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Abstract

The profile of a sample is the multiset of its symbol frequencies. We show that
for samples of discrete distributions, profile entropy is a fundamental measure
unifying the concepts of estimation, inference, and compression. Specifically,
profile entropy: a) determines the speed of estimating the distribution relative to the
best natural estimator; b) characterizes the rate of inferring all symmetric properties
compared with the best estimator over any label-invariant distribution collection;
c) serves as the limit of profile compression, for which we derive optimal near-
linear-time block and sequential algorithms. To further our understanding of profile
entropy, we investigate its attributes, provide algorithms for approximating its
value, and determine its magnitude for numerous structural distribution families.
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1 Introduction

Recent research in statistical machine learning, ranging from neural-network training and online
learning, to density estimation and property testing, has advanced evaluation criteria beyond worst-
case analysis. New performance measures apply more refined metrics relating the algorithm’s
accuracy and efficiency to the problem’s inherent structure.

Consider for example learning an unknown discrete distribution from its i.i.d. samples (see also
Section 2.2). The classical worst-case analysis states that in the worst case, the number of samples
required to estimate a distribution to a given KL-divergence grows linearly in the alphabet size.

However, this formulation is pessimistic, since distributions are rarely the worst possible, and many
practical distributions can be estimated with significantly smaller samples. Furthermore, once the
sample is drawn, it reveals the distribution’s complexity and hence the hardness of the learning task.

Going beyond worst-case analysis, one can design an adaptive learning algorithm whose theoretical
guarantees vary according to the problem’s simplicity. For example, Orlitsky and Suresh [2015]
recently proposed an estimator that instance-by-instance achieves nearly the same performance as a
genie algorithm designed with prior knowledge of the underlying distribution.

We introduce profile entropy, a fundamental measure for the complexity of discrete distributions,
and show that it connects three vital scientific tasks: estimation, inference, and compression. The
resulting algorithms have guarantees directly relating to the sample profile entropy, hence also adapt
to the intrinsic simplicity of the tasks at hand.

The next subsection formalizes relevant concepts and useful notation.
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Sample Profiles and Their Entropy

Consider an arbitrary sequence xn over a finite or countably infinite alphabet X . The multiplicity
µy(xn) of a symbol y ∈ X is the number of times y appears in xn. The prevalence of an integer µ is
the number ϕµ(xn) of symbols in xn with multiplicity µ. The profile of xn is the multiset ϕ(xn) of
multiplicities of the symbols in xn. We refer to it as a profile of length n. For example, consider the
sequence x7 = bananas, in which a appears thrice, n appears twice, and b and s each appears once.
Then, the profile of the sequence is multiset ϕ(x7) = {3, 2, 1, 1}.
The numberD(S) of distinct elements in a multiset S is its dimension. For convenience, we also write
D(xn) for profile dimension. In the above example, we haveD(x7) = D(ϕ(x7)) = 3, corresponding
to values 1, 2, and 3. The dimension of a length-n profile over X is at most min{

√
2n, |X |}. In

general, the profile entropyHn(p) is no more than 3
√
n.

Let ∆ be the collection of all discrete distributions, and ∆X be the collection of those over X .
Draw a size-n sample Xn from an arbitrary distribution in p ∈ ∆. Then, the profile Φn of Xn is a
random multiset whose distribution depends on only p and n. We therefore write Φn ∼ p, and call
Hn(p) := H(Φn) the profile entropy with respect to (p, n). For example, if we draw a sample of size
n = 3 from p = ( 1

2 ,
1
2 ), then profiles {1, 1, 1}, {2, 1}, and {3} appear with probabilities 0, 3

4 , and 1
4 ,

respectively. And the profile entropy is thusH3( 1
2 ,

1
2 ) = H(0, 3

4 ,
1
4 ) ≈ 0.56.

Analogously, we call Dn := D(Φn), the profile dimension associated with (p, n), and write Dn ∼ p.

For notational simplicity, we will assume that Hn(p) ≥ 1 throughout the paper, and respectively
write a ' b, a & b, and a . b instead of a = Θ̃(b), a = Ω̃(b), and a = Õ(b), where the asymptotic
notation hides logarithmic factors of n.

Applications of Sample Profiles

Sample profiles have essential applications in numerous aspects of scientific research, ranging from
property inference to the study of degree distributions of networks/graphs.

Property inference As Section 2.3 shows, profiles are sufficient for inferring all symmetric properties,
such as entropy, Rényi entropy, and support size, not only in the sense of sufficient statistics, but also
in the sense of Theorem 3, stating that profile-based estimators are as good as any others.

Distribution learning The entropy of a sample profile, equaling its dimension in order with high
probability (Theorem 1), directly characterizes how well we can estimate a distribution and approach
the performance of the best human-designed estimator (Theorem 2), for every distribution.

Theory of long tail The notable long tail theory in economics [Anderson, 2006] describes the
strategy of selling a large number of different items that each sells in relatively small quantities. The
profile of the product selling data, and the induced (PML) probability multiset estimate (Section 2.3),
accurately characterize the tail shape of the data, and that of the underlying distribution, respectively.

Password frequency lists In the research of password defense, it is vital to understand the distribution
of passwords. Due to security concerns, organizations typically do not publish the complete data
displaying each password and its frequency. Instead, they reveal the anonymized list of password
frequencies, with each password hashed or replaced by some dummy string, which is equivalent to
showing the password data’s profile.

Degree distributions of networks Degree distribution is one of the most widely studied attributes
of networks (and graphs) that describes the fractions of nodes with different degrees. As the degree
distribution ignores symbol labeling and focuses only on the frequency of each degree, it is equivalent
to the profile of the node degree data.

2 Main Results

This paper aims to provide a thorough theory of profile entropy. Most of the results either are the first
of their kind or significantly improve the state-of-the-art.

Specifically, Section 2.1 presents the fundamental equivalence relation between profile dimension
and entropy (Thm. 1). Building on the equivalence, we respectively establish essential connections
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between profile entropy and the estimation of discrete distributions (Section 2.2; Thm. 2), inference
of their properties (Section 2.3; Thm. 4), and compression of sample profiles (Section 2.4; Thm. 5).
These results characterize how well one can compete with an instance-optimal algorithm for each
task, over every single distribution. For a real sense of how profile entropy behaves, Section 2.5
ultimately determines its magnitude for three prominent structural distribution families, log-concave
(Thm. 6), power-law (Thm. 7), and histogram (Thm. 8). Going even further, Section 3 presents several
additional applications and extensions of our theory and results, including robust learning under
domain symbol permutations, profile entropy for mixture models, competitive property estimation,
adaptive testing and classification, and connection to the method of types.

For space considerations, we relegate detailed reviews on related work, most technical proofs, and
numerical experiments to the supplementary material.

2.1 Dimension-Entropy Equivalence of Profiles

The following theorem shows that for every distribution and sampling parameter n, the induced
profile entropy and dimension are of the same order, with high probability.
Theorem 1 (Entropy-dimension equivalence). For any distribution p ∈ ∆ and Dn ∼ p,

Pr(Dn ' Hn(p)) ≥ 1− 1√
n
.

We briefly comment on Theorem 1.

First, the theorem reveals a novel and fundamental relation between profile dimension and entropy.
The relation also yields an intrinsic method to approximate the entropy of the sample’s profile, a fairly
involved functional, by only counting its dimension. In general, the number of possible length-n
profiles of a distribution could be as large the number of partitions of integer n, and grows with n at
a sub-exponential speed. Hence, even if p is known, computing the exact value ofHn(p) could be
hard. On the other hand, if one applies our theorem to approximateHn(p), we only need to draw a
sample Xn ∼ p, and find its profile dimension, which is computable in linear time through counting.
Appendix A.4 further illustrates how to estimateHn with m� n observations.

Second, the theorem serves as an essential building block for the subsequent results on distribution
estimation, property inference, and profile compression, and enables us to establish their optimality.
For example, in the process of deriving the optimal profile compression scheme and proving Theo-
rem 5, we reason with Dn to bound the space of storing the profile, and utilizeHn(p) as an essential
lower bound for lossless compression.

Third, despite the simple form of the theorem, the proof of this result is highly nontrivial, and relies
on a recent breakthrough in solving the Shepp-Olkin monotonicity conjecture [Hillion et al., 2019],
which asserts that the entropy of a Poisson-binomial random variable is monotone in the defining
success probabilities, over a hypercube near the origin.

2.2 Competitive (Instance-Optimal) Distribution Estimation

Estimating distributions from their samples is a statistical-inference cornerstone, and has numerous
applications, ranging from biological studies [Armañanzas et al., 2008] to language modeling [Chen
and Goodman, 1999]. A learning algorithm p̂ in this setting is called a distribution estimator, which
associates with every sequence xn a distribution p̂(xn)∈ ∆. Given a sampleXn ∼ p, we measure the
performance of p̂ in estimating distribution p by the Kullback-Leibler (KL) divergence D(p‖ p̂(Xn)).

Let rn(p, p̂) := min{r : Pr(D(p ‖ p̂(Xn))≤ r)≥ 9/10} be the minimal KL error p̂ could achieve
with probability at least 9/10. Then, the worst-case error of estimator p̂ over P ⊆ ∆ is rn(P, p̂) :=
maxp∈P rn(p, p̂), and the lowest worst-case error for P, achieved by the optimal estimator, is the
minimax error rn(P) := minp̂′ rn(P, p̂′). The most widely studied distribution set P is simply ∆X .
With X being finite, it has become a classical result that rn(∆X ) = Θ(|X |/n), which is achievable,
up to constant factors, by an add-constant estimator [Braess and Sauer, 2004, Kamath et al., 2015].

Beyond minimax Despite being minimax optimal, the |X |/n-result and the algorithm, are not
satisfiable from a practical point of view. The reason is that the formulation puts much of its emphasis
on the worst-case performance, and ignores the intrinsic simplicity of p in a pessimistic fashion.
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Hence, the desire to design more efficient estimators for practical distributions, like power-law, or
Poisson, has led to algorithms that possess adaptive estimation guarantees.

Concretely, the minimax formulation has two modifiable components – the collection P and the
error function D. A common approach to specifying P is adding structural assumptions, such as
monotonicity, m-modality, and log-concavity, which, in many cases, makes algorithm refinement
possible by leveraging structural simplicity. An orthogonal approach to encouraging adaptability
without imposing structures is to replace absolute error by relative error, which we illustrate below.

Competitive estimation Without strong prior knowledge on the underlying distribution, a reason-
able estimator should naturally assign the same probability to symbols appearing an equal number of
times. Competitive estimation calls for finding a universally near-optimal estimator that learns every
distribution as well as the best natural estimator that knows the true distribution.

Denote byN the collection of all natural estimators. For any distribution p ∈ ∆ and sample Xn ∼ p,
a given estimator p̂ incurs, with respect to the best natural estimator knowing p, an instance-by-
instance relative KL error of

Dnat(p‖ p̂(Xn)) := D(p‖ p̂(Xn))−min
q̂∈N

D(p‖ q̂(Xn)).

Analogous to the minimax formulation, we denote by rnat
n (p, p̂) := min{r : Pr(Dnat(p‖ p̂(Xn)) ≤

r) ≥ 9/10} the minimal relative error p̂ achieves with probability at least 9/10, by rnat
n (P, p̂) the

worst-case relative error of p̂ over P ⊆ ∆, and by rnat
n (P) the minimax relative error.

Old and new results Initiating the competitive formulation, Orlitsky and Suresh [2015] show that
a simple variant of the well-known Good-Turing estimator achieves rnat

n (∆) . 1/n1/3, and a more
involved estimator in Acharya et al. [2013] attains the optimal rnat

n (∆) ' 1/
√
n. For a fully adaptive

guarantee, Hao and Orlitsky [2019b] further refine the bound and design an estimator p̂? achieving
rnat
n (p, p̂?) . EDn∼p[Dn/n] . rnat

n (∆), for every p ∈ ∆, but provide no lower bounds.

In this work, we completely characterize rnat
n (p, ·) with essentially matching lower and upper bounds.

Surprisingly, we show that for nearly every sample size n, the quantity behaves likeHn(p)/n.
Theorem 2 (Optimal competitive error). There is a near-linear-time computable estimator p̂?, such
that for any distribution p and n,

rnat
n (p, p̂?) .

Hn(p)

n
,

where p̂? is the near linear-time computable estimator in Hao and Orlitsky [2019b] mentioned above.
On the other hand, for any H ∈ [0,

√
n),

min
p̂

max
p:Hn(p).H

rnat
n (p, p̂) &

H

n
.

First, we comment on the lower bound. Due to the classical minimax formulation, one might expect
a lower bound in one of the following two forms – for every p̂, rnat

n (p, p̂) & Hn(p)/n for 1) some p
or 2) every p. Form 1) turns out to be weak under the competitive formulation. Specifically, let p be a
trivial distribution that assigns probability 1 to some symbol. Then, both the profile entropy and the
error of the best natural estimator are zero, and the inequality trivially holds for every p̂. Form 2), on
the other hand, is purely impossible. Specifically, for every distribution p, one can set p̂ to be best
natural estimator, which leads to a relative error of zero, greater thanHn(p)/n unless p is trivial.

Second, we illustrate the significance of the result. The notable work of Hardy and Ramanujan [1918]
shows that the number of integer partitions of n, which equals the number of length-n profiles, is at
most exp(3

√
n), implying that Hn(p) ≤ 3

√
n for any p ∈ ∆. Therefore, the Hn(p)/n upper and

lower bounds in the theorem yields rnat
n (∆) ' 1/

√
n, recovering the main result of Orlitsky and

Suresh [2015]. Besides set ∆, the theorem and its proof also imply nearly tight minimax relative-error
bounds on numerous distribution sets P. Below, we present two results that fall into this category. In
both cases, the minimax relative error is much lower than 1/

√
n if the parameter involved is o(

√
n).

The first example addresses the set ∆H of distributions whose n-sample profile entropy is H .
Corollary 1. For any H & 1, the minimax relative error over ∆H is rnat

n (∆H) ' H/n.

For a more concrete example, denote by Lσ the collection of log-concave distributions over Z whose
variance is σ2. Then, Theorem 2 and the profile entropy bounds in Theorem 6 imply
Corollary 2. For any 1 . σ≤

√
n, the minimax relative error over Lσ is rnat

n (Lσ) ' σ/n.
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2.3 Competitive-Optimal Property Inference

Numerous practical applications call for inferring property values of an unknown distribution from
its samples, including entropy for graphical modeling [Koller and Friedman, 2009], Rényi entropy
for sequential decoding [Arikan, 1996], and support size for species richness estimation [Magurran,
2013]. Therefore, property inference has attracted considerable attention over the past few decades.
For interested readers, please refer to Appendix B.3 for a detailed two-page review of prior works
and discussions about relevant methods.

Property inference Formally, a distribution property over some collection P ⊆ ∆ is a functional
f : P→ R that associates with each distribution a real value. Given a sample Xn from an unknown
distribution p ∈ P, the problem of interest is to infer the value of f(p). For this purpose, we employ
another functional f̂ : X ∗ → R, an estimator mapping every sample to a real value. We measure the
statistical efficiency of f̂ in approximating f over P by its absolute error |f̂(Xn)− f(p)|.

Given Xn ∼ p ∈ P, the minimal absolute error rate, or simply error, that f̂ achieves with probability
at least 9/10 is rn(p, f̂) := min{r : Pr(|f̂(Xn)− f(p)| ≤ r) ≥ 9/10}, where the dependence on f
is implicit. While p is often unknown, the worst-case error of an estimator f̂ over all distributions in
P is rn(P, f̂) := maxp∈P rn(p, f̂), and the lowest worst-case error for P, achieved by the optimal
estimator, is the minimax error rn(P) := minf̂ ′ rn(P, f̂ ′).

Profile maximum likelihood An important class of properties is the collection of symmetric ones,
which encompasses numerous well-known distribution characteristics, such as Shannon entropy,
Rényi entropy, support size, and `1 distance to the uniform distribution. Symmetry connects the
estimation of such property to the sample profile, a sufficient statistic for the task in hand. The general
principle of maximum likelihood then provides an intuitive estimator, profile maximum likelihood
(PML) [Orlitsky et al., 2004], that maximizes the probability of observing the profile.

Naturally and generally, we study symmetric property inference over a distribution collection P ⊆ ∆
that is also symmetric, i.e., if p ∈ P, then P as well contains all the symbol-permuted versions of p.
For every sample xn ∈ Xn and symmetric P, the PML estimator over P maps xn to a distribution

Pϕ(xn) := arg max
p∈P

Pr
Xn∼p

(ϕ(Xn) = ϕ(xn)) .

Given a sample Xn ∼ p ∈ P and a symmetric property p, the PML plug-in estimator uses f ◦
P(Xn) to estimate f(p). The PML estimator often behaves differently from the classical empirical
distribution estimator. For example, if P = ∆ and ϕ = {2, 1, 1}, the PML estimate turns out to be
Pϕ = ( 1

5 ,
1
5 ,

1
5 ,

1
5 ,

1
5 ), deviating from the empirical distribution ( 1

2 ,
1
4 ,

1
4 ) by 0.8 in L1 distance.

Recent researches [Acharya et al., 2017, Hao and Orlitsky, 2019a] show that for an extensive family of
symmetric properties, including the previously mentioned four, the PML plug-in estimator universally
achieves minimax error in the large-alphabet regime, up to constant factors.

The formulation of PML makes it part of two estimator classes, the maximum-likelihood and the
profile-based, where the latter corresponds to estimators whose values depend on only the profile. The
theorem below shows that profile-based estimators are sufficient for inferring symmetric properties.

Theorem 3 (Sufficiency of profiles). For any symmetric property f and set P ⊆ ∆, and estimator f̂ ,
we can construct an explicit estimator F̂ over length-n profiles satisfying

rn(p, f̂ ) = rn(P, F̂ ◦ ϕ),

where both estimators can have independent randomness.

The next result shows that the PML estimator is adaptive to the simplicity of underlying distributions
in inferring all symmetric properties, over any symmetric P. Specifically, the theorem states that the
n-sample PML plug-in essentially performs as well as the optimal n/Hn(p)-sample estimator, which
approaches the performance of the optimal n-sample estimator if p has a smallHn(p). Furthermore,
for any property and estimator, there is a symmetric set P′ for which this 1/Hn(p) ratio is optimal.
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Theorem 4 (Competitiveness of PML). For any symmetric property f and set P ⊆ ∆, and every
distribution p ∈ P, the PML plug-in estimator satisfies

rn(p, f ◦ Pϕ) ≤ 2rnp(P),

where np :' n/Hn(p). On the other hand, for any estimator f̂ and symmetric property f , there
exists a symmetric set P′ ⊆ ∆ such that for some p ∈ P′,

rn(p, f̂ ) ≥ 2rnp(P′) .

We provide some brief comments here and more in Section 3. First, the above theorem holds for a
polynomial-time PML approximation [Anari et al., 2020], and for any symmetric property, while
nearly all previous works require the property to possess certain forms and be smooth. In particular,
the algorithm in Anari et al. [2020] achieves the best-known guarantees for approximating PML,
requires no additional assumptions on the distribution/property’s structure, and works universally
on all symmetric properties and adaptively on all profiles (hence distributions). Second, the result
holds for any symmetric distribution set P ⊆ ∆, which covers numerous domains of interest that
appeared in the literature, such as the widely studied ∆, and its subset ∆1/|X| for the study of support
size estimation, where each distribution’s positive probabilities are at least 1/|X |. Third, the result
trivially implies a weaker version in Acharya et al. [2017] whereHn(p) is replaced by

√
n, which, as

we show in Section 2.5, can be significantly larger.

2.4 Optimal Compression of Profiles

None of the scientific applications in Section 1 is possible without first storing the sample profile.

