A Table of Notation

Description
k Number of latent dimensions in hidden layer of autoencoder
m Number of dimensions of input data
n Number of datapoints

W, € R¥*™ | Encoder weight matrix
Wy € R™*k | Decoder weight matrix

X € R™*™ | Data matrix, with n m-dimensional

Il 17 The Frobenius matrix norm
o? The " eigenvalues of the empirical covariance matrix =X X "
S Diagonal matrix with entries o1, ..., 0%
U Matrix whose columns are the eigenvectors of %X X7, in descending
order of corresponding eigenvalues
L Linear autoencoder reconstruction loss function
L Linear autoencoder loss function with uniform ¢5 regularization
Lo Linear autoencoder loss function with uniform ¢5 regularization
A Diagonal matrix containing non-uniform regularization weights,
diag(A1, ..., k)
H The Hessian matrix of the non-uniform regularized loss (unless other-

wise specified)
Smax(H) | The largest eigenvalue of H
Smin(H) | The smallest eigenvalue of H
fa(v) The Rayleigh quotient, f4(v) =v' Av/vTv

LND Linear autoencoder with nested dropout loss function
Y Y = W1 X, latent representation of linear autoencoder
o Learning rate of gradient descent optimizer

N(-) /n(:) | Operator that sets the lower or upper triangular part (excluding the
diagonal) to zero of a matrix (respectively)

Table 1: Summary of notation used in this manuscript, ordered according to introduction in main text.

B Conditioning analysis for the regularized LAE

Our goal here is to show that the regularized LAE objective is ill-conditioned, and also to provide
insight into the nature of the ill-conditioning. In order to demonstrate ill-conditioning, we will prove
a lower bound on the condition number of the Hessian at a minimum, by providing a lower bound
on the largest singular value of the Hessian and an upper bound on the smallest singular value. The
largest eigenvalue limits the maximum stable learning rate, and thus if the ratio of these two terms is
very large then we will be forced to make slow progress in learning the correct rotation. Throughout
this section, we will assume that the data covariance is full rank and has unique eigenvalues.

Since the Hessian H is symmetric, we can compute bounds on the singular values through the
Rayleigh quotient, fr(v) = v Hv/v"v. In particular, for any vector v of appropriate dimensions,

smin(H) S fH (U) S Smax(H)- (7)
Thus, if we exhibit two vectors with Rayleigh quotients fr(v1) and fg(v2), then the condition
number is lower bounded by fg (v1)/fu(ve).
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In order to compute the Rayleigh quotient, we compute the second derivatives of auxiliary functions
parameterizing the loss over paths in weight-space, about the globally optimal weights. This can be
justified by the following Lemma,

Lemma 1. Consider smooth functions £ : R" — R, and g : R — R", withh = fog: R — R.
Assume that g(0) is a stationary point of ¢, and let H denote the Hessian of £ at g(0). Writing fr (v)
for the Rayleigh quotient of H with v, we have,

h// (O)

fu) = 50,07

where Jg denotes the Jacobian of g.
Proof. The proof is a simple application of the chain rule and Taylor’s theorem. Let u = g(«), then,

d*h 1 0% e d2g

da? 79 92" du do?’
Thus, by Taylor expanding h about o = 0,
dh a? d*h
h(a) =h — —— 3 8
@=hO)+agh) +505]  +ola?) ®)
a’ a? ot e’ d?g
= h(0 — J —(JT =g += -2 3 9
()+a<du g) _0+2 (982u g+du do? _O—i—o(a) ©)

Now, note that as g(0) is a stationary point of ¢, thus % |a:0 = 0. Differentiating the Taylor

expansion twice with respect to o, and evaluating at o« = 0 gives,
h(0) = J4(0) " HJy(0)
Thus, dividing by J,(0) " .J,(0) we recover the Rayleigh quotient at H. O

