Jacobian so that
the determinants can be computed cheaply, although it reduces the flexibility and capacity of NFs.

[6] and [19] propose continuous normalizing flows (CNFs) and extend the change of variable theorem
to continuous-time case:

d log p(z(t))

dt
= −Tr

�
∂f

∂z(t)

�
, (5)

where dz
dt = f(z(t), t) is a differential equation describing the dynamics of z(t) as in Eq. (2). Unlike

in Eq. (4) where variables are transformed explicitly by q, CNF implicitly transforms the variables by
integration, i.e.,

q(x) = z(t1) = z(t0) +

� t1

t0

f(z(t), t)dt, x = z(t0). (6)

Eq. (5) requires only the trace of Jacobian matrix rather than the more expensive determinants in
Eq. (4), which reduces the computation complexity dramatically. As a result, CNFs can afford using
more flexible transformations implicitly implemented by integrating f . Equation (5) also indicates
that the change of log density is determined by another ODE that can be solved with z(t) itself
simultaneously using an ODE solver.

3 Method

In this section, we introduce the permutation equivariant module, ExNODE. We discuss how to apply
ExNODE for different set modeling tasks. We consider both discriminative (set classification) and
generative (set generation with flow models) tasks. Finally, we explore temporal set modeling.

3.1 Exchangeable Neural ODE

Our permutation equivariant module for exchangeable sets is based on differential equations. Specifi-
cally, we can prove the following theorem. The detailed proof is provided in Appendix A.

Theorem 1. (Permutation Equivariant ODE) Given an ODE ż(t) = f(z(t), t), z(t) ∈ Xn defined
in an interval [t1, t2]. If function f(z(t), t) is permutation equivariant w.r.t. z(t), then the solution of
the ODE, i.e., z�(t), t ∈ [t1, t2] is permutation equivariant w.r.t. the initial value z(t1). We call the
ODE with permutation equivariant properties ExODE.

Following Neural ODE [6], we parametrize ż(t) with a neural network. To ensure the integrated func-
tion z∗(t) is permutation equivariant, we build ż(t) in a permutation equivariant form. Specifically, f
is implemented as a permutation equivariant neural network, such as the deepset equivariant layer or
the attention based set transformer layer.

An additional benefit of our ExNODE is its invetibility. Since we can always integrate from t2 to t1,
it does not require any special design as in typical flow models to guarantee invertibility. Therefore,
our ExNODE can be easily plugged into flow models as a transformation. According to Eq. (5), the
likelihood can be similarly evaluated.

In order to guarantee the initial value problem have unique solution, the dynamic f(·) needs to be
Lipschitz continuous. However, [20] proves that the dot-product self attention module is not Lipschitz
and propose a L2 formulation of the attention module with finite Lipschitz constant. We leave it to
future work to explore this L2 self-attention. In this work, we instead bound the inputs by normalizing
them to the range [0, 1] to make sure the dynamics are Lipschitz continuous, since any continuously
differentiable function is Lipschitz within a compact input space [20].

3.2 Set Classification

For the set classification task, a model must guarantee that the order of set elements does not affect the
prediction results. Hence, given a set x = {x1, . . . , xn} ∈ Xn, our purpose is to learn a permutation
invariant function that maps x to its corresponding label y.

4

Figure 1: Illustration of the architecture of our set classification model. The function φ(·) refers to
independent operations that expand the dimension. The ExNODE may contain multiple ODE blocks.
The max pooling is applied across set elements.

Notice that multiple equivariant layers stacked together are overall equivariant, we employ a permuta-
tion invariant architecture by stacking multiple equivariant layers and a pooling aggregating operation.
Figure 1 illustrates the architecture of our set classification model. First, we use a linear mapping φ
to expand the feature dimensions independently for each set element. Then, permutation equivariant
ODEs serve as a dimension-preserving nonlinear mapping to capture the dependencies among set
elements and learn the feature representations for x. When feature representations are available, we
use a max pooling to aggregate the information across xi. After max pooling, we get a permutation
invariant vector representation that summarizes the set x. We denote the embedding vector as v,

v = MaxPool(ExNODE Solve(φ(x))). (7)

Finally, we use fully connected (FC) layers and a softmax layer to predict labels y.

3.3 Continuous Normalizing Flow for Sets

We extend the continuous normalizing flow proposed in [6, 19] to model exchangeable sets x ∈ Xn.
Specifically, we have the following proposition from [5], repeated here for convenience:
Proposition 1. For a flow model with transformation q(·) and base likelihood pZ(·), the input likeli-

hood pX (x) = pZ(q(x))
���det dq

dx

��� is exchangeable if the transformation is permutation equivariant
and the base likelihood is invariant.