Hence, we focus on the task of lossless profile compression in this section. Besides the theoretical
fundamentality and numerous applications, the task is essential as storing a sample’s profile, compared
with storing the entire sample sequence, often takes much less space. Specifically, Shannon entropy
is the measure of limit of lossless compression, which, for sample Xn ∼ p ∈ ∆, is nH(p), and for
the sample’s profile, isHn(p). In particular, the sample entropy grows as Ω(n) whenever p has an
entropy of at least one, while the profile entropy is at most 3

√
n by our argument in Section 2.2.

While the n-to-
√
n improvement is already significant, the compression schemes we propose under the

standard block and sequential settings surely take profile compression to the next level. Specifically,
for every distribution p and sample size n, both schemes essentially compress the sample profile
ϕ(Xn) to its entropy Hn(p), the information-theoretic limit, in expectation. In other words, our
algorithms are instance-by-instance optimal and essentially unimprovable. Furthermore, we achieve
this instance optimality with near-optimal time complexity – both algorithms have a running time
near-linear in the sample size n.

Block compression We propose an intuitive and easy-to-implement block compression algorithm.

Recall that the profile of a sequence xn is the multiset ϕ(xn) of multiplicities associated with symbols
in xn. The ordering of elements in a multiset is not informative. Hence equivalently, we can compress
ϕ(xn) into the set C(ϕ(xn)) of corresponding multiplicity-prevalence pairs, i.e.,

C(ϕ(xn)) := {(µ, ϕµ(xn)) : µ ∈ ϕ(xn)}.
The number of pairs in C(ϕ(xn)) is equal to the profile dimension D(ϕ(xn)). Besides, both preva-
lence and its multiplicity are integers in [0, n], and storing the pair takes 2 log n nats. Hence, it takes
at most 2(log n) · D(ϕ(xn)) nats to store the compressed profile. By Theorem 1, for any distribution
p ∈ ∆ and sample Xn ∼ p,

E[2(log n) · D(Xn)] ' Hn(p).

We have shown that storing a profile ϕ as C(ϕ) is a near-optimal block compression scheme.

Sequential compression For any sequence xn, the setting for sequential profile compression is
that at time step t ∈ [n], the compression algorithm knows only ϕ(xt) and sequentially encodes the
new information. This process is equivalent to providing the algorithm µxt(x

t−1) at time step t.

Suppress x, xt in the expressions for the ease of illustration. For efficient compression, we sequen-
tially encode the profile ϕ into a self-balancing binary search tree T , with each node storing a
multiplicity-prevalence pair (µ, ϕµ) and µ being the search key. We present the compression scheme
as Algorithm 1, and establish the following guarantee.
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Algorithm 1 Sequential Profile Compression

input sequence (µxt(x
t−1))nt=1, tree T = ∅

output tree T that encodes the input sequence
for t = 1 to n do

if µ := µxt(x
t−1) ∈ T then

if µ+ 1 ∈ T then
ϕµ+1 := T (µ+ 1)← T (µ+ 1) + 1

else
add (µ+ 1, 1) to T

end if
if ϕµ = 1 then delete (µ, ϕµ) from T
else ϕµ := T (µ)← T (µ)− 1 endif

else
if 1 6∈ T then add (1, 1) to T
else T (1)← T (1) + 1 endif

end if
end for

Theorem 5. Algorithm 1 runs for exactly n iterations, with anO(log n) per-iteration time complexity.
For an i.i.d. sample Xn ∼ p, the expected space complexity is Θ̃(Hn(p)). On the other hand, any
algorithm that compresses the profile losslessly has an expected space complexity of at leastHn(p).

2.5 Optimal Characterization for Structured Families

In this section, we characterize the profile entropy of several important structured distribution families,
including log-concave, power-law, histogram, and their mixtures. All the matching lower bounds are
entirely new, and all the upper bounds, with the exception of that in Theorem 8, are much stronger
than those induced by the prior work [Hao and Orlitsky, 2019b] via Theorem 1. For interested readers,
see Appendix D for a detailed comparison.

Log-concave The log-concave family encompasses a broad range of discrete distributions, such
as Poisson, hyper-Poisson, Poisson binomial, binomial, negative binomial, and geometric, and
hyper-geometric, with broad applications to statistics [Saumard and Wellner, 2014], computer
science [Lovász and Vempala, 2007], economics [An, 1997], and geometry [Stanley, 1989].

Formally, a distribution p ∈ ∆Z is log-concave if p has a contiguous support and p2
x ≥ px−1 · px+1

for all x ∈ Z. The next result bounds the profile entropy of this family, and is tight up to logarithmic
factors. For simplicity, henceforth we write a ∧ b for min{a, b} (and ∨ for max), and slightly abuse
the notation and write a ' b for a+1 = Θ̃(b+1), which does not change the nature of the results.
Theorem 6. Let Lσ ⊆ ∆Z denote the collection of log-concave distributions with variance σ2. Then,

max
p∈Lσ

Hn(p) ' σ∧n
σ
.

In particular, if we discretize a Gaussian variable X ∼ N (µ, σ2) by rounding it to the nearest integer,
the distribution of the resulting variable achieves the maximum, up to logarithmic factors. Moreover,
such a discretization procedure preserves log-concavity for any continuous distribution over R.

Power-law Power-law is a ubiquitous structure appearing in many situations of scientific interest,
ranging from natural phenomena such as the initial mass function of stars [Kroupa, 2001], species and
genera [Humphries et al., 2010], rainfall [Machado and Rossow, 1993], population dynamics [Taylor,
1961], and brain surface electric potential [Miller et al., 2009], to human-made circumstances such as
the word frequencies in a text [Baayen, 2002], income rankings [Drăgulescu and Yakovenko, 2001],
company sizes [Axtell, 2001], and internet topology [Faloutsos et al., 1999].

Formally, a discrete distribution p ∈ ∆Z is a power-law with power α ≥ 0 if p has a support of
[k] := {1, . . . , k} for some k ∈ Z+ ∪ {∞} and px ∝ x−α for all x ∈ [k]. Note that if α ∈ [0, 1], the
distribution is well-defined for only finite k. The next result fully characterizes the profile entropy of
power-laws over all α, n, and k ranges, and significantly improves that in Hao and Orlitsky [2019b].

8



Theorem 7. Let p ∈ ∆[k] be a power-law distribution with power α. Then,

Hn(p) '



k if α > k1+α

n ∨1 or 1 ≥ α > k2

n ,

n
1

α+1 if k
1+α

n ≥ α > 1,(
n

k1−α

) 1
1+α if k

2

n ∧1 ≥ α > k1−α

n ,

n
k1−α −

n
k if k

1−α

n ∧1 ≥ α and α ≥ 2 logk

(
7
√

k
n + 1

)
,

k ∧
√

n
k1−α if k

1−α

n ∧1 ≥ α and 2 logk

(
7
√

k
n + 1

)
> α.

In particular, as α→ 0, the bound degenerates to k ∧
√

n
k , which is at most n

1
3 .

Since a power-law sample profile is completely specified by α, k, and n, the above theorem directly
applies to model parameter estimation. Specifically, we first compute Dn ∼ p, which is a simple
function of the symbol counts. By Theorem 1, we can then use it to approximateHn(p). Finally, we
utilize the characterization theorem and find the parameter relations (testing might be necessary).

Histogram While histogram is among the most widely studied representations, histogram distri-
butions’ importance also rises with the rapid growth of data sizes in modern scientific applications.
For example, subsampling, a generic strategy to handle large datasets, naturally induces a histogram
distribution over different categories of the data. This induced distribution often summarizes vital
data statistics, leveraging which yields efficient and flexible inference procedures.

Formally, a discrete distribution p ∈ ∆Z is a t-histogram if we can partition its support into at most
t pieces such that p takes the same probability value over each piece. The theorem below provides
near-optimal bounds on the profile entropy of the t-histogram distributions.
Theorem 8. Denote by It ⊆ ∆Z the collection of t-histogram distributions. Then,

max
p∈It
Hn(p) ' (nt2)

1
3 ∧
√
n.

In practical settings, the value of t is often poly-logarithmic in n, and the bound reduces to Õ(n1/3).
For the particular case of t = 1, distribution p is uniform over some unknown contiguous support.
This result overlaps with Theorem 7 with α = 0, yielding the following bound.
Corollary 3. For any uniform distribution p with support size k, we haveHn(p) ' k ∧

√
n
k .

3 Applications and Extensions

Robust learning The profile of any sequence is invariant to domain-symbol permutations. Since
entropy is a symmetric property, the profile entropy of an i.i.d. sample is also permutation invariant.
Consequently, a result in this paper that holds for a distribution will also hold for any distributions
possessing the same probability multiset. For numerous practical applications, this robustness to
symbol permutation is a desirable and novel notion of robustness that particularly resides in discrete
domains, as samples often come as categorical data, while the alphabet ordering for the underlying
distribution to exhibit certain structure is frequently unknown [Hao and Orlitsky, 2019b].

For example, the sample may consist of different fruits, not integers. But suppose there is a hidden
mapping from the fruit domain to integers that makes the distribution log-concave over Z. Then, all
our results such as Theorem 2, 4, 5, and 6 are in effect. For another example, in natural language
processing, we observe words and punctuation marks. Even we know that observations come from a
power-law distribution [Mitzenmacher, 2004], it is often unclear how to order the alphabet to realize
such a condition. The robustness of our approach again enables us to achieve a variety of learning
objectives, such as understanding the relation between different model parameters (Theorem 7).

Mixture models The results in Section 2.5 provide optimal characterization for simple structured
families. A standard extension to incorporate more complex structures in the model is spanning a
distribution family by including (weighted) mixtures. A typical example is the Gaussian mixture
model, which is among the most widely studied probabilistic models.

In the supplementary material, we present such results for all three families in Section 2.5, and
for mixtures of discretized high-dimensional Gaussians. In fact, we obtain a simple and intuitive
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profile-entropy characterization for all distributions. Partition the unit interval into a sequence of
ranges, Ij :=

(
(j − 1)2 logn

n , j2 logn
n

]
, 1 ≤ j ≤

√
n

logn , and for any distribution p, denote by pIj
the number of probabilities in Ij . Then,

Lemma 1. For any n ∈ Z+ and p ∈ ∆, we haveHn(p) '
∑
j≥1 min

{
pIj , j ·log n

}
.

Competitive property estimation Theorem 2 on PML holds for every distribution, any symmetric
property, and distribution collection, such as a finite-dimensional simplex, regardless of other param-
eters such as the alphabet size. To the best of our knowledge, this is one of the most general results in
the field. Below we provide a basic example for its applications.

For an arbitrary β > 0, let f be the order-β Rényi entropy, and P be the set of distributions whose
probability multisets correspond to power-laws with power α ≥ 3. The minimax error rate rm(P)
is unknown for this problem as recent works (e.g., [Acharya et al., 2016]) mainly focused on the
standard simplexes. On the other hand, Theorem 4, together with Theorem 7, shows that the n-sample
PML plug-in estimator essentially performs as well as the best n3/4-sample estimator. Note that
while the guarantee of PML uniformly holds for all β, the best estimator can optimize its performance
for every β. Following the same rationale, we can derive such nontrivial competitive estimation
results for numerous properties and distribution families without having to analyze them in detail.

Adaptive testing and classification Profile entropy also directly connects to adaptive testing and
classification. Such a connection arises from computing the profile probability [Acharya et al., 2011,
2012], the probability of observing the sample’s profile under the same sampling process.

Specifically, the first paper designs an algorithm that distinguishes two unknown distributions using
near-optimal sample sizes whenever the optimal algorithm has an exponentially small error probability.
In addition, the algorithm is simply a ratio test between the probabilities of two profiles. Given sample
Xn ∼ p over a finite domain, we can compute its profile probability in exp(Θ̃(Hn(p)) operations.
For example, if the underlying distribution is a 4-histogram, then by Theorem 8, the running time
exponent is of order n1/3. The result follows by the equivalence of the problem and computing the
permanent of a rank-Dn matrix [Barvinok, 1996, Vontobel, 2012, 2014, Barvinok, 2016].

Method of types We connect our approach to the method of types, an important technical tool in
Shannon theory and many other fields [Csiszar and Körner, 2011, Wolfowitz, 2012]. In the notation
of this paper, the type of a sequence xn over some finite domain X is the ordered list of multiplicities
µy(xn), which associates symbol y with its number of appearances in xn. For this multiplicity list,
the method of types associates each µy(xn) with the number of symbols having this multiplicity,
which is precisely ϕµy(xn)(x

n). Hence, the profile of a sequence is the type of its type.

Given the above arguments, understanding the deep connection between profile-based algorithms and
the method of types is a meaningful future research direction to explore.

4 Conclusion and Broader Impact

Classical information theory states that an i.i.d. sample contains H(Xn∼p) = nH(p) information,
which provides little insight for statistical applications. We present a different view by decomposing
the sample information into three parts: the labeling of the profile elements, ordering of them, and
profile entropy. With no bias towards any symbols, the profile entropy rises as a fundamental measure
unifying the concepts of estimation, inference, and compression. We believe this view could help
researchers in information theory, statistical learning theory, and computer science communities
better understand the information composition of i.i.d. samples over discrete domains.

The results established in this work are general and fundamental, and have numerous applications in
privacy, economics, data storage, supervised learning, etc. A potential downside is that the theoretical
guarantees of the associated algorithms rely on the assumption correctness, e.g., the domain should
be discrete and the sampling process should be i.i.d. . In other words, it will be better if users can
confirm these assumptions by prior knowledge, experiences, or statistical testing procedures. Taking
a different perspective, we think a potential research direction following this work is to extend these
results to Markovian models, making them more robust to model misspecification.
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Appendix orgnization In the appendix, we order the results and proofs according to their logical
priority. In other words, the proof of a theorem or lemma mainly relies on preceding results. For the
ease of reference, the numbering of the theorems is consistent with that in the main paper.

A Entropy and Dimension of Sample Profiles

Consider an arbitrary sequence xn over a finite or countably infinite alphabet X . The multiplicity
µy(xn) of a symbol y ∈ X is the number of times y appears in xn. The prevalence of an integer µ is
the number ϕµ(xn) of symbols in xn with multiplicity µ. The profile of xn is the multiset ϕ(xn) of
multiplicities of the symbols in xn. We refer to it as a profile of length n.

The numberD(S) of distinct elements in a multiset S is its dimension. For convenience, we also write
D(xn) for profile dimension. The dimension of a length-n profile over X is at most min{

√
2n, |X |}.

Let ∆ be the collection of all discrete distributions, and ∆ be the collection of those over X . Draw
a size-n sample Xn from an arbitrary distribution in p ∈ ∆. Then, the profile Φn of Xn is a
random multiset whose distribution depends on only p and n. We therefore write Φn ∼ p, and call
Hn(p) := Hn(p) the profile entropy with respect to (p, n). Analogously, we call Dn := Dn, the
profile dimension associated with (p, n), and write Dn ∼ p.

Consider an arbitrary sequence xn over a finite or countably infinite alphabet X . The multiplicity
µy(xn) of a symbol y ∈ X is the frequency of y in xn. The prevalence of an integer µ is the number
ϕµ(xn) of symbols in xn with multiplicity µ. The profile of xn is the multiset ϕ(xn) of multiplicities
of the symbols in xn, which we describe as a profile of length n.

A.1 Concentration of Profile Dimension

First we express the dimension of a sample profile in terms of the symbol multiplicities. Denote by∨
the logical OR operator. For any distribution p and Xn ∼ p,

Dn =

n∑
µ=1

∨
x∈X

1µx(Xn)=µ.

The statistical dependency landscape of terms in the summation is rather complex, since µx(Xn)
and µy(Xn) are dependent for every (x, y) pair due to the fixed sample size; and so are 1µx(Xn)=µ1

and 1µx(Xn)=µ2
for every pair of distinct µ1 and µ2. To simplify the derivations, we relate this

quantity to its variant under the Poisson sampling scheme, i.e., making the sample size an independent
N ∼ Poi(n). Specifically, define

D̃N := D̃(XN ) :=

n∑
U=1

∨
x∈X

1µx(XN )=U .

Note that this is not the same as DN since the summation index goes up only to n.

Denote the expected value of D̃N by En(p), which will frequently appear in the rest discussions. Our
first result shows that the original Dn satisfies a Chernoff-Hoeffding type bound centered at En(p).
Theorem 9. Under the above conditions and for any n ∈ Z+, p ∈ ∆, and γ > 0,

Pr

(
Dn

1 + γ
≥ En(p)

)
≤ 3
√
ne−min{γ2,γ}En(p)/3,

and for any γ ∈ (0, 1),

Pr

(
Dn

1− γ
≤ En(p)

)
≤ 3
√
ne−γ

2En(p)/2.

Proof. A nice attribute of Poisson sampling is that all the multiplicities µy(Xn) are independent of
each other. We will first consider DN and relate it to the fixed-sample-size version later.

For simplicity and clarity, we suppressXn in µy(Xn) and write νy instead of µy when the multiplicity
is obtained through Poisson sampling. For any i ∈ [n], denote Gi({νx}x) :=

∨
x∈X 1νx=i. As
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mentioned previously, instead of analyzing DN , we consider

D̃N =

n∑
i=1

∨
x∈X

1νx=i =

n∑
i=1

Gi({νx}x).

Note that for any disjoint I, J ⊆ [n], the functions
∑
i∈I Gi({νx}x) and

∑
j∈J Gj({νx}x) are

discordant monotone by each argument, namely, when we increase the value of each νx, the increase
in the value of one function implies the non-increase of the other. Then, by the results in Lehmann
[1966], the values of the two functions, when viewed as random variables, are negatively associated.

Next we show that quantity D̃N satisfies a Chernoff-type bound.

Let γ be an arbitrary positive number. Note that Gi is a Bernoulli random variable with parameter

qi := E [Gi({νx}x)] .

Then for the expected value of D̃N , we have

En(p) := E
[
D̃N
]

= E

[
n∑
i=1

Gi({νx}x)

]
=
∑
i

qi.

For simplicity, temporally write Y := D̃N and µ := En(p). Then, by Markov’s inequality and the
monotonicity of function ety over t > 0,

Pr (Y ≥ (1 + γ)µ) = Pr
(
etY ≥ et(1+γ)µ

)
≤ E[etY ]

et(1+γ)µ
.

It suffices to bound E[etY ] by a function of other parameters.

E[etY ]
(a)
= E

[
exp

(
t

(
n∑
i=1

Gi({Mx}x)

))]
(b)
= E

[
exp (tG1({Mx}x)) · exp

(
t

(
n∑
i=2

Gi({Mx}x)

))]
(c)

≤ E [exp (tG1({Mx}x))] · E

[
exp

(
t

(
n∑
i=2

Gi({Mx}x)

))]
(d)

≤
n∏
i=1

E [exp (tGi({Mx}x))]
(e)
=

n∏
i=1

(
1 + qi(e

t − 1)
)

(f)

≤
n∏
i=1

(
exp

(
qi(e

t − 1)
)) (g)

= exp

(
n∑
i=1

qi(e
t − 1)

)
(h)
= exp

(
(et − 1)µ

)
,

where (a) follows by the definition of Y ; (b) follows by ea+b = ea · eb; (c) follows by the fact
that G1 is negatively associated with

∑n
i=2Gi; (d) follows by an induction argument via negative

association; (e) follows by the fact that Gi is a Bernoulli random variable with mean qi; (f) follows
by the inequality 1 + x ≤ ex,∀x ≥ 0; (g) follows by ea · eb = ea+b; and (h) follows by µ =

∑
i qi.

Applying standard simplifications, we obtain

Pr (Y ≥ (1 + γ)µ) ≤ e−min{γ2,γ}µ/3, ∀γ > 0,

and
Pr (Y ≤ (1− γ)µ) ≤ e−γ

2µ/2, ∀γ ∈ (0, 1).

