
Thanks for all reviewers’ valuable comments. We will first answer the common questions then respond to each reviewer.1

[CQ1] Sub-group sampling (R1-Q3, R3-Q1): Following the common testing protocol as adopted in Ref [44], we2

sequentially divide each input group into sub-groups consisting of 5 images in a non-overlapping manner. For the last3

sub-group with images less than 5, we supplement by randomly selecting samples from the whole given group.4

[CQ2] Model size & VGG16 Backbone (R1-Q4, R3-Q4): The performance of our method with VGG16 backbone is5

shown in the table. 1) Our method can still achieve better performance than Ref [44]. 2) The model size of Ours-V is6

comparable to the method [44] (121 MB vs 119 MB). Since most CoSOD competitors did not release codes, here we7

only report the model size of [44] for comparison, which is provided directly by its authors. Our code will be released.8

Cosal2015 CoSOD3k MSRC iCoseg
AP Fβ MAE Sm AP Fβ MAE Sm AP Fβ MAE Sm AP Fβ MAE Sm

Ref [44] 0.8846 0.8666 0.0791 0.8433 0.8245 0.8066 0.0916 0.7983 0.8217 0.7903 0.2072 0.6768 0.8979 0.8823 0.0773 0.8606
Ours-V 0.8862 0.8748 0.0644 0.8612 0.8263 0.8249 0.0696 0.8368 0.8752 0.8597 0.1139 0.8082 0.9177 0.8940 0.0416 0.8839

[CQ3] Additional parameters (R2-Q4, R4-Q1): Sorry for the unclear description. In fact, the baseline (with the9

ResNet50 backbone) is carefully designed to share a close number of parameters with the full model (178 MB vs 17610

MB), which is adequate for proving the superiority of our CoADNet without introducing additional parameters.11

[R1-Q1] Video-SOD. The input images in CoSOD task are not necessarily temporally-related, which deviates from12

Video-SOD that emphasizes temporal modelling. Hence, direct adaptation might not be applicable.13

[R1-Q2] Effectiveness of OIaSG. Sorry for making the confusion. As mentioned in the ablation study, we have14

pre-trained the baseline for the SOD task on the DUTS dataset, which could prove the superiority of our OIaSG scheme.15

[R2-Q1] Unclear motivation. 1) In the introduction, we have separately highlighted the three main motivations (please16

see Page 2, Line 41-62), which illustrate the necessity of the GASA, GGD, and GCPD modules item by item. We will17

make clearer statements for your concerns. 2) Our overall aggregation-and-distribution architecture for the problem of18

CoSOD is novel and brings very competitive performances. The GASA brings new insights in solving order-sensitivity19

and capturing long-range inter-image dependencies. Moreover, the GGD and GCPD further investigate group-individual20

interaction and co-saliency consistency that are very crucial but completely ignored in previous CoSOD methods.21

[R2-Q2] Missing related works (RW). Due to limited space, we only analyzed the highly-related works [32,35,43,44].22

Experiments included the most recent SOTA works for comparisons. We will add a RW section in the full version.23

[R2-Q3] Feature visualization. The learned co-saliency features highlight the common and salient objects in each24

image, and suppress others. As visualized in Fig. 3, the features in the encoder show much higher response around25

co-salient objects with reduced background redundancy. We will further provide more visualizations for each module.26

[R2-Q5] Weak relevance. This paper deals with CoSOD task under the NeurIPS track of Applications -> CV. Moreover,27

there have been some visual saliency researches on very recent NeurIPS’s publications (e.g., [R1][R2]).28

[R3-Q2] Parameter selection & block-wise group shuffling. 1) In practice, we tested several choices and found29

B = 8 works best. Actually, our model is not sensitive to B within a reasonable range. We will discuss this parameter30

in the ablation study. 2) As depicted in Fig. 2, for the input N images, we first split each feature map along channel31

axis into B blocks, and concatenate all the N blocks coming from the same bth partition.32

[R3-Q3] Order-insensitivity. Order-sensitivity is caused by the sequential channel concatenation of individual features.33

In GASA, we apply channel-wise softmax to each shuffled features that are composed of several blocks, and then make34

element-wise summation of these blocks. In GCPD, we assemble the individual feature vectors and similarly apply35

softmax across channels and make summation. The two modified feature combination methods are order-invariant.36

[R4-Q2] Inconsistancy of [44] and VGG16 results: The reported results in [44] adopts the VGG16 backbone. In our37

experiments, we tested the results of [44] provided by the authors, in which HRNet [R3] is used as backbone and hence38

causes inconsistency (our reported results are better). Although HRNet [R3] is stronger than VGG16 and ResNet50, our39

model (with VGG or ResNet backbone) still achieves superior performance. Please see [CQ2] for the VGG16 results .40

[R4-Q3] Idea of group semantics. Our solution only shares a similar big picture with [32] in terms of aggregating41

group semantics. However, this paper explored new insights under a two-step aggregation-and-distribution framework.42

Instead of directly duplicating and concatenating the group semantics with individuals, we designed GGD for dynamic43

group-individual combination and suppression of distracting information redundancy, which turns to be very crucial but44

is ignored in previous studies. Besides, the GASA differs from [32] in attentive learning and long-range modelling.45

[R4-Q4] AP. We list AP comparisons of [44] and ours in [CQ2]. We will report APs for all methods in the final version.46

[R4-Q5] Saliency priors. In the CoSOD task, maintaining awareness of salient regions and knowing how to exploit47

saliency priors for co-saliency mining are critical. Compared with common practice of SOD pretraining, our OIaSG48

provides a more effective and flexible jointly-optimized workflow for integrating more reliable saliency guidance49

information, which is the first attempt for CoSOD. Ablation study also supports this.50
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