Similar to Eq. 6, we parametrize transformation q implicitly as a differential equation, i.e.,

ż(t) = fθ(z(t), t), z(t0) = x, (8)

where fθ is a permutation equivariant neural network w.r.t. z(t). Using the instantaneous change of
variables formula, the log likelihood of z(t1) and z(t0) satisfy the following equation:

log p(z(t0)) = log p(z(t1)) +

� t0

t1

Tr

�
∂fθ
∂z(t)

�
dt, (9)

where z(t0) and z(t1) corresponds to x and z in Eq. (4) respectively. Since the trace operator Tr(·)
in Eq. (9) preserves permutation invariance, the exchangeability of log p(z(t)) is maintained along
the integral trajectory.

After transformation, we apply a permutation invariant base likelihood to the transformed sets z(t).
For simplicity, we use an i.i.d. base likelihood

pZ(z(t)) =
�

zi∈z(t)

pZ(zi). (10)

The generation process consists of the following steps: 1) Sampling n i.i.d. instances from the base
distribution; 2) Inverting the transformations by integrating backwards in time. Although samples
from base distribution are independent, the transformations will induce dependencies and transform
them to encode global and local structures.

Training Like other normalizing flow based models, we train our model by maximizing the log
likelihood log pX (x) using Eq. (9) and (10). We choose pZ(·) as N (0, I) in all our experiments. To
reduce memory usage, the adjoint method is used to compute the gradient of a black-box ODE solver
[6]. As in FFJORD [19], the trace of Jacobian matrix is estimated using Hutchinson’s estimator [21].

5

Figure 2: The illustration of encoder and decoder used in temporal set modeling task. The set encoder
φ(·) learns the fix-dimensional permutation invariant representation of a set. The decoder contains
two independent ODEs to decode latent states zti and to reconstructed observations x̂ti , i = 0, . . . , T .

3.4 Temporal Set Modeling

In this section, we present a continuous-time VAE model for temporal set modeling. Assume X =
[xt0 ,xt1 , . . . ,xtN] is a time variant set, where each xti ∈ Xn is a set. Let Z = [zt0 , zt1 , . . . , ztN] be
the corresponding latent variables of X . We assume that the evolution of latent states can be modeled
by an ODE. In other words, given an initial state zt0 , other latent states can be inferred following
the dynamics ż(t). Unlike other methods, such as recurrent neural networks (RNNs), where the
evaluations can only be performed at prefixed time points, the ODE based model can obtain both the
latent states and observations at any time t.

Given the latent states zti , i = 0, 1, . . . , T , we propose to model the conditional distribution, p(xti |
zti) using a conditional set CNF. Specifically, the set xti is transformed to a simple base distribution
using ExNODE transformations conditioned on the corresponding latent state zti :

xti(s1) = xti(s0) +

� s1

s0

gθd(xti(s), zti , s)ds, xti(s0) = xti ,

where gθd(·) defines the transformation dynamics of the CNF in [s0, s1]. gθd(·) is permutation
equivariant w.r.t. xti(s). The log likelihood of xti can be formulated similar to Eq. (9).

Training Since computing the posterior distribution p(zti | xti) is intractable, we cannot directly
maximize the marginal log likelihood log pθ(X). Therefore, we resort to the variational inference
[22, 23] and optimize a lower bound. Following previous work [6, 24] for temporal VAEs, we utilize
a recurrent encoder that produces an amortized proposal distribution p̂ψ(zt0 | X) conditioned on the
entire time series X . The encoder first encodes each set into a permutation invariant representation
independently and then uses a recurrent network to accumulate information from each time step.
For our models, the encoder processes the time series backwards in time. We assume the prior for
zt0 comes from an isotropic Gaussian, p(zt0) ∼ N (0, I). Latent codes for other time steps are
constructed following the dynamics ż(t). The final encoder-decoder model is illustrated in Fig. 2.
We train the encoder and decoder jointly by maximizing the evidence lower bound (ELBO):

ELBO(θ,ψ) = Ezt0∼p̂ψ(zt0 |X)

�
T�

i=0

log pθ(xti |zti)
�
−KL(p̂ψ(zt0 |X)||p(zt0)). (11)

Sampling After the model is trained, we can sample a set at any time t by first inferring the
corresponding latent state zt and then transforming a set of base samples yt conditioned on zt:

zt0 ∼ p (zt0) , zt = ODESolve(zt0 , θt, t) (12)

yt = {yj
t}nj=1, yj

t ∼ N (0, I), x̂t = ODESolve(yt, zt, θd, t), (13)
where θt parametrize the dynamics in the latent-states transmission model and θd parametrize the
dynamics of the decoder. Due to the continuous latent space, our model can learn the evolution of sets
in time. We can sample sets at unseen time steps by interpolating or extrapolating the latent states.

6

Table 1: Test Accuracy for point cloud classification with 100 and 1000 points of ModelNet40 dataset.
Mean and standard deviation is reported from 5 runs.