The proof will be complete upon noting that: 1) the probability that N = n is at least 1/(3
√
n);

2) conditioning on N = n transforms the sampling model to that with a fixed sample size n.

As a corollary, the value of Dn is often close to En(p).
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Corollary 4. Under the same conditions as above and for any n ∈ Z+, p ∈ ∆, with probability at
least 1− 6/

√
n,

1

2
En(p)− 4 log n ≤ Dn ≤ 2En(p) + 3 log n.

Proof. To establish the lower bound, note that if En(p) ≥ 3 log n, setting γ = 1 in Theorem 9 yields

Pr (Dn ≥ 2En(p) + 3 log n) ≤ Pr (Dn ≥ 2En(p)) ≤ 3
√
ne−En(p)/3 ≤ 3√

n
,

else if En(p) < 3 log n, setting γ = (3 log n)/En(p) yields

Pr (Dn ≥ 2En(p) + 3 log n) ≤ Pr (Dn ≥ En(p) + 3 log n) ≤ 3
√
ne−(3 logn)/3 =

3√
n
.

As for the upper bound, if En(p) ≥ 8 log n,

Pr

(
Dn + 4 log n ≤

(
1− 1

2

)
En(p)

)
≤ Pr

(
Dn ≤

(
1− 1

2

)
En(p)

)
≤ 3
√
ne−µ/8 ≤ 3√

n
,

and for any En(p) < 8 log n,

Pr

(
Dn + 4 log n ≤

(
1− 1

2

)
En(p)

)
≤ Pr (Dn < 0) = 0 ≤ 3√

n
.

Combining these tail bounds through the union bound completes the proof.

In addition to the above, we establish an Efron-Stein type inequality.
Theorem 10. For any distribution p and Dn ∼ p,

Var(Dn) ≤ E[Dn].

Proof. First, note that for any j, t ∈ [n] and j 6= t,

Cj,t := Cov
(
1ϕj(Xn)>0,1ϕt(Xn)>0

)
= Pr (ϕj(X

n), ϕt(X
n) > 0)− Pr (ϕj(X

n) > 0) · Pr (ϕt(X
n) > 0)

= (Pr (ϕj(X
n) > 0|ϕt(Xn) > 0)− Pr (ϕj(X

n) > 0)) · Pr (ϕt(X
n) > 0)

= (Pr (ϕj(X
n) > 0|ϕt(Xn) > 0)− Pr (ϕj(X

n) > 0|ϕt(Xn) = 0))

× Pr (ϕt(X
n) = 0) · Pr (ϕt(X

n) > 0)

≤ 0

Therefore, the variance of the profile dimension Dn satisfies

Var (Dn) = Var

(
n∑
i=1

1ϕi(Xn)>0

)
≤
∑
i=1

Var
(
1ϕi(Xn)>0

)
+
∑
j 6=t

Cov
(
1ϕj(Xn)>0,1ϕt(Xn)>0

)
≤
∑
i=1

E
[
1ϕi(Xn)>0

]
+
∑
j 6=t

Cj,t

≤
∑
i=1

E
[
1ϕi(Xn)>0

]
= E [Dn] .
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A.2 Theorem 1: Dimension-Entropy Equivalence

The following theorem shows that for every distribution and sampling parameter n, the induced
profile entropy and dimension are of the same order, with high probability.
Theorem 1 (Entropy-dimension equivalence). For any distribution p ∈ ∆ and Dn ∼ p,

Pr(Dn ' Hn(p)) ≥ 1− 1√
n
.

A.3 Proof of Theorem 1

Proof outline We decompose the proof of the theorem into three steps.

First, we show Hn(p) . Dn with high probability, which is a consequence of Theorem 9 (which
shows that Dn highly concentrates around its expectation) and Shannon’s source coding theorem.
Second, we introduce a simple quantity HS

n(p) that approximates the expectation of Dn to within
logarithmic factors of n. Finally, leveraging this approximation guarantee, we establish the other
direction of the theorem. This step is more involved due to the aforementioned complications.

Step 1: Bounding Profile Entropy by Its Dimension

By the tail bounds (Theorem 9) and trivial lower bound of 1 on the profile dimension, with probability
at least 1− 1/

√
n, the expectation of Dn satisfies

E[Dn] . Dn.

By our result on block profile compression (Section 2.4), storing profile Φn ∼ p losslessly takes

O(log n) · E[Dn] +O
(

1√
n

)
· logP(n) . E[Dn]

nats space in expectation. By Shannon’s source coding theorem, the expected space to losslessly
storing a random variable is at least its entropy. Hence, with probability at least 1−O(1/

√
n),

Hn(p) . E[Dn] . Dn.

Applying Dn ≥ 1 completes the proof.

Step 2: Simple Approximation Formula for Profile Dimension

Next, we show thatHn(p) & Dn, with high probability. Note that Dn ∼ p is often close to En(p),
the expectation of its Poissonized version D̃N , with an exponentially small deviation probability.
Hence, to approximate Dn, it suffices to accurately compute En(p).

By independence and the linearity of expectations,

En(p) = E[D̃N ] =

n∑
i=1

(
1−

∏
x∈X

(
1− e−npx (npx)i

i!

))
.

The expression is exact but does not relate to p in a simple manner. For an intuitive approximation,
we partition the unit interval into a sequence of ranges,

Ij :=

(
(j − 1)2 log n

n
, j2 log n

n

]
, 1 ≤ j ≤

√
n

log n
,

denote by pIj the number of probabilities px belonging to Ij , and relate En(p) to an induced
shape-reflecting quantity,

HS
n(p) :=

∑
j≥1

min
{
pIj , j · log n

}
,

the sum of the effective number of probabilities lying within each range [Hao and Orlitsky, 2019b].
To computeHS

n(p), we simply count the number of probabilities in each Ij . Our main result shows
thatHS

n(p) well approximates En(p) over the entire ∆, up to logarithmic factors of n.
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Theorem 11. For any n ∈ Z+ and p ∈ ∆,

1√
log n

· Ω(HS
n(p)) ≤ En(p) ≤ O(HS

n(p)).

Proof. The fact that O(HSn (p)) upperly bounds E[D̃N ] simply follows by the concentration of
Poisson variables, and is established in Hao and Orlitsky [2019b]. Below we show that the quantity
also serves as a lower bound. By construction, for any given sampling parameter n, index j, and
symbol x with probability px ∈ Ij , the corresponding symbol multiplicity µx ∼ Poi(npx). Hence,
we can express the expectation of D̃N as

E
[
D̃N
]

= E

[
n∑
i=1

∨
x

1µx=i

]

=

n∑
i=1

E

[
1−

∧
x

1µx 6=i

]

=

n∑
i=1

(
1− E

[∏
x

1µx 6=i

])

=

n∑
i=1

(
1−

∏
x

E [1µx 6=i]

)

=

n∑
i=1

(
1−

∏
x

(
1− e−npx (npx)i

i!

))
.

This proves the aforementioned formula. Then, for every sufficiently large index j and i ∈ Sj :=
[(j − 1)2, j2] log n, define a sequence of intervals,

Iij :=
i

n
+ [−j, j]

√
log n

n
.

Then for any i ∈ Sj and px ∈ Iij ∩ Ij , the corresponding Poisson probability satisfies

e−npx
(npx)i

i!
= e−i

ii

i!
·
(
ei−npx · (npx)i

ii

)
= e−i

ii

i!
·

(
e−(npx−i) ·

(
1 +

npx − i
i

)i)

= e−i
ii

i!
· exp

(
−(npx − i) + i · log

(
1 +

npx − i
i

))
≥ 1

3
√
i
· exp

(
−2i

3
·
(
npx − i

i

)2
)

≥ 1

9
√
i
≥ 1

9j
√

log n
.

Now we analyze the contribution of indices i ∈ Sj to the expected value of D̃N . For clarity, we
divide our analysis into two cases: pIj ≥ j log n and pIj < j log n.

Consider the collection Pj of probabilities px ∈ Ij , and the collection Ij of intervals Iij , i ∈ Sj . By
construction, each probability in Pj is contained in at least j

√
log n many intervals in Ij . Hence

the total number of probabilities (repeatedly counted) included in Ij is at least pIj · j
√

log n. Note
that the number of intervals in Ij is less than 2j log n. We claim that there exists one (or more)
interval Ii

′

j ∈ Ij containing at least pIj/(2
√

log n) probabilities. By construction, there are at
least j

√
log n/2 neighboring intervals of Ii

′

j that contain at least pIj/(4
√

log n) probabilities. The
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contribution of these these intervals to the expected value of D̃N is at least j
√

log n/2 times

1−
(

1− 1

9j
√

log n

) pIj

4
√

logn

≥ 1− exp

(
pIj

4
√

log n
log

(
1− 1

9j
√

log n

))
≥ 1− exp

(
−

pIj
40j log n

)
≥ Θ

(
pIj

j log n

)
,

where the last step holds if pIj ≤ j log n. This yields a lower bound of Θ(pIj/
√

log n).

It remains to consider the pIj > j log n case. Again, the total number of probabilities included in Ij
is at least pIj · j

√
log n. Furthermore, each interval Iij contains at most pIj probabilities and there

are less than 2j log n intervals. Therefore, the number of intervals that contain at least j
√

log n/4
probabilities is at least j

√
log n/2. Otherwise, the number of probabilities included in Ij is less than

j
√

log n

4
· 2j log n+ pIj ·

j
√

log n

2
≤ pIj · j

√
log n,

which leads to a contradiction. Analogously, the contribution of these these intervals to the expected
value of D̃N is at least j

√
log n/2 times

1−
(

1− 1

9j
√

log n

) j
√

logn
4

≥ 1− exp

(
j
√

log n

4
log

(
1− 1

9j
√

log n

))
≥ 1− exp

(
− 1

40

)
= Θ (1) ,

which yields a lower bound of Θ(j
√

log n) on the expected value of D̃N .

Consolidating the previous results shows that

E
[
D̃N
]
≥ 1√

log n
· Ω(

∑
j≥1

min
{
pIj , j · log n

}
).

Step 3: Bounding Profile Dimension by Its Entropy

Next, we establish that for any distribution p ∈ ∆, Φn ∼ p, with probability at least 1− 1/
√
n,

Hn(p) & Dn.
Let p be an arbitrary distribution in ∆. Recall that we partition the interval (0, 1] into a sequence of
sub-intervals,

Ij :=

(
(j − 1)2 log n

n
, j2 log n

n

]
, 1 ≤ j ≤

√
n

log n
,

and denote by pIj the number of probabilities px in Ij .

Our current objective is to bound H(Φn ∼ p) from below by a nontrivial multiple of HSn (p). For
simplicity of derivations, we will adopt the standard Poisson sampling scheme and make the sample
size an independent Poisson variable N ∼ Poi(n). For notational simplicity, we will suppress XN in
all the expressions and write the profile as ϕ := ΦN by slightly abusing the notation.

Note that the profile can be equivalently expressed as a length-n vector

ϕ = (ϕ1, . . . , ϕn),

where ϕi denotes the number of symbols appearing exactly i times.

For a sufficiently large absolute constant c, decompose ϕ into c parts according to Ij such that the
t-th part (t = 1, . . . , c) consists of ϕi’s satisfying i ∈ nIj with j ≡ t mod c. Since by definition,

HSn (p) =
∑
j≥1

min{pIj , j · log n},
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one of the c parts corresponds to a partial sum of at least HSn (p)/c. Without loss of generality, we
assume that it is the second part, i.e.,∑

j≡1 mod c

min{pIj , j · log n} ≥ HSn (p)

c
.

Apply standard Poisson tail probability bounds. For example,
Lemma 2. Let Y be a Poisson or binomial random variable with mean value λ. Then,

Pr(X ≤ λ(1− δ)) ≤ exp

(
−δ

2λ

2
λ

)
, ∀δ ∈ [0, 1],

and

Pr(X ≥ λ(1 + δ)) ≤ exp

(
− δ2λ

2 + 2δ/3

)
, ∀δ ≥ 0.

For any j ≡ 1 mod c and with probability at least 1− 1/n4, one can express the truncated profile
(ϕi)i∈nIj over Ij as a function of µx for x satisfying npx ∈ Ij′ , j′ ∈ (j − c/2, j + c/2).

Basically, this says that for every x, the number of its appearance is not too far away from the expected
value. By the union bound, this is true for all j ≡ 1 mod c with probability at least 1− 1/n3, as j
can take only n possible values. Denote the last event by A.

To proceed, we recall the formula of Hardy and Ramanujan [1918] on the number P(n) of integer
partitions of n, which happens to equal to the number of length-n profiles:

logP(n) = 2π

√
n

6
(1 + o(1)).

Below, we will use a weaker version that works for any n:

logP(n) ≤
√

3n.

Then, conditioning on A, the truncated profiles (ϕi)i∈nIj for j ≡ 1 mod c are independent. Since
conditioning reduces entropy,

H(ϕ) ≥ H((ϕi)i∈nIj ,j≡1 mod c)

≥ H((ϕi)i∈nIj ,j≡1 mod c|1A)

≥ H((ϕi)i∈nIj ,j≡1 mod c|1A = 1) · Pr(A)

=
∑

j≡1 mod c

H((ϕi)i∈nIj |1A = 1) · Pr(A)

=
∑

j≡1 mod c

H((ϕi)i∈nIj |1A)−
∑

j≡1 mod c

H((ϕi)i∈nIj |1A = 0) · (1− Pr(A))

≥
∑

j≡1 mod c

(H((ϕi)i∈nIj )−H(1A))− 1

n3

∑
j≡1 mod c

H((ϕi)i∈nIj |1A = 0)

≥ −nH(1A) +
∑

j≡1 mod c

H((ϕi)i∈nIj )−
1

n3
· n · log(exp(Θ(

√
n)))

= −O
(

1√
n

)
+

∑
j≡1 mod c

H((ϕi)i∈nIj ),

where the third last step follows by

H(X|Y ) = H(X)− I(X,Y ) = H(X)−H(Y ) +H(Y |X) ≥ H(X)−H(Y );

the second last follows by H(X) ≤ log k for any X with a support size of k, and the fact that there
are at most exp(3

√
m) many profiles of length m, as we explained above; and the last step follows

by the elementary inequality

H(Bern(θ)) ≤ 2(log 2)
√
θ(1− θ), ∀θ ∈ [0, 1].
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Our new objective is to bound H((ϕi)i∈nIj ) from below. We will find a sub-interval Isj of Ij and
bound H((ϕi)i∈nIsj ) in the rest of the section, since

H((ϕi)i∈nIj ) ≥ H((ϕi)i∈nIsj ).

For all j ≡ 1 mod c, our lower bound is simply

H((ϕi)i∈nIsj ) ≥ Ω

(
1√

log n
min

{
pIj , j · log n

})
,

which, together with
∑
j≡1 mod c min{pIj , j · log n} ≥ HSn (p)/c, implies that

H(ϕ) ≥ −O
(

1√
n

)
+

∑
j≡1 mod c

H((ϕi)i∈nIj ) ≥ Ω

(
1√

log n

)
· Tn.

Henceforth, we assume that j is sufficiently large and denote Lj := j
√

log n.

For any j and every integer i ∈ Sj := [(j − 1)2, j2] log n, define a sequence of intervals,

Iij :=
i

n
+
Lj
n

[−1, 1] .

Then for any i ∈ Sj and px ∈ Iij ∩ Ij , the corresponding Poisson probability satisfies

e−npx
(npx)i

i!
= e−i

ii

i!
· exp

(
−(npx − i) + i · log

(
1 +

npx − i
i

))
≥ 1

3
√
i
· exp

(
−2i

3
·
(
npx − i

i

)2
)

≥ 1

9
√
i
≥ 1

9Lj
.

On the other hand, the following upper bound holds.

e−npx
(npx)i

i!
= e−i

ii

i!
· exp

(
−(npx − i) + i · log

(
1 +

npx − i
i

))
≤ e−i i

i

i!
≤ 1√

2πi
≤ 1

2Lj
.

In other words, for any px, i/n ∈ Ij that differ by at most Lj/n,

Pr(Poi(npx) = i) ∈ 1

Lj

[
1

9
,

1

2

]
.

Partition Ij into sub-intervals of equal length Lj/n. The partition has a size of at most 2
√

log n.
Assign each probability px ∈ Ij a length-Lj/n interval Ipx centered at px. Then, each interval Ipx
covers at least one of the sub-intervals in the partition. Since there are exactly pIj intervals Ipx , one
can find a partition sub-interval Isj contained in at least pIj/(2

√
log n) of them. Denote by Xs the

collection of symbols corresponding to these intervals.

Next, we bound from below the entropy of the truncated profile (ϕi)i∈nIsj over nIsj . Denote by js
the left end point of nIsj . By the chain rule of entropy for multiple random variables,

H((ϕi)i∈nIsj ) =

js+Lj−1∑
i=js

H(ϕi|ϕjs , . . . , ϕi−1).

Consider a particular term on the right-hand side with i ∈ [js, js + Lj − 1]. By the conditional
independence and fact that conditioning reduces entropy,

H(ϕi|ϕjs , . . . , ϕi−1) ≥ H(ϕi|ϕjs , . . . , ϕi−1;1js≤µx≤i−1, x ∈ X )

= H(ϕi|1js≤µx≤i−1, x ∈ X )

= H(ϕi|1js≤µx≤i−1, x ∈ Xs;1js≤µx≤i−1, x 6∈ Xs)
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To characterize the condition, we define a random variable

Ks
i :=

∑
x∈Xs

1js≤µx≤i−1.

Note that E[1js≤µx≤i−1] =
∑i−1
t=js

Pr(Poi(npx) = t) ≤ (i− js)/(2Lj), which is at most 1/10 for
i ≤ js + Lj/5. The following lemma transforms this into a high-probability statement.

Lemma 3. Let Yi, i ∈ [1,m] be independent indicator random variables. Let Y :=
∑
i Yi denote

their sum and λ := E[Y ] denote the expected sum. Then for c > 0, we have

Pr(Y ≥ λ(1 + c)) ≤ exp(−λc2/(2 + 2c/3)).

Below we consider only i ≤ js + Lj/5. Note that c/(2 + 2c/3) is increasing for c > 0.

Since E[Ks
i ] =

∑
x∈Xs E[1js≤µx≤i−1] ≤ |Xs|/10,

Pr(Ks
i ≥ |Xs|/2) ≤ exp(−36/35) < 1/2.

where we set c = 4 in the above lemma and assume that |Xs| ≥ 3 (assuming only |Xs| ≥ 1, the upper
bound becomes 3/4). Recall that

H(ϕi|ϕjs , . . . , ϕi−1) ≥ H(ϕi|1js≤µx≤i−1, x ∈ Xs;1js≤µx≤i−1, x 6∈ Xs)

=
∑

(cx)x∈X∈{0,1}X
H(ϕi|1js≤µx≤i−1 = cx, x ∈ Xs)

× Pr(1js≤µx≤i−1 = cx, x ∈ Xs).

Denote by Vs ⊆ {0, 1}X the collection of (cx)x∈X satisfying
∑
x∈Xs cx < |Xs|/2. The above

derivation shows that ∑
(cx)x∈X∈Vs

Pr(1js≤µx≤i−1 = cx, x ∈ Xs) ≥
1

2
.

By independence, for any (cx)x∈X ∈ Vs, we have

(ϕi|1js≤µx≤i−1 = cx, x ∈ Xs) =
∑

x∈X :cx=0

(1µx=i|1js≤µx≤i−1 = 0)

=
∑

x∈Xs:cx=0

(1µx=i|1js≤µx≤i−1 = 0)

+
∑

x 6∈Xs:cx=0

(1µx=i|1js≤µx≤i−1 = 0).

For any x ∈ Xs with cx = 0, the corresponding indicator variable satisfies

E[1µx=i|1js≤µx≤i−1 = 0] =
Pr(1µx=i and µx 6∈ [js, i− 1])

Pr(µx 6∈ [js, i− 1])

=
Pr(1µx=i)

1− Pr(µx ∈ [js, i− 1])

=

1
Lj

[
1
9 ,

1
2

]
1−

[
0,

Lj
5

]
· 1
Lj

[
1
9 ,

1
2

]
=

1

Lj

[
1

9
,

5

9

]
.

On the other hand, for any x 6∈ Xs,

e−npx
(npx)i

i!
≤ e−i i

i

i!
≤ 1√

2πi
≤ 1

2Lj
.
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Therefore, the corresponding indicator variable satisfies

E[1µx=i|1js≤µx≤i−1 = 0] =
Pr(1µx=i)

1− Pr(µx ∈ [js, i− 1])
≤

1
Lj

[
0, 1

2

]
1−

[
0,

Lj
5

]
· 1
Lj

[
0, 1

2

] ≤ 5

9
· 1

Lj
.

To summarize, we have shown that (ϕi|1js≤µx≤i−1 = cx, x ∈ Xs) is the sum of |X | independent
Bernoulli random variables. Among these Bernoulli variables, at least |Xs|/2 ≥ pIj/(2

√
log n) have

a bias of 1
Lj

[
1
9 ,

5
9

]
, while others have a bias of at most 5

9 ·
1
Lj

.

The following lemma, recently established by Hillion et al. [2019], shows the relation among the
entropy values of sums of independent Bernoulli random variables with different bias parameters.

Lemma 4. Let Xt, Yt, t ∈ [m] be independent indicator random variables. Denote by X and Y the
sums of Xt’s and Yt’s, respectively. If E[Xt] ≤ E[Yt] ≤ 1/2,∀t ∈ [m],

H(
∑
t

Xt) ≤ H(
∑
t

Yt).

This lemma, together with the previous results, shows that

H(ϕi|1js≤µx≤i−1 = cx, x ∈ Xs) ≥ H(bin(pIj/(2
√

log n), 1/(9Lj)).

The next lemma further bounds the entropy of a binomial random variable.

Lemma 5. For any m > 1 and q ∈ [1/m, 1− 1/m],

H(bin(m, q)) ≥ 1

2
log
(

(2π)1−(1−q)m−qmmq(1− q)
)
− 1

12m
.

Proof. By definition, the left-hand side satisfies

H(bin(m, q)) = −
m∑
t=0

(
m

t

)
qt(1− q)m−t log

((
m

t

)
qt(1− q)m−t

)

= −
m∑
t=0

(
m

t

)
qt(1− q)m−t(t log q + (m− t) log(1− q)

+ logm!− log t!− log(m− t)!)

= mH(Bern(q))− logm! +

m∑
t=0

(
m

t

)
qt(1− q)m−t(log t! + log(m− t)!).

By Stirling’s formula, for any t ≥ 1,

log t! ≥
(
t+

1

2

)
log t+

1

2
log(2π)− t.

Substituting the right-hand side into the above equation yields

Sm(q) :=

m∑
t=0

(
m

t

)
qt(1− q)m−t log t! ≥ 1

2
(1− (1− q)m) log(2π)−mq

+

m∑
t=1

(
m

t

)
qt(1− q)m−t

(
t+

1

2

)
log t.

Let g(x) := 0 for x ∈ [0, 1) and g(x) := (x+ 1/2) log x for x ≥ 1. Simple calculus shows that the
function is concave. Applying the concavity of g to the last sum yields

m∑
t=1

(
m

t

)
qt(1− q)m−t

(
t+

1

2

)
log t ≥ g

(
m∑
t=0

(
m

t

)
qt(1− q)m−t · t

)
=

(
mq +

1

2

)
log(mq),
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where the last step follows by the fact that mq ≥ 1. A similar inequality holds for the weighted sum
of log(m− t)!. Consolidating these inequalities, we obtain

Sm(q) + Sm(1− q) ≥
(
mq +

1

2

)
log(mq) +

(
m(1− q) +

1

2

)
log(m(1− q))

+
1

2
(1− (1− q)m) log(2π)−mq +

1

2
(1− qm) log(2π)−m(1− q)

= (m+ 1) logm−mH(Bern(q)) +
1

2
log(q(1− q))

+
1

2
(2− (1− q)m − qm) log(2π)−m.

On the other hand, for the logm! term,

logm! ≤
(
m+

1

2

)
logm+

1

2
log(2π)−m+

1

12m
.

Substituting the previous term bounds into the H(bin(m, q)) expression yields

H(bin(m, q)) = mH(Bern(q))− logm! + Sm(q) + Sm(1− q)

≥ 1

2
log
(

(2π)1−(1−q)m−qmmq(1− q)
)
− 1

12m
.

Before continuing, we remark that the bound in the above lemma has the right dependence onmq(1−
q) in the sense that if we fix q and increase m, the lower bound converges to 1

2 log(Θ(mq(1− q))).
Another point to mention is that the above bound covers q ∈ [1/m, 1 − 1/m], while Lemma 6
appearing later in this section covers q 6∈ [1/m, 1− 1/m]. Note that the dependence on mq(1− q)
changes from logarithmic to linear, showing an “elbow effect” around 1/m.

Assume that pIj/(2
√

log n) ≥ 9Lj , then for any (cx)x∈X ∈ Vs,

H(ϕi|1js≤µx≤i−1 = cx, x ∈ Xs) ≥ H(bin(pIj/(2
√

log n), 1/(9Lj)) ≥
1

2
.

Consolidating this with the previous results yields that

H(ϕi|ϕjs , . . . , ϕi−1) ≥
∑

(cx)x∈X∈Vs

1

2
· Pr(1js≤µx≤i−1 = cx, x ∈ Xs) ≥

1

2
· 1

2
=

1

4
,

where we utilize pIj/(2
√

log n) ≥ 9Lj ≥ 9 and (1− q)m + qm < 1/e for ∀m ≥ 3, q ∈ [1/m, 1/2].
We can then bound the quantity of interest as follows.

H((ϕi)i∈nIsj ) =

js+Lj−1∑
i=js

H(ϕi|ϕjs , . . . , ϕi−1)

≥
js+Lj/5∑
i=js

H(ϕi|ϕjs , . . . , ϕi−1)

≥ Lj
5
· 1

4
=
Lj
20

=
1

20
√

log n
min

{
pIj , j · log n

}
.

On the other hand, if 9Lj ≥ pIj/(2
√

log n) � 1, we can further “compress” the truncated profile
(ϕi)i∈nIsj over nIsj to reduce the effective value of Lj . Specifically, for any integer t < Lj , we define
the t-compressed version of (ϕi)i∈nIsj as

(ϕi)
t
i∈nIsj :=

 js+`t−1∑
i=js+(`−1)t

ϕi


`∈[Lj/t]

.
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Note that for each t, the length of (ϕi)
t
i∈nIsj

is Ltj := Lj/t. For each entry in the compressed version,
we can again express the entry as the sum of independent indicator random variables. Specifically,

js+`t−1∑
i=js+(`−1)t

ϕi =
∑
x∈X

1µx∈[js+(`−1)t,js+`t−1].

Furthermore, for any x ∈ Xs, the expectation of each indicator variable satisfies

E[1µx∈[js+(`−1)t,js+`t−1]] =

js+`t−1∑
i=js+(`−1)t

e−npx
(npx)i

i!

=
t

Lj

[
1

9
,

1

2

]
=

1

Ltj

[
1

9
,

1

2

]
.

Similarly, for any x ∈ X , we have E[1µx∈[js+(`−1)t,js+`t−1]] ≤ 1/(2Ltj).

Now, choose t large enough so that 18Ltj ≥ pIj/(2
√

log n) ≥ 9Ltj . Following the reasoning in the
previous case shows that

H((ϕi)i∈nIsj ) ≥ H((ϕi)
t
i∈nIsj ) ≥ Ω

(
1√

log n
min

{
pIj , j · log n

})
.

It remains to consider the case of O(
√

log n) ≥ pIj ≥ 1, for which we adopt our previous analysis.

Again, partition Ij into sub-intervals of equal length Lj/n. Then, assign each probability px ∈ Ij a
length-Lj/n interval Ipx centered at px. By construction, each interval Ipx covers at least one of the
sub-intervals in the partition. Redefine any of these covered sub-intervals as Isj . Denote by Xs the
collection of symbols corresponding to the covering intervals.

Note thatO(
√

log n) ≥ pIj ≥ |Xs| ≥ 1. For any i ∈ [js, js+Lj/5], the previous analysis shows that

H(ϕi|ϕjs , . . . , ϕi−1) ≥ H(bin(|Xs|, 1/(9Lj)) · (1− 3/4) .

We bound the right-hand side with the following lemma.
Lemma 6. For any m ≥ 1, and q ≤ min{1/2, 1/m} or q ≥ max{1/2, 1− 1/m},

H(bin(m, q)) ≥ m

4
min{q, 1− q} ≥ 1

4
mq(1− q).

Proof. By symmetry, we need to consider only the case of q ∈ [0, 1/m].

H(bin(m, q)) ≥ H(1bin(m,q)≥1)

= H(((1− q)m, 1− (1− q)m))

≥ −(1− q)m(m log(1− q))

≥ −m
4

log(1− q)

≥ m

4
· q.

Consolidating the lemma and the chain rule of entropy yields,

H((ϕi)i∈nIsj ) =

js+Lj−1∑
i=js

H(ϕi|ϕjs , . . . , ϕi−1)

≥
js+Lj/5∑
i=js

H(ϕi|ϕjs , . . . , ϕi−1)

≥ Lj
5
· |Xs|

4 · 9 · Lj
·
(

1− 3

4

)
=
|Xs|
720

= Ω

(
1√

log n
min

{
pIj , j · log n

})
.
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Alternatively, we can use the fact that adding independent random variables does not decrease entropy,
i.e., H(Y + Z) ≥ H(Y ) for any independent variables Y and Z. Note that

(ϕi)
t
i∈nIsj =

∑
x∈X

(1µx=i)i∈Isj .

Let y be an arbitrary symbol that belongs to Xs. Then,

H((ϕi)i∈nIsj ) ≥ H((ϕi)
t
i∈nIsj ) ≥ H((1µy=i)i∈Isj ) ≥ H((1µy=js ,1µy=js+1)).

By the previous derivations, both Pr(µy = js) and Pr(µy = js + 1) belong to 1
Lj

[1/9, 1/2]. Hence,

H((ϕi)i∈nIsj ) ≥ H
(

Bern

(
2

11

))
≥ 2

5
= Ω

(
1√

log n
min

{
pIj , j · log n

})
.

Note that this argument does not apply to other cases, since

H((1µy=i)i∈Isj ) = O(logLj) = O(log n),

while min
{
pIj , j · log n

}
can be as large as Θ̃(n1/3) in general.

The proof is complete upon noting that indices with j = O(1) corresponds to a total contribution of at
mostO(1) toHSn (p) andHSn (p) = Θ̃(E[D(ϕ)]) = Θ̃(D(ϕ)), with probability at least 1−O(1/

√
n).

Summary The simple expression shows thatHS
n(p) characterizes the variability of ranges that the

actual probabilities spread over. As Theorem 11 shows, HS
n(p) closely approximates En(p), the

value around which Dn ∼ p concentrates (Theorem 9) andHn(p) lies (Thoerem 1). Henceforth, we
useHS

n(p) as a proxy for bothHn(p) and Dn, and study its attributes and values.

Let p ∈ ∆ be an arbitrary discrete distribution. Recall that in Section A, we partition the unit interval
into a sequence of ranges,

Ij :=

(
(j − 1)2 log n

n
, j2 log n

n

]
, 1 ≤ j ≤

√
n

log n
,

denote by pIj the number of probabilities px belonging to Ij , and relate En(p) to an induced
shape-reflecting quantity,

HS
n(p) :=

∑
j≥1

min
{
pIj , j · log n

}
,

the sum of the effective number of probabilities lying within each range.

The simple expression of HS
n(p) shows that it characterizes the variability of ranges the actual

probabilities spread over. As Theorem 11 shows, HS
n(p) closely approximates En(p), the value

around which Dn ∼ p concentrates (Theorem 9) andHn(p) lies (Thoerem 1). In this section, we use
HS
n(p) as a proxy for bothHn(p) and Dn, and study its attributes and values.

To further our understanding of profile entropy and dimension, in the next two sections, we investigate
the analytical attributes ofHS

n(p) concerning monotonicity and Lipschitzness.
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A.4 Extension: Profile Entropy Estimation via Monotonicity

Among the many attributes thatHS
n(p) possesses, monotonicity is perhaps most intuitive. One may

expect a larger value ofHS
n(p) as the sample size n increases, since additional observations reveal

more information on the variability of probabilities. Below we confirm this intuition.
Theorem 12. For any n ≥ m� 1 and p ∈ ∆,

HS
n(p) ≥ HSm(p).

The above result that lowerly boundsHS
n(p) with HSm(p) for m ≤ n. Besides this, a more desirable

result is to upperly bound HS
n(p) with some function of HSm(p). Such a result will enable us to

draw a sample of size m ≤ n, obtain an estimate of HSm(p) from Dm (by the entropy-dimension
equivalence), and use it to bound the value ofHS

n(p) for a much larger sample size n.

With such an estimate, we can perform numerous tasks such as predicting the performance of PML
when more observations are available, or the space needed for storing the profile of a longer sample
sequence. These applications are closely related to the recent works on learnability estimation
by Kong and Valiant [2018], Kong et al. [2019], namely, one wish to know how many (additional)
observations are required for a learning algorithm to achieve a certain level of performance.

The next theorem provides a simple and tight upper bound onHS
n(p) in terms of HSm(p).

Theorem 13. For any n ≥ m� 1 and p ∈ ∆,

HS
n(p) ≤

√
n log n

m logm
·HSm(p).

Estimation Before continuing to the proof, we present some direct implications.

1. If for m = Ω(n0.01), we have HSm(p)�
√
m, then HSn (p)�

√
n.

2. For any two integers m ≤ n and distribution p,

HSm(p)√
m logm

≥ HSn (p)√
n log n

.

In other words, the sequence Am := HSm(p)/
√
m logm, m ≤ n, is monotonically decreas-

ing and converges to An. As we increase the value of m, (
√
n log n · Am), which can be

viewed as our estimate of HSn (p), is getting more and more accurate. For the purpose of
adaptive estimation, if n = 2t, we can choose m = 20, 21, . . . , 2t.

Proof. Below we prove both the lower and upper bounds. For clarity, denote by p(m, j) the value
of pIj corresponding to HSm(p), and p(n, j) the value of pIj corresponding to HSn (p). Furthermore,
denote r :=

√
(n/m)((logm)/ log n), which is treated as an integer. Then, by the definition of HS· ,

rHSm(p) = r
∑
j≥1

min {p(m, j), j · logm}

=
∑
j≥1

min

r ·
rj∑

i=rj−r+1

p(n, i), rj · logm


≥
∑
j≥1

r−1∑
t=0

min


rj∑

i=rj−r+1

p(n, i), (rj − t) · logm


≥
∑
j≥1

r−1∑
t=0

min {p(n, rj − t), (rj − t) · logm}

=
∑
i≥1

min {p(n, i), i · logm}

≥ logm

log n
·HSn (p).
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The lower-bound part basically follows by reversing the above inequalities.

HSn (p) =
∑
i≥1

min {p(n, i), i · log n}

=
∑
j≥1

r−1∑
t=0

min {p(n, rj − t), (rj − t) · log n}

≥
∑
j≥1

r−1∑
t=0

min {p(n, rj − t), (rj − r + 1) · log n}

≥
∑
j≥1

min

{
r−1∑
t=0

p(n, rj − t), (rj − r + 1) · log n

}
=
∑
j≥1

min {p(m, j), (rj − r + 1) · logm}

≥ HSm(p).

This completes the proof of the theorem.

A.5 Extension: Lipschitzness of Profile Entropy

Note that we can viewHS
n(p) as a distribution property. In this section, we establish the Lipschitzness

ofHS
n(p) under a weighted Hamming distance and the `1 distance between distributions. Precisely,

given two distributions p, q ∈ ∆, the vanilla Hamming distance is denoted by

h(p, q) :=
∑
x

1px 6=qx .

This may not be suitable for the purpose of statistical inference since the two distributions could
differ at many symbols, while these symbols account for only a negligible total probability and has
little effects on most induced statistics. To address this, we propose a weighted Hamming distance

hW(p, q) :=
∑
x∈X

max{px, qx} · 1px 6=qx .

The next result measures the Lipschitzness of HSn under hW .
Theorem 14. For any integer n, and distributions p and q, if hW(p, q) ≤ ε for some ε ≥ 1/n,∣∣HS

n(p)−HSn (q)
∣∣ ≤ Õ(

√
εn).

Proof. Recall that the quantity of interest is

HS
n(p) :=

∑
j≥1

min
{
pIj , j · log n

}
.

Given the bound of hW(p, q) ≤ ε, we denote by Y the collection of symbols x at which px 6= qx.
By definition, we have both

∑
x∈Y px ≤ ε and

∑
x∈Y qx ≤ ε. Below, we show that these symbols

modify the value of HS
n(p) by at most Õ(

√
εn). By symmetry, the same claim also holds for the

distribution q. Combining the two claims yields the desired result.

First, we consider x ∈ Y satisfying px = 0 or px ∈ I1 = (0, (log n)/n]. Such a symbol either does
not contribute the value ofHS

n(p), or affects only the value of the first term min {pI1 , log n}, which
is at most log n. Hence the claim holds for this case.

Next, consider symbols x ∈ Y satisfying px ∈ Ij = ((j − 1)2 logn
n , j2 logn

n ] for some j ≥ 2 and
denote the collection of them by Z ⊆ Y . By the above assumption, we have

∑
x∈Z px ≤ ε. To

maximize their impact onHS
n(p) under this constraint, we should set their values to be

pj := (j − 1)2 log n

n
, j = 2, . . . J,
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for some J to be determined, where each pj repeats exactly j log n times. Then, the symbols in Z
contributes at most

∑J
j=2 j log n = (log n)(J − 1)(J + 2)/2 toHS

n(p), and the above constraint on
the total probability mass bounds transforms to

ε ≥
∑
x∈Z

px ≥
J∑
j=2

(j log n) · (j − 1)2 log n

n
≥ (log n)2

12n
J(J2 − 1)(−2 + 3J).

Therefore in this case, the contribution is again Õ(
√
εn), which completes the proof.

Replacing max{px, qx} with |px − qx| induces a common similarity measure, the `1 distance. The
next theorem is an analog to Theorem 14 under this classical distance.
Theorem 15. For any integer n, and distributions p and q, if `1(p, q) ≤ ε for some ε ≥ 0,∣∣HS

n(p)− cHSn (q)
∣∣ ≤ O((εn)2/3),

where c is a constant in [1/3, 3]. Note that the inequality is significant iff ε ≤ Θ̃(1/n1/4), since the
value ofHS

n(p) is at most O(
√
n log n) for all p.

By symmetry, it suffices to prove that under the conditions in Theorem 15,

HSn (p) ≤ 3HSn (q) +O((εn)2/3).

Proof. Consider the optimization problem of modifying p by at most ε and maximizing the increase
in HSn (p). For each j and each probability px ∈ j, denote by p′x the modified value. Depending on
the location of p′x, there are three types of possible modifications, as illustrated below.

• For the first type, we still have p′x ∈ Ij . This does not change the value of pIj and hence
does not increase HSn (p).