Method 100pts 1000pts # Params

DeepSets [2] 0.82 ± 0.02 0.87 ± 0.01 0.21 M
Set Transformer [8] 0.8454 ± 0.0144 0.8915 ± 0.0144 1.15 M
ExNODE (deepset block) 0.8597± 0.0027 0.8881± 0.0016 0.58 M
ExNODE (transformer block) 0.8569± 0.0015 0.8932± 0.004 0.52 M

4 Experiment

The experiments are divided into three parts. First, we evaluate ExNODE on point cloud classification
(Sec. 4.2). Second, we conduct experiments to validate the efficacy of ExNODE for point cloud
generation and likelihood estimation (Sec. 4.3). Finally, we explore the temporal set modeling task
(Sec. 4.4), where interpolated and extrapolated samples are generated to demonstrate the benefits of
the continuous-time model. Our implementation of neural ODE utilizes the official implementation
of the NODE [6]. We post our code at https://github.com/lupalab/ExNODE.

4.1 Architecture

We consider two different exchangeable base architectures in constructing an ExNODE model: one
based on DeepSets [2] and the other on Set Transformers [8].

DeepSets provides both necessary and sufficient conditions for implementing permutation equivariant
functions. In practice, independent element-wise and pooling operations are used to preserve
equivariance and capture dependencies, i.e. f(x) = σ(λIx+ γ pool(x)).

Recently, the attention-based Transformer has remarkably boosted performance in natural language
processing since the transformer can encode pair-wise interactions between elements in sequential
data [25]. Set Transformer extends the transformer architecture to sets by defining self-attention
based operations over set elements. Using self-attention mechanism comes with several advantages:
1) pair-wise interactions are explicitly modeled; 2) stacking multiple blocks can capture higher-order
interactions.

The use of Neural ODE framework does add overhead for ExNODE. Depending on the solver used,
the running time can be quite different. RK4 solver is considerably faster than adaptive solvers like
dopri5, but sometimes it leads to numerical issues. We use dopri5 for flow models and RK4 for
classification models. The generative flow models could take roughly 4 days on one TITAN XP GPU,
while the classification converges within couple hours (Shown in Fig. 3).

4.2 PointCloud Classification

Figure 3: The classification accu-
racy along training on ModelNet40
using 1000 points. RK4 solver is
used and the training converges
quickly.

In this section, we evaluate ExNODE on point cloud classifi-
cation using ModelNet40 [26], which is composed of surface
points from 40 different categories of 3D CAD models. We
train our model with randomly sampled 100 and 1000 points,
respectively. Since ExNODE can easily utilize different ex-
changeable blocks to learn set representations, we train our
model using both DeepSets and Set Transformer blocks. The
test classification accuracy of different models are shown in
Table 1. We report the mean and standard deviation from 5 runs
with different random seeds. For both small sets (100pts) and
large sets (1000pts), ExNODE consistently outperforms the
baselines. ExNODE additionally achieves better performance
in terms of parameter efficiency, requiring approximately half
the number of parameters compared to Set Transformer and
still achieving superior performance.

7

Figure 4: Generated samples and real data for SpatialMNIST (top) and ModelNet40 (bottom).
SpatialMNIST consists of 50 points per set, and ModelNet40 contains 512 points.

Figure 5: From top to bottom, we show sampled sets with 1024, 2048 and 4094 points, respectively.
The model is trained with 512 point.

4.3 Set Generation and Density Estimation

Next, we conduct experiments for set generative task using SpatialMNIST [3] and ModelNet40 [3].
SpatialMNIST consists of 50 2d points sampled uniformly from active pixels of MNIST. ModelNet40
are constructed by sampling 512 points uniformly from one category. Architectural details are
provided in Appendix D. The per-point log likelihood (PPLL) from the trained ExNODE and other
baselines can be found in Table 2. ExNODE outperforms other models in all three datasets. Figure 4
shows the generated samples from our model. Although our model is trained with only 512 points, it
is capable of generating more points by sampling more points from the base distribution. Figure 5
shows some examples for airplanes and chairs.

4.4 Temporal Set Modeling

For the set temporal generation task, we also use SpatialMNIST. To generate a temporal set series,
we clockwise rotate the digits of MNIST dataset in a constant speed from t = 0 to t = 1 and

8

Table 2: Per Point Log Likelihood (PPLL) on test set. Higher is better.

Dataset BRUNO [4] NS [3] FlowScan [5] ExNODE

Chairs 0.75 2.02 2.58 3.59
Airplanes 2.71 4.09 4.81 5.13

SpatialMNIST -5.68 -5.37 -5.26 -5.21

sample 50 points from the active pixels at random. We train our model at five fixed time points,
t = [0, 0.25, 0.5, 0.75, 1]. For details about the architectures, please refer to appendix D. Given the
initial latent state, z0, ExNODE can generate latent state at any time and then generate corresponding
samples conditioned on the latent state. As shown in Fig. 6, we can both interpolate and extrapolate
to unseen time steps. The samples generated at interpolated time maintain the smoothness over time.
See Appendix B for conditional samples where z0 is encoded by a given series as a reconstruction.
Interpolation on latent code z0 suggests our model learns a meaningful latent space.