• For the second type, we have p′x ∈ Ij−1 or p′x ∈ Ij+1. If pIj ≤ j · log n, this will decrease
the value of min{pIj , j · log n} by 1 and increase the value of min{pIj−1

, (j− 1) · log n} or
min{pIj+1 , (j + 1) · log n} by at most one. Hence in this case, the value of HSn (p) can only
decrease. If pIj > j · log n, then min{pIj , j · log n} = j · log n. For a particular j, all such
modifications can increase the value of HSn (p) by at most (j − 1) log n+ (j + 1) log n =
2j log n, which is twice the value of min{pIj , j · log n}. Hence, all such modifications,
when combined, increase the value of HSn (p) by at most 2HSn (p).

• For the third type, we have p′x ∈ Ii and |i− j| ≥ 2. If i < j, we require a probability mass
of at least ((j − 1)2 log n− i2 log n)/n ≥ (i log n)/n, where j ≥ 3. If i > j, we require
a probability mass of at least ((i− 1)2 log n− j2 log n)/n ≥ (i log n)/n. The number of
such modifications that could lead to an increase in the value of HSn (p) is at most i log n.
For each i, let ci denote the number of such modifications that will lead to an increase of
HSn (p). Then, the total increase is

∑
i ci, each ci is at most i log n, and the total required

probability mass required is at least
∑
i ci · (i log n)/n ≤ ε.

Let {ci} be the optimal solution that maximizes
∑
i ci. Assume that there are two indices

i < j satisfying ci < i log n and cj > 0. Then, if we replace ci and cj by ci + 1 and cj − 1,
respectively,

∑
i ci will not change and

∑
i ci · (i log n)/n will decrease. Hence, we can

assume that there exists i′ satisfying ci = i log n,∀i < i′ and ci = 0,∀i > i′. In addition,
assuming εn ≥ log n implies that i′ ≥ 2. Hence, we have

∑
i ci ≤ (log n)i′(i′ + 1)/2 and∑

i

ci ≤ 3.5 ·
(

nε√
log n

)2/3

.

B Competitive-Optimal Property Inference

B.1 Theorem 3: Sufficiency of Profiles

Numerous practical applications call for inferring property values of an unknown distribution from
its samples, such as entropy for graphical modeling [Koller and Friedman, 2009], Rényi entropy
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for sequential decoding [Arikan, 1996], and support size for species richness estimation [Magurran,
2013]. Therefore, property inference has attracted considerable attention over the past few decades.

Property inference Formally, a distribution property over some collection P ⊆ ∆ is a functional
f : P→ R that associates with each distribution a real value. Given a sample Xn from an unknown
distribution p ∈ P, the problem of interest is to infer the value of f(p). For this purpose, we employ
another functional f̂ : X ∗ → R, an estimator mapping every sample to a real value. We measure the
statistical efficiency of f̂ in approximating f over P by its absolute error |f̂(Xn)− f(p)|.

Given Xn ∼ p ∈ P, the minimal absolute error rate, or simply error, that f̂ achieves with probability
at least 9/10 is rn(p, f̂) := min{r : Pr(|f̂(Xn)− f(p)| ≤ r) ≥ 9/10}, where the dependence on f
is implicit. While p is often unknown, the worst-case error of an estimator f̂ over all distributions in
P is rn(P, f̂) := maxp∈P rn(p, f̂), and the lowest worst-case error for P, achieved by the optimal
estimator, is the minimax error rn(P) := minf̂ ′ rn(P, f̂ ′).

Symmetric properties An important class of properties is the collection of symmetric ones, which
encompasses numerous well-known distribution characteristics, such as Shannon entropy, Rényi
entropy, support size, and `1 distance to the uniform distribution. Symmetry connects the estimation of
such property to the sample profile, a sufficient statistic for the task in hand. The general principle of
maximum likelihood then provides an intuitive estimator, profile maximum likelihood (PML) [Orlitsky
et al., 2004], that maximizes the probability of observing the profile.

An estimator is profile-based if its values depends on only the profile. The theorem below shows that
profile-based estimators are sufficient for inferring symmetric properties.

Theorem 3 (Sufficiency of profiles). For any symmetric property f and set P ⊆ ∆, and estimator f̂ ,
we can construct an explicit estimator F̂ over length-n profiles satisfying

rn(p, f̂ ) = rn(P, F̂ ◦ ϕ),

where both estimators can have independent randomness.

Proof. First we show that given estimator f̂ , there is an estimator f̂s which is symmetric, i.e., invariant
with respect to domain-symbol permutations, and achieves the same guarantee. To see this, consider
a random permutation σ̃ chosen uniformly randomly from the collection of permutations over the
underlying alphabet. Let f̂s := f̂ ◦ σ̃. Then for any p ∈ P ,

Pr
Xn∼p

(∣∣∣f̂s(Xn)− f(p)
∣∣∣ > ε

)
(a)
= Pr

Xn∼p

(∣∣∣f̂ ◦ σ̃(Xn)− f(p)
∣∣∣ > ε

)
(b)
=
∑
σ

Pr
Xn∼p

(∣∣∣f̂ ◦ σ(Xn)− f(p)
∣∣∣ > ε

∣∣ σ̃ = σ
)
· Pr (σ̃ = σ)

(c)
=
∑
σ

Pr
Xn∼p

(∣∣∣f̂ ◦ σ(Xn)− f(p)
∣∣∣ > ε

)
· Pr (σ̃ = σ)

(d)
=
∑
σ

Pr
Xn∼σ(p)

(∣∣∣f̂(Xn)− f(σ(p))
∣∣∣ > ε

)
· Pr (σ̃ = σ)

(e)
<
∑
σ

δ · Pr (σ̃ = σ)

(f)
= δ,

where (a) follows by the definition of f̂s; (b) follows by the law of total probability; (c) follows
by the independence between σ̃ and Xn; (d) follows by the symmetry of f and the equivalence of
applying σ to Xn and to p; (e) follows by the fact that σ(p) ∈ P and the guarantee satisfied by the
estimator f̂ ; and (f) follows by the law of total probability.

Before we proceed further, we introduce the following definitions. For any sequence xn, the sketch
of a symbol x in xn is the set of indices i ∈ [n] for which xi = x. The type of a sequence xn is the
set τ(xn) of sketches of symbols appearing in xn.
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Since f̂s is symmetric, there exists a mapping f̂τ over types satisfying f̂s = f̂τ ◦ τ . Due to the i.i.d.
assumption on the sample generation process, given the profile of a sample sequence, all the different
types corresponding to this profile are equally likely. Let Λ be a mapping that recovers this relation,
i.e., Λ maps each profile uniformly randomly to a type having this profile.

Then, for any p ∈ P and Xn ∼ p,

f̂s(X
n) = f̂τ ◦ τ(Xn) = f̂τ ◦ Λ ◦ ϕ(Xn).

Consequently, the mapping F̂ := f̂τ ◦ Λ is a profile-based estimator that satisfies

Pr
Xn∼p

(∣∣∣F̂ (ϕ(Xn))− f(p)
∣∣∣ > ε

)
= Pr
Xn∼p

(∣∣∣f̂s(Xn)− f(p)
∣∣∣ > ε

)
< δ, ∀p ∈ P.

B.2 Theorem 4: Competitiveness of PML

Naturally and generally, we study symmetric property inference over a distribution collection P ⊆ ∆
that is also symmetric, i.e., if p ∈ P, then P as well contains all the symbol-permuted versions of p.
For every sample xn ∈ Xn and symmetric P, the PML estimator over P maps xn to a distribution

Pϕ(xn) := arg max
p∈P

Pr
Xn∼p

(ϕ(Xn) = ϕ(xn)) .

Given a sample Xn ∼ p ∈ P and a symmetric property p, the PML plug-in estimator uses f ◦P(Xn)
to estimate f(p). Recent researches [Acharya et al., 2017, Hao and Orlitsky, 2019a] show that for an
extensive family of symmetric properties, including the previously mentioned four, the PML plug-in
estimator universally achieves minimax error in the large-alphabet regime, up to constant factors.

The next result shows that the PML estimator is adaptive to the simplicity of underlying distributions
in inferring all symmetric properties, over any symmetric P. Specifically, the theorem states that the
n-sample PML plug-in essentially performs as well as the optimal n/Hn(p)-sample estimator, which
approaches the performance of the optimal n-sample estimator if p has a smallHn(p). Furthermore,
for any property and estimator, there is a symmetric set P′ for which this 1/Hn(p) ratio is optimal.
Theorem 4 (Competitiveness of PML). For any symmetric property f and set P ⊆ ∆, and every
distribution p ∈ P, the PML plug-in estimator satisfies

rn(p, f ◦ Pϕ) ≤ 2rnp(P),

where np :' n/Hn(p). On the other hand, for any estimator f̂ and symmetric property f , there
exists a symmetric set P′ ⊆ ∆ such that for some p ∈ P′,

rn(p, f̂ ) ≥ 2rnp(P′) .

B.3 Prior Work and Discussions

Results Recent years have shown interests in determining the limits of inferring symmetric distribu-
tion properties. Building upon worst-case analysis, the major contribution of these works is showing
that for several specific properties, one can design more involved estimators whose worst-case perfor-
mance is better than the empirical-distribution plug-in estimators (empirical estimators), over ∆X for
some finite alphabet X . Note that ∆X is a special symmetric distribution collection.

For example, the empirical estimator for Shannon entropy has a worst-case error rate of Θ(|X |/n),
whereas the minimax error rate is Θ(|X |/(n log n)) [Valiant and Valiant, 2011, 2013, Jiao et al., 2015,
Wu and Yang, 2016, Acharya et al., 2017, Hao and Orlitsky, 2019a,c, 2020]. Similar results also hold
for support size and `1 distance to the uniform distribution over X (See [Valiant and Valiant, 2011,
2013, Acharya et al., 2017, Jiao et al., 2018, Wu et al., 2019, Hao and Orlitsky, 2019a,c, 2020]). One
observation is that all these properties are in the form of

∑
x fr(px), where fr is a relative smooth

real function (for support size, one needs a lower bound like 1/|X | on the positive probabilities,
which effectively smoothes the function).

It is apparent that most symmetric properties are not in the
∑
x fr(px) form. A simple example is

Rényi entropy, for which the learning error rates exhibit a significantly different behavior. Specifically,
for a power parameter α > 1, α ∈ N, the minimax error of inferring Rényi entropy varies according
to |X | and n as follows [Acharya et al., 2016].
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If n . |X |1−1/α (sample-sparse regime), then rn(∆X ) & maxp f(p) (consistent estimation is
impossible); if n & |X |1+1/α (large-sample regime), then rn(∆X ) ' (|X |1−1/α/n)1/2, which
is achieved by the empirical estimator (trivial regime); if |X |1−1/α . n . |X |1+1/α, then the
empirical estimator has an order max{|X |/n, 1} worst-case error, whereas the minimax error is
(|X |1−1/α/n)1/2 (potentially much lower than that of empirical).

The recent work of Hao and Orlitsky [2019a] significantly extends our understanding of symmetric
property estimation by showing that the PML estimator is sample optimal for all

∑
x fr(px) properties

that are approximately Lipschitz, and is as good as the best known estimators for Rényi entropy of
power α > 3/4. The paper also presents resulting on other tasks such as testing.

Given the special structures, even the combination of all the properties mentioned above corresponds
to only an extremely small subclass of symmetric properties. The general landscape for how the
worst-case error rate behaves when we consider either the empirical or the minimax estimator is far
from understood, even for just ∆X . In fact, even for Rényi entropy, a simple and widely studied
property, the minimax rates are not fully characterized – the lower and upper bounds in Acharya et al.
[2016] for non-integer powers do not match in all parameter regimes. Ideally, there should be a set of
formulas such that once the explicit form of f is available, the respective error rates can be computed,
and more importantly, an explicit algorithm can be derived.

Our result pushes forward the general understanding of symmetric property estimation. It leverages the
method of PML to derive competitive learning guarantees for all symmetric properties and distribution
collections. The theorem even adapts itself to individual distributions, leading to numerous nontrivial
estimation results without introducing sophisticated analysis or additional algorithms.

Methods As the task involves two components, the property and distribution (probability multiset),
the design of statistical methods also advances in two veins.

The first vein concerns constructing a universal plug-in estimator for all symmetric properties. A
symmetric property is invariant under symbol permutations, hence it suffices to obtain an accurate
estimate of the probability multiset.

One method is PML, the approach that our theorem adopts. Recently, following the papers by Das
[2012], Acharya et al. [2017], the work of Hao and Orlitsky [2019a] shows that for any symmetric
property that is in the form of

∑
x fr(px) and appropriately Lipschitz, both the profile maximum

likelihood [Orlitsky et al., 2004] and its near-linear-time computable variant in Charikar et al. [2019b]
achieve the optimal sample complexity up to small constant factors.

Another method is moment matching via linear programming (LP). In typical works using LP, such
as Valiant and Valiant [2011, 2013, 2016], Han et al. [2018], one first estimates the (lower-order)
moments of the underlying distributions (e.g.,

∑
x p

i
x for i ≤ log n), which are also symmetric

properties, and then finds a distribution through an LP method (up to domain-symbol permutations),
whose lower order moments match with the estimates. These methods are known to achieve the
minimax error rates over ∆X for only a few specific properties, such as entropy, support size (also
assume a 1/|X | lower bound on the positive probabilities), and `1-distance to the uniform distribution.

The second vein of methods addresses the bias of empirical estimators and (often partially) replaces
the given property by a bias-corrected polynomial, for which we can efficiently construct a near-
unbiased estimator. There are mainly three different types of constructions for the bias-corrected
polynomial: using classical minimax approximation [Jiao et al., 2015, 2018, Wu and Yang, 2016,
Wu et al., 2019, Hao and Orlitsky, 2019c], applying smoothing techniques to the coefficients of
the unbiased estimator [Orlitsky et al., 2016, Hao et al., 2018, Hao and Li, 2020], and computing
the derivative of the (property’s) Bernstein polynomial and employing the integral of its minimax
approximation [Hao and Orlitsky, 2020].

Early works in this direction address specific properties, such as entropy [Jiao et al., 2015, Wu and
Yang, 2016], support size [Wu et al., 2019], support coverage [Orlitsky et al., 2016], and `1-distance
to the uniform distribution [Jiao et al., 2018], and determine their respective minimax error rates.
Recent works consider broader families of properties [Hao et al., 2018, Hao and Orlitsky, 2019c,
2020, Hao and Li, 2020], in particular those in the

∑
x fr(px) form and appropriately Lipschitz.

Besides these results, some state-of-the-art Rényi entropy estimators [Acharya et al., 2016] also use
polynomial approximation. Excluding properties in these special forms, it is unknown whether these
techniques/methods work for the large amount of symmetric properties in general, even just over ∆X .
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Outline The rest of Appendix B presents the proof of the our result on PML. For clarity, we divide
the full proof into three parts: a) the sufficiency of profiles for estimating symmetric properties
(already established above); b) the standard “median trick” often used to boost the confidence of
learning algorithms; c) the PML method and its competitiveness to the min-max estimators. As one
may expect, the proof utilizes several previously established results.

B.4 Proof of Theorem 4

Proof outline We begin with a proof sketch on the high level. While our theorem states only a
constant-error-probability result for the vanilla PML, the guarantee holds for approximations of PML
and any general error probability bound δ, and this outline corresponds to the general setting.

1 For simplicity, let k denote the (expected or high-probability) dimension of a length-n profile
from an unknown p ∈ ∆, and refer to the actual random quantity Dn ∼ p as “dimension”.

2 Let’s say p ∈ P (which is symmetric), and we have an m-sample estimator over P with an
(ε, δ) guarantee, i.e., for every distribution in P , the estimator learns its property value up to
an ε error, with probability at least 1− δ. In addition, we assume that m� n with the ratio
r := n/m to be determined.

3 Now, assume that r has been properly chosen, and we could utilize at most r copies of the
m-sample estimator to construct an n-sample (ε, δ · exp(−2k)) estimator (the existence
of r follows by the standard “median trick”). Furthermore, by the sufficiency of profiles
(Theorem 3), there is a profile-based estimator that achieves the same guaranty.

4 Divide all length-n profiles into two groups: one group with dimension at most of order k
(hiding logarithmic factors), the other with dimension much larger than k.

5 By the concentration of sample profile dimensions (e.g., Theorem 9), the profile of an
arbitrary sample from p belongs to the first group with high probability (say at least 1−1/n),
we can safely ignore the second group.

6.1 Pick a profile from “the first group”, if its probability is� δ · exp(−k), the approximate
PML (APML) will have a probability of� δ · exp(−2k). Here, the definition of APML
is based on profile probabilities – for every length-n sample, its profile probability under
the true distribution and the APML estimate should differ by a factor of at most exp(k)
(more generally, a fixed factor of at least 1, which covers the vanilla PML). This definition
is analogous to those in Acharya et al. [2017] and Charikar et al. [2019a,b].

6.2 So, the profile-based estimator must work properly on both distributions, the original and
the APML. Triangle inequality then relates the property values of these distributions (by
eliminating the estimator’s value) and yields a 2 ε estimation guarantee for the APML.

7.1 On the other hand, if the profile we picked has a probability at most δ · exp(−k), then the
APML may fail, i.e., not produce a reasonable estimate.

7.2 However, there are at most (ignore logarithmic factors in the exponent) exp(k) such profiles,
hence by the union bound, the total probability of failing is at most δ + 1/n.

8 Finally, we tune parameter r, which becomes something like k, up to logarithmic factors.
Utilizing our entropy-dimension equivalence (Theorem 1) completes the proof.

Median Trick The following argument is standard method for boosting the confidence of learning
algorithms, commonly known as the median trick.

Lemma 7 (Median trick). Let α, β ∈ (0, 1) be real parameters satisfying 1/10 ≥ α > β. For an
accuracy ε > 0 and a distribution set P ⊆ ∆, if there exists an estimator f̂A such that

Pr
Xn∼p

(∣∣∣f̂A(Xn)− f(p)
∣∣∣ > ε

)
< α, ∀p ∈ P,

we can construct another estimator f̂B that takes a sample of size m :=
⌈

4n
log 1

2α

log 1
β

⌉
and achieves

Pr
Ym∼p

(∣∣∣f̂B(Y m)− f(p)
∣∣∣ > ε

)
< β, ∀p ∈ P.

30



Proof. Given t ∈ N i.i.d. copies of f̂A(Xn), the probability that less than half of them satisfy the
inequality in the parentheses is at least

Pr

(
t∑
i=1

1Ai <
t

2
for Ai’s satisfying Pr(Ai) < α

)
≥ Pr

(
bin (t, α) <

t

2

)
.

By the law of total probability, the right-hand side equals to

1− Pr

(
bin (t, α) ≥ t

2

)
≥ 1− exp

(((
1

2α
− 1

)
− 1

2α
log

1

2α

)
· αt
)

≥ 1− exp

(
− t

4
log

1

2α

)
,

where the first step follows by the Chernoff bound of binomial random variables, and the second step
follows by α ≤ 1/10 and the inequality c− 1− c

2 log c > 0,∀c ≥ 5.

Set t :=
⌈

4
log 1

2α

log 1
β

⌉
, the right-hand side is at least 1− β.

Therefore, given a sample of size m = t ·n, we can partition it into t sub-samples of equal size, apply
the estimator f̂A to each subsample, and define the median of the corresponding estimates as f̂B .

By the previous reasoning, this estimator satisfies

Pr
Ym∼p

(∣∣∣f̂B(Y m)− f(p)
∣∣∣ > ε

)
< β, ∀p ∈ P.

Proof of the theorem. For any tolerance δ ∈ (0, 1) and distribution p ∈ ∆, define the (δ, n)-typical
cardinality of profiles with respect to p as the smallest cardinality Cδ,n(p) of a set of length-n profiles
such that the probability of observing a sample from p with a profile in this set is at least 1− δ. The
following lemma provides a tight characterization of Cδ,n(p) in terms of the dimension of Φn ∼ p.