Figure 6: Samples form the temporal VAE. Red boxes indicate interpolated time steps, and green
boxes indicate extrapolated time steps.

5 Conclusion

In this work, we extend neural ODEs to model exchangeable sets. We prove that the solution of
an ODE ẋ(t) = f(x(t), t) is permutation equivariant w.r.t. initial value through time as long as its
first order derivative f(x(t), t) is permutation equivariant w.r.t. x(t). Therefore, we parameterize
f(x(t), t) as a permutation equivariant neural network and use black-box ODE solver to find the
solution. Since the ODE block is naturally invertible, we can apply our ExNODE in a flow based
generative model as an equivariant flow transformation. According to the CNF formulation, we
can compute the likelihood by solving an ODE. We also propose to model the time variant sets
using a continuous-time VAE model. We observe smooth transition along time at both interpolated
and extrapolated time steps. In future works, we will evaluate on other applications, such as traffic
tracking.

Broader Impact

Making assessment over sets instead of instances gives us opportunity to leverage the dependencies
over set elements. However, like any other models, it might unintentionally exploit the bias within
the dataset. With this known issue, we encourage practitioners to carefully design the training set or
utilize other debiasing techniques. In this work, we evaluate on point clouds of shape objects, which
should not pose detrimental societal impact even if the learned dependencies does not reflect the
actual ones.

Set generative models have the ability to generate fake data, which may incur ethical or legal issues
when used improperly. There is urgent need to establish regulations and techniques to avoid misuse
of the generated data.

Acknowledgments and Disclosure of Funding

This work was supported in part by NIH 1R01AA02687901A1.

9

References
[1] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for

sets. arXiv preprint arXiv:1511.06391, 2015.

[2] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances in neural information processing systems,
pages 3391–3401, 2017.

[3] Harrison Edwards and Amos Storkey. Towards a neural statistician. In International Conference
on Learning Representations, 2017.

[4] Iryna Korshunova, Jonas Degrave, Ferenc Huszar, Yarin Gal, Arthur Gretton, and Joni Dambre.
Bruno: A deep recurrent model for exchangeable data. In Advances in Neural Information
Processing Systems, pages 7190–7198, 2018.

[5] Christopher Bender, Kevin O’Connor, Yang Li, Juan Jose Garcia, Manzil Zaheer, and Junier B.
Oliva. Exchangeable generative models with flow scans. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence, 2020.

[6] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in neural information processing systems, pages 6571–6583,
2018.

[7] Edward Wagstaff, Fabian B Fuchs, Martin Engelcke, Ingmar Posner, and Michael Osborne. On
the limitations of representing functions on sets. arXiv preprint arXiv:1901.09006, 2019.

[8] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks. In
Proceedings of the 36th International Conference on Machine Learning, pages 3744–3753,
2019.

[9] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.
Pointflow: 3d point cloud generation with continuous normalizing flows. In Proceedings of the
IEEE International Conference on Computer Vision, pages 4541–4550, 2019.

[10] Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: exact likelihood generative
learning for symmetric densities. arXiv preprint arXiv:2006.02425, 2020.

[11] Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing
flows. In Advances in Neural Information Processing Systems, pages 13578–13588, 2019.

[12] Danilo Jimenez Rezende, Sébastien Racanière, Irina Higgins, and Peter Toth. Equivariant
hamiltonian flows. arXiv preprint arXiv:1909.13739, 2019.

[13] E Weinan. A proposal on machine learning via dynamical systems. Communications in
Mathematics and Statistics, 5(1):1–11, 2017.

[14] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural net-
works: Bridging deep architectures and numerical differential equations. arXiv preprint
arXiv:1710.10121, 2017.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[16] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

[17] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv preprint arXiv:1605.08803, 2016.

[18] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In Advances in Neural Information Processing Systems, pages 10215–10224, 2018.

10

[19] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable re-
versible generative models with free-form continuous dynamics. In International Conference
on Learning Representations, 2019.

[20] Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of self-attention.
arXiv preprint arXiv:2006.04710, 2020.

[21] Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 19(2):433–450,
1990.

[22] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations (ICLR), 2014.

[23] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In Proceedings of the 31st International
Conference on Machine Learning, pages 1278–1286, 2014.

[24] Yulia Rubanova, Tian Qi Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. In Advances in Neural Information Processing Systems,
pages 5321–5331, 2019.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[26] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1912–1920, 2015.

11