Lemma 8. For any p ∈ ∆ and Φn ∼ p, with probability at least 1− 6/
√
n,

C 6√
n
,n(p) ≤ n8(Dn+20 logn).

The proof of the lemma follows by recursively applying Theorem 9. Specifically, let d := 2En(p) +
3 log n, which is at least Dn ∼ p, with probability at least 1− 6/

√
n. Then,

C 6√
n
,n(p) ≤

(
n

d

)(
n+ d− 1

d− 1

)
≤ n2d−1 ≤ n2(2En(p)+3 logn) ≤ n8D(Φn)+20 logn,

where the last inequality holds with with probability at least 1− 6/
√
n.

Now, let f be a symmetric property over P . For simplicity, we will establish the theorem for the
vanilla PML, since as our proof outline shows, the proof for any approximate PML (APML) is
essentially the same. In addition, for a sequence xn with profile φ := ϕ(xn), we write Pφ for the
PML estimate Pϕ(xn). According to Theorem 3, for any parameters ε > 0 and δ ∈ (0, 1), if there
exists an estimator f̂ such that

Pr
Xn∼p

(∣∣∣f̂(Xn)− f(p)
∣∣∣ > ε

)
< δ, ∀p ∈ P,

there is an estimator f̂ϕ over profiles satisfying

Pr
Xn∼p

(∣∣∣f̂ϕ(ϕ(Xn))− f(p)
∣∣∣ > ε

)
< δ, ∀p ∈ P.

For an arbitrary length-n profile φ that satisfies PrΦn∼p(Φ
n = φ) ≥ 2δ, these error bounds yield

Pr(|f̂ϕ(φ) − f(p)| > ε) < 1
2 , and since PrΦn∼Pφ

(Φn = φ) ≥ PrΦn∼p(Φ
n = φ) ≥ 2δ by the

definition of PML (as we take the distribution that maximizes the probability),

Pr
(∣∣∣f̂ϕ(φ)− f(Pφ)

∣∣∣ > ε
)
<

1

2
.
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By the union bound and triangle inequality,

Pr (|f(p)− f(Pφ)| > 2 ε) < 1 ⇐⇒ |f(p)− f(Pφ)| ≤ 2 ε surely.

Furthermore, by Lemma 8, with probability at least 1 − 6/
√
n, the total probability of length-n

profiles φ satisfying PrΦn∼p(Φ
n = φ) < 2δ is at most

2δ · C 6√
n
,n(p) +

6√
n
≤ 2δ · n8Dn+20 logn +

6√
n
,

which basically upperly bounds the probability that |f(p)− f(PΦn)| > 2 ε . Next we will assume
that there exists an estimator f̂ satisfying PrXm∼p(|f̂(Xm)−f(p)| > ε) < δ, ∀p ∈ P. By Lemma 7,
if δ ≤ 1/10, we can construct another estimator f̂ ′ that takes a sample of size n = 4m

log 1
2δ

log 1
δ′ (n is

assumed to be an integer here) and achieves a higher-confidence guarantee

Pr
Xn∼p

(∣∣∣f̂ ′(Xn)− f(p)
∣∣∣ > ε

)
< δ′, ∀p ∈ P.

Then by the above reasoning, with probability at least 1− 6/
√
n,

Pr
Φn∼p

(|f(p)− f(PΦn)| > 2 ε) ≤ 2δ′ · n8Dn+20 logn +
6√
n

= 2 exp

(
− n

4m
log

1

2δ
+ (8Dn + 20 log n) log n

)
+

6√
n
.

For the first term on the right hand side to vanish as quickly as 1/
√
n, it suffices to have

n

4m
log

1

2δ
≥ 20 · Dn log n and

n

4m
log

1

2δ
≥ 40 · log2 n.

Simplifying the expressions and applying the union bound yield that |f(p)− f(PΦn)| ≤ 2 ε with
probability at least 1− 1/

√
n, given both

n

Dn
&

m

log 1
δ

and n ≥ 8m.

B.5 Experiments

Prior works such as Hao and Orlitsky [2019a], Pavlichin et al. [2019] have experimentally demon-
strated the efficiency of PML on estimating several classical properties, including the Shannon and
Rényi entropy, support size, and `1 distance to the uniform distribution. Our result further extends
and establishes the efficiency of PML for numerous symmetric properties that are under-explored.
Given the broadness of this property class, the potential applications are countless.

Consider a variant of Shannon entropy, f(p) :=
∑
x px log2 px, that mildly puts more emphasis on

small probabilities. As the property is relatively new and non-Lipschitz, prior works and approaches
do not easily yield a satisfiable learning guarantee. Our result hence comes into play, because f is
symmetric, which suffices for Theorem 4 to take effect. Below, we will estimate this property by
an n-sample PML plug-in, and compare its performance to two estimators: the n-sample empirical
estimator that evaluates the entropy of the empirical distribution, serving as a baseline, and the
10n-sample empirical estimator whose sample size is larger than others by an order of magnitude.

We considered six natural distributions: uniform, Zipf(1/2), Zipf(2), Dirichlet(1)-drawn-, Dirichlet(2)-
drawn-, and geometric, all having support size k = 5,000. The plots are presented in Figure 1, with
both vertical and horizontal axes showing in log-scale (base 10). The sample size n ranges from 103

to 105, and every data point represents the average absolute error over 20 independent simulations.

Specifically, the geometric distribution has a success probability of (k − 1)/k; the Zipf(1/2) and
Zipf(2) distributions have probability pi ∝ i−1/2 and pi ∝ i−2 for i ≥ 1, both being truncated at k
and re-normalized; drawing a distribution from the Dirichlet(1) prior is equivalent to drawing one
uniformly from the k-dimensional standard simplex.
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As the experiments demonstrate, the PML plug-in estimator significantly improves over the empirical
estimator (note that the axes are in log-scale) and is as good as an estimator having access to samples
larger by order of magnitudes. There are multiple PML implementations and we have used the one
by Hao and Orlitsky [2019a] (Section 4 of that paper presents a list of PML computation algorithms).
Code is included in the supplementary material. For instructions on how to use the code, please refer
to the inline comments and Section 4.1 in the supplementary material of Hao and Orlitsky [2019a].

Figure 1: Inferring property f via the PML plug-in. For clarity, both the horizontal axis (sample size)
and the vertical axis (average absolute error) are in the log-10 scale.

C Competitive Estimation of Distributions and Their Entropy

C.1 Theorem 2: Competitive Distribution Estimation

Estimating distributions from their samples is a statistical-inference cornerstone, and has numerous
applications, ranging from biological studies [Armañanzas et al., 2008] to language modeling [Chen
and Goodman, 1999]. A learning algorithm p̂ in this setting is called a distribution estimator, which
associates with every sequence xn a distribution p̂(xn)∈ ∆. Given a sampleXn ∼ p, we measure the
performance of p̂ in estimating distribution p by the Kullback-Leibler (KL) divergence D(p‖ p̂(Xn)).

Let rn(p, p̂) := min{r : Pr(D(p ‖ p̂(Xn))≤ r)≥ 9/10} be the minimal KL error p̂ could achieve
with probability at least 9/10. Then, the worst-case error of estimator p̂ over P ⊆ ∆ is rn(P, p̂) :=
maxp∈P rn(p, p̂), and the lowest worst-case error for P, achieved by the optimal estimator, is the
minimax error rn(P) := minp̂′ rn(P, p̂′). The most widely studied distribution set P is simply ∆X .
With X being finite, it has become a classical result that rn(∆X ) = Θ(|X |/n), which is achievable,
up to constant factors, by an add-constant estimator [Braess and Sauer, 2004, Kamath et al., 2015].

Beyond minimax Despite being minimax optimal, the |X |/n-result and the algorithm, are not
satisfiable from a practical point of view. The reason is that the formulation puts much of its emphasis
on the worst-case performance, and ignores the intrinsic simplicity of p in a pessimistic fashion.
Hence, the desire to design more efficient estimators for practical distributions, like power-law, or
Poisson, has led to algorithms that possess adaptive estimation guarantees.

Concretely, the minimax formulation has two modifiable components – the collection P and the
error function D. A common approach to specifying P is adding structural assumptions, such as
monotonicity, m-modality, and log-concavity, which, in many cases, makes algorithm refinement
possible by leveraging structural simplicity. An orthogonal approach to encouraging adaptability
without imposing structures is to replace absolute error by relative error, which we illustrate below.

33



Competitive estimation Without strong prior knowledge on the underlying distribution, a reason-
able estimator should naturally assign the same probability to symbols appearing an equal number of
times. Competitive estimation calls for finding a universally near-optimal estimator that learns every
distribution as well as the best natural estimator that knows the true distribution.

Denote byN the collection of all natural estimators. For any distribution p ∈ ∆ and sample Xn ∼ p,
a given estimator p̂ incurs, with respect to the best natural estimator knowing p, an instance-by-
instance relative KL error of

Dnat(p‖ p̂(Xn)) := D(p‖ p̂(Xn))−min
q̂∈N

D(p‖ q̂(Xn)).

Analogous to the minimax formulation, we denote by rnat
n (p, p̂) := min{r : Pr(Dnat(p‖ p̂(Xn)) ≤

r) ≥ 9/10} the minimal relative error p̂ achieves with probability at least 9/10, by rnat
n (P, p̂) the

worst-case relative error of p̂ over P ⊆ ∆, and by rnat
n (P) the minimax relative error.

Old and new results Initiating the competitive formulation, Orlitsky and Suresh [2015] show that
a simple variant of the well-known Good-Turing estimator achieves rnat

n (∆) . 1/n1/3, and a more
involved estimator in Acharya et al. [2013] attains the optimal rnat

n (∆) ' 1/
√
n. For a fully adaptive

guarantee, Hao and Orlitsky [2019b] further refine the bound and design an estimator p̂? achieving
rnat
n (p, p̂?) . EDn∼p[Dn/n] . rnat

n (∆), for every p ∈ ∆, but provide no lower bounds.

In this work, we completely characterize rnat
n (p, ·) with essentially matching lower and upper bounds.

Surprisingly, we show that for nearly every sample size n, the quantity behaves likeHn(p)/n.
Theorem 2 (Optimal competitive error). There is a near-linear-time computable estimator p̂?, such
that for any distribution p and n,

rnat
n (p, p̂?) .

Hn(p)

n
.

where p̂? is the near linear-time computable estimator in Hao and Orlitsky [2019b] mentioned above.
On the other hand, for any H ∈ [0,

√
n),

min
p̂

max
p:Hn(p).H

rnat
n (p, p̂) &

H

n
.

C.2 Proof of Theorem 2

Proof. The upper bound follows by the main result of Hao and Orlitsky [2019b] and Theorem 1 as-
serting the entropy-dimension equivalence. To establish the lower bound, denote s := (H/ log n)1/2,
I := {s, s+ 1, . . . , 2s}, and P := ∪i∈IPi := ∪i∈IUi/n where

U :=
⋃
i∈I

Ui :=
⋃
i∈I
{i2 log2 n, i2 log2 n+ 1, . . . , i2 log2 n+ i log n},

where H .
√
n/ log n for the total to be at most n. Let A · {B} denote the length-A constant

sequence of value B. Let C be the set of distributions in the form of

p := L ·
{

1

n2

}⋃(⋃
i

(i log n) ·
{
qi or q′i : nqi = i2 log2 n, nq′i = i2 log2 n+ i log n

})
.

where the probability values are sorted according to the ordering they appear above, L is a proper
variable that makes the probabilities sum to 1, and the range of support of distribution p is irrelevant
for our purpose and hence unspecified. Equip a uniform prior over C (equivalently, construct a
random distribution). We have several claims in order:

• For any i ∈ I and µ ∈ Ui, by the construction and independence,

Pr(ϕµ = 1|qi is chosen) ≈ (i log n) ·
(

Pr(Poi(nqi) = µ) · (Pr(Poi(nqi) 6= µ))
i logn−1

)
≈ (i log n) ·

(
1
√
nqi
·
(

1− 1
√
nqi

)i logn−1
)

≥ Ω(1).

Similarly, we have Pr(ϕµ = 1|q′i is chosen) ≥ Ω(1). Hence,
Pr(ϕµ = 1) ≥ Ω(1).
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• For any i ∈ I and µ ∈ Ui, by Bayes’ rule,

Pr(qi is chosen|ϕµ = 1) =
Pr(ϕµ = 1|qi is chosen) · 0.5

Pr(ϕµ = 1)
≥ Ω(1).

Similarly, we have Pr(q′i is chosen|ϕµ = 1) ≥ Ω(1).

• For any i ∈ I and µ ∈ Ui, the value of Mµ, the total probability of symbols appearing µ
times, is qi if ϕµ = 1 and qi is chosen; and is q′i if ϕµ = 1 and qi is chosen. Any estimator
Eµ will incur an expected absolute error of Ω(i(log n)/n) in estimating Mµ given ϕµ = 1.

• Note that for any α ∈ [0, 1] and x, y > 0,

α(y − z)2 + (1− α)(z − x)2 ≥ α(1− α)(x− y)2.

• Therefore, the expected squared Hellinger distance H2(·, ·) of any estimatorEµ in estimating
(Mµ)µ≥0 satisfies, by the linearity of expectation,

1

2

∑
µ≥0

E
(√

Eµ −
√
Mµ

)2

≥ 1

2

∑
i∈I

∑
µ∈Ui

E
[(√

Eµ −
√
Mµ

)2 ∣∣ϕµ = 1

]
Pr(ϕµ = 1)

=
1

2

∑
i∈I

∑
µ∈Ui

E

( Eµ −Mµ√
Eµ +

√
Mµ

)2 ∣∣∣∣ϕµ = 1

Pr(ϕµ = 1)

≥
∑
i∈I

(i log n) · Ω

 (i log n)/n√
i2(log2 n)/n

2

≥ s · Ω
(
s log n

n

)
= Ω

(
H

n

)
.

• Consequently, by the inequality D(P ‖Q) ≥ 2H2(P,Q),

E [D(E ‖M)] ≥ E
[
2H2(E,M)

]
≥ Ω

(
H

n

)
.

• Finally, combining Theorem 1, 9 and 11 yields that, with high probability,

Hn(p) ' Dn ' En(p) ' HS
n(p) =

∑
j≥1 min

{
pIj , j · log n

}
,

which, by our definition, is at most O(log n+ s(s log n)) = O(log n+H).

C.3 Extension: Competitive Entropy Estimation

Recall that a distribution estimator is natural if it assigns the same probability to symbols of equal
multiplicity, and a property estimator is plug-in if it first finds an estimate of the distribution and then
evaluates the property at this estimate. As an off-the-shelf method, the plug-in approach is widely
used in estimating distribution properties.

As we mentioned in Appendix B.3, to estimate a symmetric property, an accurate estimate of the
probability multiset of the underlying distribution suffices. Intuitively, it should be easier in terms
of statistical efficiency to recover just the probability mutiset than to learn the entire distribution.
For example, over distribution collection ∆X , the PML plug-in estimator is minimax optimal for
learning entropy, while the empirical distribution, being minimax optimal for distribution estimation,
is suboptimal as a plug-in entropy estimator.

However, the analysis and computation (though efficient) of such multiset-based estimation methods
are often involved [Valiant and Valiant, 2011, 2013, 2016, Han et al., 2018, Charikar et al., 2019b,
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Acharya et al., 2017, Hao and Orlitsky, 2019a]. For this reason, plug-in estimators that first estimate
the true distribution are still popular in practice, and often, the distribution component is natural.

For example, several notable and widely used entropy estimators are natural plug-in, including the em-
pirical estimator that simply uses the empirical distribution, James-Stein shrinkage [Hausser and Strim-
mer, 2009] that shrinks the distribution estimate towards uniform, and Dirichlet-smoothed [Schürmann
and Grassberger, 1996] that imposes a Dirichlet prior over ∆X .

The logic behind these estimators is simple – if two distributions (e.g., the true distribution and our
estimate) are close, the same is expected for their entropy values. The next theorem shows that for
every distribution and among all plug-in entropy estimators, the distribution estimator in Hao and
Orlitsky [2019b] is as good as the one that performs best in estimating the actual distribution.

Denote by N the collection of all natural estimators, and write |H(p)−H(q)| as `H(p, q).
Theorem 13 (Competitive entropy estimation). For any distribution p, sample Xn ∼ p, and the
respective best natural estimator p̂N

Xn
:= arg minp̂∈N D(p‖ p̂

Xn
), with probability at least 1− 1/n,

`H(p, p̂?
Xn

)−`H(p, p̂N
Xn

) ≤ Õ

(√
Hn(p)

n

)
.

Proof. Given any natural estimator and a sample Xn ∼ p, we denote by q the distribution estimate.
The entropy of q differs from the true entropy by

H(q)−H(p) = −
∑
x

qx log qx +
∑
x

px log px

=
∑
x

px log px −
∑
x

px log qx +
∑
x

px log qx −
∑
x

qx log qx

=
∑
x

px log
px
qx

+
∑
x

(px − qx) log qx

= D(p‖q) +
∑
x

(px − qx) log qx.

Denote by Pµ(Xn) and Qµ(Xn) the total probability that distributions p and q assign to symbols
with multiplicity µ. Since q is induced by a natural estimator, we also write qµ(Xn) for the probability
that q assigns to each symbol with multiplicity µ in Xn. Recall that prevalence ϕµ(Xn) denotes the
number of symbols with multiplicity µ in Xn. Therefore, Qµ(Xn) = ϕµ(Xn) · qµ(Xn).

Henceforth, whenever it is clear from the context, we suppress Xn in related expressions. Then, the
second term on the right-hand side satisfies∑

x

(px − qx) log qx =
∑
x

(
∑
µ

1µx=µ · px −
∑
µ

1µx=µ · qµ) log(
∑
µ

1Nx=µ · qµ)

=
∑
x

∑
µ

1µx=µ · (px − qµ) log qµ

=
∑
µ

(
∑
x

1µx=µ · px −
∑
x

1µx=µ · qµ) log qµ

=
∑
µ

(Pµ −Qµ) log qµ.

Let qmin be the smallest nonzero probability of q. By the triangle inequality and Pinsker’s inequality,∣∣∣∣∣∑
µ

(Pµ −Qµ) log qµ

∣∣∣∣∣ ≤∑
µ

|(Pµ −Qµ) log qµ|

≤ | log qmin|
∑
µ

|Pµ −Qµ|

≤ | log qmin|
√

2D(P ‖Q).
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For simplicity, suppress the subscript Xn from all estimators, e.g., write p̂N := p̂N
Xn

. Now we show
that if a symbol x has multiplicity µ, the estimator p̂N will assign a probability mass of Pµ/ϕµ. In
other words, P̂Nµ = Pµ since pN ∈ N . Indeed, the corresponding KL-divergence values differ by∑

x

px log
px
qx
−
∑
x

∑
µ

1µx=µ · px log
px

Pµ/ϕµ
=
∑
x

px log
1

qx
−
∑
x

∑
µ

1µx=µ · px log
ϕµ
Pµ

=
∑
x

∑
µ

1µx=µ · px log
Pµ
ϕµqµ

=
∑
µ

Pµ log
Pµ
Qµ

= D(P ‖Q) ≥ 0.

Then, the above equalities yield that,

H(p̂N )−H(p) = D(p‖ p̂N ) +
∑
µ

(
Pµ − P̂Nµ

)
log pNµ = D(p‖ p̂N ).

Next consider the other estimator p̂?, which is also natural. Let Dn = Dn be the profile dimension of
Xn. By the results in Hao and Orlitsky [2019b], estimator p̂? achieves a Dn/n excess loss, i.e.,

D(p‖ p̂?
Xn

)−min
p̂∈N

D(p‖ p̂
Xn

) = D(P ‖ P̂ ?) ≤ Õ
(
Dn
n

)
,

for every p and Xn ∼ p, with probability at least 1−O(1/n). In addition, by its construction, the
minimum probability of p̂

Xn
is at least 1/n4. Therefore, with probability at least 1−O(1/n),∣∣∣∣∣∑

x

(px − p̂?x) log p̂?x

∣∣∣∣∣ =

∣∣∣∣∣∑
µ

(
Pµ − P̂ ?µ

)
log p̂?µ

∣∣∣∣∣ ≤ | log p̂?min| ·
√

2D(P ‖ P̂ ?) ≤ Õ

(√
Dn
n

)
.

Finally, the triangle inequality combines the above results and yields

`H(p, p̂?)− `H(p, p̂N ) = |H(p)−H(p̂?)| − |H(p)−H(p̂N )|

=

∣∣∣∣∣D(p‖ p̂?x) +
∑
x

(px − p̂?x) log p̂?x

∣∣∣∣∣−
∣∣∣∣min
p̂∈N

D(p‖ p̂)
∣∣∣∣

≤
∣∣∣∣D(p‖ p̂?x)−min

p̂∈N
D(p‖ p̂)

∣∣∣∣+

∣∣∣∣∣∑
x

(px − p̂?x) log p̂?x

∣∣∣∣∣
= D(P ‖ P̂ ?µ) + Õ

(√
Dn
n

)

≤ Õ

(√
Dn
n

)
.

This together with Theorem 1 completes the proof.

C.4 Experiments

The experiments in Hao and Orlitsky [2019b] have demonstrated the efficiency of p̂?, showing that the
estimator frequently and uniformly outperforms an improved version of the well-known Good-Turing
estimation scheme [Orlitsky and Suresh, 2015], for numerous distributions and parameter settings.
Our results confirmed the optimality of estimator p? from a theoretical point of view, and moves
forward considerably our understanding of how well one can approach the performance of a genie
having the full knowledge of the true distribution, but restricted to be natural as all human beings.

In the following, we do not repeat the experiments in Orlitsky and Suresh [2015] (see Section 2 of its
supplementary), and instead, investigate a novel and highly related task – employing p̂? as a plug-in
estimator for Shannon entropy. By Theorem 13 and its proof, we already see that the resulting plug-in
estimator H ◦ p̂? is as good as any plug-in estimator with a natural distribution component, and how
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well it performs, to a certain extent, depends on how well it approximates the true distribution under
the KL divergence. But is this plug-in estimator still competitive when compared to estimators having
observed samples of much larger sizes, or to the state-of-the-art estimators that are designed just for
entropy estimation? The following experiments answered this question in the affirmative.

Below we demonstrate the efficiency of p̂? when used as a plug-in entropy estimator. We will compare
its performance with a size-n sample to three estimators: the n-sample empirical estimator that
evaluates the entropy of the empirical distribution, the n log n-sample empirical estimator that has
access to much more information, and a state-of-the-art entropy estimator in Wu and Yang [2016]
based on minimax polynomial approximations (which we refer to as WY). Shown by the experiments
in Wu and Yang [2016], under numerous settings, the WY estimator frequently outperformed several
classical estimators and other minimax estimators such as Valiant and Valiant [2011, 2013], Jiao et al.
[2015]. Hence, we maintain simplicity and do not compare our approach to the latter ones.

We considered six natural distributions: uniform, two-steps-, Zipf(1/2), binomial, geometric, and
Dirichlet(1)-drawn-, all having support size k = 5,000. The plots are presented in Figure 2, with both
vertical and horizontal axes showing in log-scale (base 10). The sample size n ranges from 103 to
105, and every data point represents the average absolute error over 20 independent simulations. We
refer to the plug-in estimator using p̂? as HO.

Specifically, 10% probability values of the two-steps distribution ∝ 9/k, and the rest ∝ 1/k; the
binomial and geometric distributions have success probabilities of 10/k and (k − 1)/k, respectively;
the Zipf(1/2) distribution has probability pi ∝ i−1/2 for i ≥ 1, and is truncated at k and re-normalized.

We see that the performance of the WY estimator and our plug-in approach are essentially the same.
In particular, for Dirichlet(1)-drawn-, WY is better, but for binomial, WY is worse; for all other cases,
the two error curves basically follow the same trend and lie in the same region. This is somewhat
surprising since intuitively, p̂? is a distribution estimator and its design has no consideration about
entropy estimation, while WY is geared towards this task. On the other hand, the performance of the
induced plug-in estimator should be both efficient and competitive, as guaranteed by Theorem 13.

Figure 2: Competitive entropy estimation. For clarity, both the horizontal axis (sample size) and the
vertical axis (average absolute error) are in the log-10 scale.
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D Optimal Characterization for Structured Families

Following the previous discussions, we will derive nearly tight bounds onHn(p) for three important
structured families – log-concave, power-law, and histogram. These bounds clearly demonstrate the
power of profile entropy in charactering natural shape constraints.

For the subsections below, we adopt the convention of specifying structured distributions over X = Z.

D.1 Theorem 6: Log-Concave Family

The log-concave family encompasses a broad range of discrete distributions, such as Poisson, hyper-
Poisson, Poisson binomial, binomial, negative binomial, and geometric, and hyper-geometric, with
broad applications to statistics [Saumard and Wellner, 2014], computer science [Lovász and Vempala,
2007], economics [An, 1997], and geometry [Stanley, 1989].

Formally, a distribution p ∈ ∆Z is log-concave if p has a contiguous support and p2
x ≥ px−1 · px+1

for all x ∈ Z. The next result bounds the profile entropy of this family, and is tight up to logarithmic
factors. For simplicity, henceforth we write a ∧ b for min{a, b} (and ∨ for max), and slightly abuse
the notation and write a ' b for a+1 = Θ̃(b+1), which does not change the nature of the results.
Theorem 6. Let Lσ ⊆ ∆Z denote the collection of log-concave distributions with variance σ2. Then,

max
p∈Lσ

Hn(p) ' σ∧n
σ
.

In particular, if we discretize a Gaussian variable X ∼ N (µ, σ2) by rounding it to the nearest integer,
the distribution of the resulting variable achieves the maximum, up to logarithmic factors. Moreover,
such a discretization procedure preserves log-concavity for any continuous distribution over R.

A similar bound holds for t-mixtures of log-concave distributions. More concretely,
Theorem 14. For any t-mixture p ∈ ∆Z of log-concave distributions with variances σ2

i , 1 ≤ i ≤ t,

Hn(p) .

(∑
i

σi

)
∧max

i

{
n

σi

}
,

where the right-hand side is assumed to be at least t since otherwiseHn(p) . t, and in practice, t is
often a small quantity, e.g. a constant.

D.2 Proof of Theorem 6 and 14

We start by showing theHn(p) & σ ∧ n/σ lower bound. A requirement is that p must be a discrete
log-concave distribution. We show that one can take p as a discretized GaussianN (µ, σ2). In addition,
the discretization procedure works for any continuous distribution and preserves log-concavity and
essentially also the variance. We will start by introducing the discretization procedure.

Proof. Log-concavity is a generic structure exhibited by numerous classical distributions, both those
discrete (introduced above) and continuous ones, such as Gaussian, exponential, uniform, logistic,
and Laplace distributions. Below, we present a discretization procedure that preserves distribution
shapes such as monotonicity, modality, and log-concavity. Applying this procedure to a Gaussian
distribution N (µ, σ2) yields the lower bound in Theorem 6.

Let X be a continuous random variable with density function f(x). For any x ∈ R, denote by dxc
the closest integer z such that x ∈ (z − 1/2, z + 1/2]. The distribution of dXc is over Z and satisfies

p(z) :=

∫ z+ 1
2

z− 1
2

f(x)dx, ∀z ∈ Z.

We refer to the random variable dXc as the discretized version of X .

Shape Preservation By the definition of dxc, one can readily verify that the above procedure
preserves several important shape characteristics of distributions, such as monotonicity, modality,
and k-modality (possibly yields a smaller k). The following theorem further covers log-concavity.

39



Lemma 9. For any continuous random variable X over R with a log-concave density f , the
distribution p ∈ ∆Z associated with dXc is also log-concave.

To show this, we need the following basic lemma about concave functions.

Lemma 10. If f is a real concave distribution, for any real numbers x1, x2, y1, and y2 satisfying
x1 ≤ x2, y1 ≤ y2, x1 < y1, and x2 < y2,

f(y1)− f(x1)

y1 − x1
≥ f(y2)− f(x2)

y2 − x2
.

By the above lemma, for any x, y ∈ R such that |x− y| ≤ 1, and any function f that is log-concave,

log f(x+ 1)− log f(x) ≤ log f(y)− log f(y − 1) ⇐⇒ f(x+ 1)f(y − 1) ≤ f(x)f(y).

Proof of Lemma 9. By definition, distribution p is log-concave if p has a consecutive support and
p(z)2 ≥ p(z+ 1)p(z− 1),∀z. The first condition holds for dXc since X is has a continuous support
on R, and p(z) is positive as long as f(x) > 0 for a non-empty sub-interval of (z − 1/2, z + 1/2].

Below we show that p also satisfies the second condition. Specifically, for any z ∈ Z,

p(z − 1)p(z + 1) =

(∫ z− 1
2

z− 3
2

f(x)dx

)(∫ z+ 3
2

z+ 1
2

f(x)dx

)

=

(∫ z+ 1
2

z− 1
2

f(x− 1)dx

)(∫ z+ 1
2

z− 1
2

f(x+ 1)dx

)

=

∫ z+ 1
2

z− 1
2

∫ z+ 1
2

z− 1
2

f(x− 1)f(y + 1)dxdy

≤
∫ z+ 1

2

z− 1
2

∫ z+ 1
2

z− 1
2

f(x)f(y)dxdy

=

(∫ z+ 1
2

z− 1
2

f(x)dx

)2

= p(z)2,

where the inequality follows by Lemma 10 and its implication.

Moment preservation Denote by p the distribution of dXc for X ∼ f . Let µ and σ2 be the mean
and variance of density f , given that they exist. The theorem below shows that distribution p has,
within small additive absolute constants, a mean of µ and variance of Θ(σ2).

Lemma 11. Under the aforementioned conditions, the mean of dXc satisfies

E dXc = µ± 1

2
,

and the variance of dXc satisfies

(σ − 1)2 ≤ E(dXc − E dXc)2 ≤ (σ + 1)2.

Proof of Lemma 11. First consider the mean value of dXc for X ∼ f . We have

E dXc = E[dXc −X] + E[X] = µ± 1

2
.
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Consider the variance of dXc and apply inequality (a+ b)2 ≤ a2(1 + 1/t) + b2(1 + t),∀t > 0.

E(dXc − E dXc)2 =

∫ ∞
−∞

(dxc − E dXc)2 · f(x)dx

=

∫ ∞
−∞

(dxc − x+ (x− EX) + EX − E dXc)2 · f(x)dx

≤
∫ ∞
−∞

(
(dxc − x+ EX − E dXc)2

(
1 +

1

t

)
+ (x− EX)

2
(1 + t)

)
f(x)dx

≤
∫ ∞
−∞

((
1 +

1

t

)
+ (x− EX)

2
(1 + t)

)
f(x)dx

= 1 +
1

t
+ tσ2 + σ2

= (σ + 1)2.

By a different inequality, (a+ b)2 ≥ a2(1− 1/t) + b2(1− t),∀t > 0, we also have

E(dXc − E dXc)2 ≥ (σ − 1)2.

By the above lemma, for almost any σ ≥ 1, we can construct a discrete log-concave distribution of
variance σ2 if there is a continuous one with roughly the same variance.

Next, letting p
G

denote the distribution of dXc for X ∼ N (µ, σ2), we lower bound HSn(p
G

) (ef-
fectively, the profile entropy Hn(p

G
)). By definition, this discretized Gaussian, which we write as

dNc(µ, σ2), has a distribution in the form of

p
G

(z) :=
1√
2πσ

∫ z+ 1
2

z− 1
2

exp

(
− (x− µ)2

2σ2

)
dx, ∀z ∈ Z.

Through the subsequent analysis, we show that

Lemma 12. Under the aforementioned conditions,

HSn (p
G

) ≥ Ω

(
1

log n

)(
σ ∧ n

σ

)
.

The lower bound in Theorem 6 follows by these inequalities.

Proof. At it is clear from the context, we write p instead of p
G

. Recall that

HSn (p) =
∑
j≥1

min
{
pIj , j · log n

}
,

where pIj denotes the number of probabilities belonging to Ij = ((j−1)2, j2]·(log n)/n. Computing
the quantity for part of the distribution can only reduce the value of HSn (p). Hence, we will focus on
symbols in the (µ+ 1,∞) ∩ Z range, over which the probability mass function p(z) is monotone.

We will further assume that n/ log n � σ � log n, since otherwise the right-hand side of the
inequality reduces to O(1), and the result follows by HSn (p) ≥ 1 for all n and p. In addition, we
focus on j � 1 in the following argument, as the contribution to from j = O(1) is relatively small.

Given these assumptions, we have

p(z) ∈ Ij ⇐⇒
1√
2πσ

exp

(
− (z ± 1/2− µ)2

2σ2

)
∈
(

(j − 1)2 log n

n
, j2 log n

n

]
⇐⇒ z ± 1/2− µ ∈

√
2σ
[√

c(σ, n)− 2 log j,
√
c(σ, n)− 2 log(j − 1)

)
,

where c(σ, n) := log
(
n/(
√

2πσ log n)
)

and the interval is well-defined iff

c(σ, n) ≥ 2 log j ⇐⇒ n√
2πσ log n

≥ j2 ⇐⇒
√

n√
2πσ log n

≥ j ⇐=

√
n

σ log n
≥ 2j.
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For clarity, we divide our analysis into two cases:
√
n ≥ σ � log n and n/ log n� σ >

√
n.

For the first case and j ≤
√
σ/ log n/2 ≤

√
n/(σ log n)/2, the length Lj of the above interval,

which equals to pIj up to an additive slack of 2, satisfies

Lj√
2σ

=
√
c(σ, n)− 2 log(j − 1)−

√
c(σ, n)− 2 log j

=
2 log(j/(j − 1))

(c(σ, n)− 2 log(j − 1)) + (c(σ, n)− 2 log j)

=
log(j/(j − 1))

log
(
n/(
√

2πj(j − 1)σ log n)
)

= Ω

(
1

log n
log

(
1 +

1

j − 1

))
= Ω

(
1

j log n

)
.

Therefore, we have Lj = Ω(σ/(j log n)). Since σ � log n ensures Lj ≥ 3 and j ≤
√
σ/ log n/2 is

equivalent to σ ≥ 4j2 log n, the lower bound on Lj transforms into pIj ≥ Ω(j). Hence in this case,
HSn (p) admits the following bound

HSn (p) =
∑
j≥1

min
{
pIj , j · log n

}
≥

√
σ/ logn/2∑
j=O(1)

Ω(j) = Ω

(
σ

log n

)
.

In the n/ log n � σ >
√
n case, we have

√
σ/ log n >

√
n/(σ log n). Repeating the previous

reasoning for j ≤
√
n/(σ log n)/2, we again obtain Lj = Ω (σ/(j log n)) and pIj ≥ Ω(j).

Therefore,

HSn (p) =
∑
j≥1

min
{
pIj , j · log n

}
≥

√
n/(σ logn)/2∑
j=O(1)

Ω(j) = Ω

(
n

σ log n

)
.

Finally, note that in the first case, min{σ, n/σ} = σ, and in the second, min{σ, n/σ} = n/σ.

Consolidating these results yields the desired lower bound

O(log n) ·HSn (p) ≥ σ ∧ n
σ
.

Next we proceed to the upper bound.

For any sample Xn ∼ p, the profile dimension D(Xn) is at most the number of distinct symbols in
the sample. It is well known that the tail probability of a log-concave distribution decays exponentially
fast. Hence, the effective support size of p with respect to Xn is Õ(σ + 1), beyond which the tail
probabilities can be as small as 1/n3 (the asymptotic notation hides logarithmic factors of n). Given
this, even we sample from p for n times, the probability that we get only Õ(σ + 1) distinct symbols
is at least (1− 1/n3)n ≥ 1− 1/n. Therefore, we haveHn(p) ' D(Xn) . σ + 1.

Now, we extend this argument to a t-mixture of log-concave distributions with variances σ2
i , i ∈ [t].

For a length-n sample from this a distribution, the number of sample points from each mixture
component is is at most n. Hence, with high probability, the number of distinct symbols in a length-n
sample is at most

∑
σi + t, up to logarithmic factors of n.

For the other part of the upper bound, we can assume that σ ≥
√
n (otherwise we need to consider

only the above case) and n is larger than some absolute constant. Then by a concentration inequality
in Diakonikolas et al. [2016], the maximum probability pmax of p belongs to [1/(8σ), 1/σ]. Hence,
the last index J for which pIJ 6= 0 satisfies

(J − 1)2 log n

n
≤ 1

σ
⇐⇒ J ≤

√
n

σ log n
+ 1.
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Therefore, we have

HS
n(p) =

∑
j≥1

min
{
pIj , j · log n

}
≤ log n+

√
n/(σ logn)+1∑

j=1

j · log n ≤ O(log n)
(

1 +
n

σ

)
.

Our upper bound is uniformly better than the min{σ, (n2/σ)1/3} bound in Hao and Orlitsky [2019b],
which is derived for Dn ∼ p. More importantly, we actually provide a complete characterization of
the profile entropy value that is optimal up to logarithmic factors.

Next, we extend the n/σ bound to the mixture model. Write the mixture distribution as p :=
∑
i wi·pi,

with wi’s being the mixing weights and pi’s being log-concave distributions with variances σ2
i ,

respectively for 1 ≤ i ≤ t. It is clear that pmax in this case is at most the maximum probability of
some pi, which at most maxi 1/σi. The rest of the proof is the same as above.

D.3 Theorem 7: Power-Law Family

Power-law Power-law is a ubiquitous structure appearing in many situations of scientific interest,
ranging from natural phenomena such as the initial mass function of stars [Kroupa, 2001], species and
genera [Humphries et al., 2010], rainfall [Machado and Rossow, 1993], population dynamics [Taylor,
1961], and brain surface electric potential [Miller et al., 2009], to human-made circumstances such as
the word frequencies in a text [Baayen, 2002], income rankings [Drăgulescu and Yakovenko, 2001],
company sizes [Axtell, 2001], and internet topology [Faloutsos et al., 1999].

Formally, a discrete distribution p ∈ ∆Z is a power-law with power α ≥ 0 if p has a support of
[k] := {1, . . . , k} for some k ∈ Z+ ∪ {∞} and px ∝ x−α for all x ∈ [k]. Note that if α ∈ [0, 1], the
distribution is well-defined for only finite k. The next result fully characterizes the profile entropy of
power-laws over the entire ranges of α, n, and k.

Theorem 7. Let p ∈ ∆[k] be a power-law distribution with power α. Then,

Hn(p) '



k if α > k1+α

n ∨1 or 1 ≥ α > k2

n ,

n
1

α+1 if k
1+α

n ≥ α > 1,(
n

k1−α

) 1
1+α if k

2

n ∧1 ≥ α > k1−α

n ,

n
k1−α −

n
k if k

1−α

n ∧1 ≥ α and α ≥ 2 logk

(
7
√

k
n + 1

)
,

k ∧
√

n
k1−α if k

1−α

n ∧1 ≥ α and 2 logk

(
7
√

k
n + 1

)
> α.

In particular, as α→ 0, the bound degenerates to k ∧
√

n
k , which is at most n

1
3 .

Since a power-law sample profile is completely specified by α, k, and n, the above theorem directly
applies to model parameter estimation. Specifically, we first compute Dn ∼ p, which is a simple
function of the symbol counts. By Theorem 1, we can then use it to approximateHn(p). Finally, we
utilize the characterization theorem and find the parameter relations (testing might be necessary).

The theorem fully characterizes the profile entropy of power-laws and is significantly better than
the basic {k,

√
n log n} bound for both k �

√
n and k �

√
n. We can see how different parameter

interplay with each other and leverage these relations in applications such as parameter estimation.
In comparison, a result in Hao and Orlitsky [2019b], when combined with our entropy-dimension
equivalence theorem, yields only an n1/(1+α) upper bound (and no lower bounds nor the right
dependence on k), which is clearly suboptimal and provides no improvement over

√
n log n for α < 1.

D.4 Proof of Theorem 7

Proof. For the ease of exposition, write the probability of symbol i assigned by distribution p as
pi := c−1

α · i−α, where cα is a normalizing constant that implicitly depends on k. Note that

k1−α

1− α
+

α

1− α
≥ 1 +

∫ k

1

x−αdx ≥ cα =

k∑
i=1

i−α ≥
∫ k+1

1

x−αdx =
(k + 1)1−α

1− α
− 1

1− α
.
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Basic calculus shows that, up to logarithmic factors, we can approximate the normalizing constant as

cα =

k∑
i=1

1

iα
' k1−α ∨ 1,

Recall that the quantity of interest is essentially

HSn (p) =
∑
j≥1

min
{
pIj , j · log n

}
.

It will be convenient to denote c := c(α, k, n) := (cα log n)/n ' (k1−α∨1)/n. First, consider pIj
for a sufficiently large j (i.e., j � 1) and note that

pi ∈ Ij ⇐⇒
1

cαiα
∈
(

(j − 1)2 log n

n
, j2 log n

n

]
⇐⇒ i ∈ I ′j :=

[(
j2c
)− 1

α ,
(
(j − 1)2c

)− 1
α

)
.

Observe that the length Lj of interval I ′j , which differs from the value of pIj by at most 2, is
proportional to (j − 1)−2/α − j−2/α, and hence is a decreasing function of j. Furthermore, each
term min{pIj , j · log n} ≈ min{Lj , j · log n} is basically the minimum between this decreasing
function and j log n, an increasing function of j. This naturally calls for determining the value of j at
which the two functions are equal. Concretely,(

(j − 1)2c
)− 1

α −
(
j2c
)− 1

α = j log n =⇒ j ' J :=

(
1

ααc

) 1
2+2α

,

where J implicitly depends on α and n. In addition, since probability pi vanishes if i 6∈ [1, k], we
need to consider only

√
1/(ckα) + 1 ≤ j ≤

√
1/c.

We can decompose the summation HSn (p) into two parts. The first part consists of indices j ≤ J ,

HSn,1(p) :=

J∧
√

1/c∑
j=
√

1/(ckα)+1

min
{
pIj , j · log n

}
'

J∧
√

1/c∑
j=
√

1/(ckα)+1

j.

Correspondingly, the second part consists of indices j ≥ J . For these indices j, we haveLj ≤ j ·log n.
Recall that I ′j specifies the range of i satisfying pi ∈ Ij . Then the second part satisfies

HSn,2(p) :=

√
1/c∑

j=J∨(
√

1/(ckα)+1)

min
{
pIj , j · log n

}
'

√
1/c∑

j=J∨(
√

1/(ckα)+1)

Lj ,

where the inequality follows by the fact that the intervals I ′j are consecutive. In addition, note that the

left end point of I ′j equals (J2c)−
1
α = (α/c)

1
1+α .

The rest of the proof follows by dividing the analysis into several cases according to whether α > 1

and the relative magnitude of J ,
√

1/c, and (
√

1/(ckα) + 1).

For a concrete example, if α > 1, then our approximation of cα becomes cα ' 1, hence c ' 1/n,
and it is also clear that J = 1/(ααc)

1
2α+2 ≤

√
1/c. Therefore,

HSn,1(p) '
J∑

j=
√

1/(ckα)+1

j.

Now, consider the relation between J and
√

1/(ckα). By the continuity of profile entropy, we can
treat c as 1/n. If α ≥ k1+α/n, then J ≤

√
1/(ckα) and our upper bound for HSn,1(p) vanishes. The

quantity of interest hence becomes HSn,1(p), which equals to

HSn (p) = HSn,2(p) '

√
1/c∑

j=
√

1/(ckα)+1

Lj = k.
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On the other hand, if α < k1+α/n, then J ≥
√

1/(ckα) + 1 and HSn,1(p) satisfies

HSn,1(p) '
J∑

j=
√

1/(ckα)+1

j ≤ J2 '
( n

αα

) 1
α+1

.

Our approximation of HSn,2(p) reduces to

HSn,2(p) '

√
1/c∑

j=J

Lj ≈ (J2c)−
1
α =

(α
c

) 1
α ' (αn)

1
α+1 ' n

1
α+1 .

Consolidating these bounds and noting α
1

α+1 ∈ (1, 2) yield that HSn (p) ' n
1

α+1 . The expressions
for α < 1 can be derived in the similar manner.

D.5 Theorem 8: Histogram Family

Histogram While histogram is among the most widely studied representations, histogram distri-
butions’ importance also rises with the rapid growth of data sizes in modern scientific applications.
For example, subsampling, a generic strategy to handle large datasets, naturally induces a histogram
distribution over different categories of the data. This induced distribution often summarizes vital
data statistics, leveraging which yields efficient and flexible inference procedures.

Formally, a discrete distribution p ∈ ∆Z is a t-histogram if we can partition its support into at most
t pieces such that p takes the same probability value over each piece. The theorem below provides
near-optimal bounds on the profile entropy of the t-histogram distributions.
Theorem 8. Denote by It ⊆ ∆Z the collection of t-histogram distributions. Then,

max
p∈It
Hn(p) ' (nt2)

1
3 ∧
√
n.

In practical settings, the value of t is often poly-logarithmic in n, and the bound reduces to Õ(n1/3).
For the particular case of t = 1, distribution p is uniform over some unknown contiguous support.
This result overlaps with Theorem 7 with α = 0, yielding the following bound.
Corollary 5. For any uniform distribution p with support size k, we haveHn(p) ' k ∧

√
n
k .

Next we consider mixtures of histogram distributions.
Theorem 9. Let T be the positive integer sequence {ti}si=1. Denote by ST the sum

∑
i ti, and by

IT the s-mixture of t-histograms with parameters specified by T . Then,

max
p∈IT

Hn(p) ' (nS2
T )

1
3 ∧
√
n.

Proof. The proof follows by Theorem 8, which holds for any t, and the fact that IT coincides with
the collection of all ST -histogram distributions.

D.6 Proof of Theorem 8

Proof. First we establish the lower bound. Recall that the quantity of interest is essentially

HSn (p) =
∑
j≥1

min
{
pIj , j · log n

}
.

Our construction depends on the value of t as follows. Let A · {B} denote the length-A constant
sequence with value B. If t = 1, distribution p has the following form

p := Θ̃(n1/3) · {p0 ∈ In1/3},
where p0 is a properly chosen probability in In1/3 so that p is well-defined, and the range of support
of distribution p is irrelevant for our purpose and hence unspecified. If 2 ≤ t < n1/4/(2

√
log n),

then for some parameter s ≥ 0 to be determined, the distribution p has the following form

p := L ·
{

1

n2

}⋃s+t−1⋃
j=s+1

(
(j log n) ·

{
j2 log n

n

}) ,
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where the probability values are sorted according to the ordering they appear above, and L is a
properly chosen to make the probabilities sum to 1. For the distribution to be well-defined, we require

s+t−1∑
j=s+1

(j log n) ·
(
j2 log n

n

)
≤ 1 ⇐= t(s+ t)3 ≤ n

log2 n
⇐= s ≤

(
n

t log2 n

)1/3

− t.

Note that the last inequality is valid if t < n1/4/(2
√

log n). Let s be the maximum integer satisfying
the above inequality. Then, HSn (p) admits the lower bound

HSn (p) ≥
s+t−1∑
j=s+1

(j log n) ≥ (2s+ t)(t− 1)

2
log n ≥ 1

4

(
n

t log2 n

)1/3

t log n = Ω((nt2 log n)1/3).

Finally, if t ≥ n0 := n1/4/(2
√

log n), distribution p has the following form

p := (t− n0 + 1) · {p0}
⋃n0−1⋃

j=1

(
(j log n) ·

{
j2 log n

n

}) ,

where p0 is a properly chosen to make the probabilities sum to 1. According to the previous reasoning,
distribution p is well-defined and quantity HSn (p) satisfies

HSn (p) ≥
n0−1∑
j=1

(j log n) ≥ n0(n0 − 1)

2
log n ≥ Ω(

√
n).

Consolidating these results yields the desired lower bound.

Regarding the upper bound, the work of Hao and Orlitsky [2019b] studies the profile dimension for
distributions p ∈ It and shows that

E[Dn] . (nt2)
1
3 ∧
√
n.

Consolidating this inequality with Theorem 1 (dimension-entropy equivalence) and Corollary 4
(dimension concentration) yields the desired upper bound.

E Extensions

E.1 Multi-Dimensional Profiles

As we elaborate below, the notion of profile generalizes to the multi-sequence setting.

Let X be a finite or countably infinite alphabet. For every vector ~n := (n1, . . . , nd) ∈ Nd and tuple
x~n := (xn1

1 , . . . , xndd ) of sequences in X ∗, the multiplicity µy(x~n) of a symbol y ∈ X is the vector
of its frequencies in the tuple of sequences. The profile of x~n is the multiset ϕ(x~n) of multiplicities
of the observed symbols [Acharya et al., 2010, Das, 2012, Charikar et al., 2019b], and its dimension
is the number D(x~n) of distinct elements in the multiset. Drawing independent samples from each
distribution in ~p := (p1, . . . , pd) ∈ ∆d, the profile entropy is the entropy of the joint-sample profile.

Many of the previous results potentially generalize to this multi-dimensional setting. For example,
the
√

2n bound on D(x~n) in the 1-dimensional case becomes

Theorem 20. For any X , ~n, and x~n ∈ X ~n, there exists r > 0 such that∑
i

ni ≥
(r + 1)(r + 2)

d+ 1

(
d+ r + 1

d− 1

)
and

(
d+ r

d

)
−1 ≥ D(x~n).

Note that this recovers the
√

2n bound for d = 1.

Proof. For simplicity, we suppress x~n in D(x~n). Let ∆d denote the standard d-dimensional simplex.
As each multiplicity corresponds to a vector in Nd, in the ideal case, the profile that has the maximum
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dimension D corresponds to the integer points in the scaled simplex (r · ∆d), for some properly
chosen parameter r > 0. For a valid choice of r, we have

∑
i

ni ≥
r+1∑
t=0

(
t+ d− 1

d− 1

)
· t =

(r + 1)(r + 2)

d+ 1

(
d+ r + 1

d− 1

)
and

D ≤
r∑
t=1

(
t+ d− 1

t

)
=

(
d+ r

d

)
− 1.

Consolidating these two inequalities yields the desired result.

E.2 Discrete Multivariate Gaussian Mixtures

Let Σ be a d× d symmetric matrix with eigenvalues σ2
d ≥ . . . ≥ σ2

d ≥ 1 and µ be a d-dimensional
integer vector. The discrete d-dimensional Gaussian induced by (µ,Σ) is specified by its probability
mass function

p(x) :=
1

C
exp

(
−1

2
(x− µ)

T
Σ−1 (x− µ)

)
,∀x ∈ Zd.

where CΣ := C(n, d,Σ) > 0 is a normalizing constant. In this section, we show that for d ≥ 9,

Hn(p) .
n

C
∧ C

(
γd exp

(
6d
σ2
d

σ2
1

)(
2 log n

d

)d/2)
,

where γd is a constant that appears in Lemma 14 and depends only on d. The bound resembles
that in Theorem 6 for log-concave distributions. For d = 1 with Σ = σ2, the normalizing factor is
CΣ =

√
2πσ, and the right-hand side reduces to Õ(σ ∧ n/σ) in Theorem 6.

Let us denote the multiplicative factor in the parentheses by FΣ := F (n, d,Σ). Just like Theorem 6
generalizes to 14, the above result generalizes to also mixtures of discrete d-dimensional Gaussians.

Theorem 21. For a t-mixture p ∈ ∆Zd of discrete d-dimensional Gaussians with covariance matrices
Σi, where 1 ≤ i ≤ t, its profile entropy satisfies

Hn(p) .

(∑
i

CiFΣi

)
∧max

i

{
n

Ci

}
,

where the right-hand side is assumed to be at least t since otherwiseHn(p) . t, and in practice, t is
often a small quantity, e.g. a constant.

Proof. Below we establish Theorem 21 for t = 1. The proof of the general case follows by the
subsequent reasoning and the arguments in Appendix D.2.

Lower bound on C First, we bound CΣ from below in terms of the eigenvalues and other parame-
ters. By symmetry, we can decompose the covariance matrix Σ as

Σ = V ΛV T ,

where Λ is a diagonal matrix with Λii = σ2
i , and V is an orthonormal matrix whose i-th column is

the eigenvector vi associated with σ2
i .

Next, partition the real space Rd into unit cubes whose vertices belong to Zd. For any two vectors
ã, b̃ ∈ Rd that belong to the same unit cube, we will bound the ratio between p(ã) and p(b̃). Denote
a := ã− µ and b := b̃− µ, and express a and b as linear combinations of eigenvectors,

a :=

d∑
i=1

xi · vi and b :=

d∑
i=1

yi · vi.
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The log-ratio between the induced probabilities satisfies

−2 log
p(ã)

p(b̃)
= aTΣ−1a− bTΣ−1b

= (a+ b)TΣ−1(a− b)

=

(∑
i

(xi + yi) · vTi

)
V Λ−1V T

(∑
i

(xi − yi) · vi

)

=

(∑
i

(xi + yi) · eTi

)
Λ−1

(∑
i

(xi − yi) · ei

)
=
∑
i

σ−2
i (x2

i − y2
i ).

Since by construction, ã− b̃ = a− b and ã, b̃ belong to the same unit cube, hence
∑
i(xi − yi)2 =

‖a− b‖22 =
∑
i(ãi − b̃i)2 ≤ d. Consequently, we bound the absolute value of the ratio by

2

∣∣∣∣log
p(ã)

p(b̃)

∣∣∣∣ =

∣∣∣∣∣∑
i

σ−2
i (x2

i − y2
i )

∣∣∣∣∣
≤
∑
i

σ−2
i

∣∣x2
i − (xi − (xi − yi))2

∣∣
≤ 2

∑
i

σ−2
i

(
x2
i + (xi − yi)2

)
≤ 2σ−2

1

(∑
i

x2
i + d

)
= 2σ−2

1

(
‖ã− µ‖22 + d

)
.

Now, consider the hyper-ellipse E associated with

(x− µ)
T

Σ−1 (x− µ) ≤ d.

For any x ∈ E, simple algebra shows that ‖x− µ‖22 ≤ dσ2
d. Hence by the previous discussion, for

any unit cube U with vertices in Zd, there exists a vertex vU (of U ) such that for any x ∈ U ∩ E,

∣∣∣∣log
p(x)

p(vU )

∣∣∣∣ ≤ σ−2
1

(
‖x− µ‖22 + d

)
≤ σ−2

1

(
dσ2

d + d
)
≤ 2d

(
σd
σ1

)2

.

Note that x ∈ E is equivalent to p(x) ≥ exp(−d/2)/C. Then, the probability mass over E is at least

∫
x∈E

p(x)dx ≥
∫
x∈E

exp(−d/2)

C
=

exp(−d/2)

C
· Vol(E) =

exp(−d/2)

C
· (πd)d/2

Γ(d/2 + 1)

d∏
i=1

σi.

On the other hand, this probability mass is at most

∫
x∈E

p(x)dx =
∑
U

∫
x

p(x) · 1x∈E∩Udx ≤
∑
U

p(vU ) · exp

(
2d

(
σd
σ1

)2
)
≤ exp

(
3d

(
σd
σ1

)2
)
.
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Consolidating the lower and upper bounds and multiplying both sides by C yield

C ≥ exp

(
−3d

(
σd
σ1

)2
)

exp

(
−d

2

)
· (πd)d/2

Γ(d/2 + 1)

d∏
i=1

σi

=⇒ C ≥ exp

(
−3d

(
σd
σ1

)2
)
· (πd/e)d/2√

eπ(d/2)(d/(2e))d/2

d∏
i=1

σi

=⇒ C ≥ exp

(
−3d

(
σd
σ1

)2
)
· (2π)d/2√

eπ(d/2)

d∏
i=1

σi

=⇒ C ≥ exp

(
−3d

(
σd
σ1

)2
)

d∏
i=1

σi.

where the first step follows by the lemma below.

Lemma 13. For any integer or semi-integer x ≥ 1/2,

√
2πx

(x
e

)x
≤ Γ(x+ 1) ≤

√
eπx

(x
e

)x
.

Upper bound We proceed to boundHS
n(p) =

∑
j≥1 min

{
pIj , j · log n

}
.

Below we assume that C < n/ log n, since otherwise p(x) ≤ (log n)/n,∀x, yielding an O(log n)
upper bound onHS

n(p). Then, by definition, the last index j for which pIj > 0 satisfies

(j − 1)2 log n

n
≤ 1

C
=⇒ j ≤ 1 +

√
1

C

n

log n
≤ 2

√
1

C

n

log n
.

Denote by J the quantity on the right-hand side. Then,

∑
j≥1

min
{
pIj , j · log n

}
≤

J∑
j=1

j log n ≤ J2 log n ≤ 4n

C
.

Furthermore, by a reasoning similar to the above, the collection of points x ∈ Zd satisfying p(x) ≤
1/(Cn) = p(µ)/n ≤ 1/n contributes at most O(log n) to HS

n(p). Hence we need to analyze only
points x satisfying p(x) > 1/(Cn). Equivalently, those in

E? :=
{
x ∈ Zd : (x− µ)

T
Σ−1 (x− µ) ≤ 2 log n

}
.

Clearly, these points contribute at most |E?| to the sum. Noting that E? is a discrete hyper-ellipse,
we can bound its cardinality by the following lemma in Bentkus and Götze [1997].

Lemma 14. Let µ ∈ Rd be a mean vector, and Σ ∈ Rd×d be a real covariance matrix with nonzero
eigenvalues σ2

1 ≤ . . . σ2
d. For any d ≥ 9 and t ≥ σ2

d, the discrete ellipsoid

E(t) :=
{
x ∈ Zd : (x− µ)

T
Σ−1 (x− µ) ≤ t

}
admits the following inequality on its cardinality,

|E(t)| ≤

(
1 +

γd
t

1

σ2
d

(
σd
σ1

)2d+4
)

(πt)d/2

Γ(d/2 + 1)

d∏
i=1

σi,

where γd > 1 is a constant that depends only on d.
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Applying the above lemma to bound |E?| (where t = 2 log n) and combining the result with our
lower bound on C yield

|E(2 log n)| ≤

(
1 +

γd
2 log n

1

σ2
d

(
σd
σ1

)2d+4
)

(2π log n)d/2

Γ(d/2 + 1)
exp

(
3d

(
σd
σ1

)2
)
C

≤

(
1 +

γd
2 log n

1

σ2
d

(
σd
σ1

)2d+4
)

1√
πd

(
4eπ

log n

d

)d/2
e3d(σd/σ1)2C

≤

(
1 +

γd
2 log n

(
σd
σ1

)3d
)(

2 log n

d

)d/2
e5d(σd/σ1)2C

≤ γd
(
σd
σ1

)3d(
2 log n

d

)d/2
e5d(σd/σ1)2C

≤ γd
(

2 log n

d

)d/2
e6d(σd/σ1)2C,

where the second step follows by Lemma 13.

To summarize, we have established the desired bound

HS
n(p) ≤ O(log n)

(
1 + min

{ n
C
, γd(αΣ · βd,n)d · C

})
.
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