Scaling curvature The first vector for which we compute the Rayleigh quotient corresponds to
rescaling of the largest principal component at the global optimum. To do so, we define the auxiliary
function,

hz(a) = Eg/(Wl + aZy, Wy + C%ZQ;X)
1 1 1
= %HX — (Wa + aZy)(Wh + aZ1) X |7 + §HA1/2(W1 +aZy)||F + §||(W2 +aZy) A%

Thus, by Lemma we have h'}(0) = ivec([Z) Z»])THvec([Z] Z]), that s, the curvature

evaluated along the direction [Z;r Zg]. It is easy to see that hz(«) is a polynomial in «, and thus

to evaluate 1’} (0) we need only compute the terms of order a2 in hz. Writing the objective using the
trace operation,

1
hz(a) :%Tr[(X —WoWi1 X — a(ZoWy + WoZ))X — o227, X) "
(X — WoWh X — a(ZoWh + WaZ1)X — a®Zy 21 X)]
1
—+ iTI‘ [A((Wl + aZl)(Wl + OéZl)T + (WQ + QZQ)T(WQ + OéZQ))]

Collecting the terms in a/2:

1
az(%Tr [XT(Z2W1 + WoZh) N (ZoWh + WoZ1)X —2X T2 Zy (X — WyW1 X)]

1
+5Tr (AM2.2) + Z) Z,)])

Above we have used permutation invariance of the trace operator to collect together two middle
terms.
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At this point, we proceed by analyzing the Rayleigh quotient along the direction corresponding to
scaling the leading principal component column, at the global optimum:

W, =Wo=W =U( - AS™?)?

where U are the eigenvectors of the data covariance, and S? the diagonal matrix containing the
corresponding eigenvalues. Additionally, we choose Z;1 and Z> to contain the first column of the
decoder (w;), padded with zeros to match the dimension of W; and W,

Zl =Zy=Z=(w 0),

We will require the following identities,

X —WoW X =nU(S — (I —AS72)S)VT =nUAS VT (10)
UTW=(I-AS?):2 (11)

UT 7 — ( 1/1—0/\101‘2 8 ) (12)

WTIW =1—-AS? (13)
ZTZ_(I—)(\)10'12 8> (14)

7TW = ( 1—)(\)1Uf2 8 ) (15)

We now tackle each term in turn. Beginning with the first,

Tr (XT(ZQW1 + Wng)T(ZQI/Vl + WQZl)X)
=Tr (XX (ZW T +WZ)(ZWT +WZT))
=nTr (SPUT(ZWT +WZT)(ZWT + WZT)U)
=nTr (S2(U'ZWT +U'WZ)(Z(UTW)" + WU 2)"))
=nTr(S2(UTZ)Y W' 2)U'W)T + UT2)(WTW)(U"2)T
+UTW)ZTZ) UTW) T+ UTWYZTW)UTZ)T)
= 4dnoi (1 — Moy ?)?
For the second term,
—2Tr (X' 2] Z] (X —WoW1 X)) = —2nTx (VSU T ZZTUAS™'VT)
=-2nTr (U'ZZ"UA)
= —277/)\1(1 — /\10fz>
For the final third term,
Tr (MZ12) + Z] Z5)) = 2T (A(Z7 Z)) = 2M1(1 — Moy %)
Combining these,
h7(0) = (1= A1o7?) (407 (1 = Aoy ?) 4+ 2X1 — 2X01) =407 (1 — Aoy ?)?
Using Lemma we see that to recover the Rayleigh quotient, we must divide by || [Z, Z] [|% =
2(1 — A\yoy ?). Thus, using Equation we have

. VGC([Z;F Zg])THvec([ZlT ZQD
max(H > ||VeC([Z;— ZQ])H%‘

=20%2(1 — Moy ) > 2(0% — 0}).

14



Rotation curvature To approximate the rotation curvature, we consider paths along the rotation
manifold. This corresponds to rotating the latent space of the LAE. Using Lemma [I] we will compute
the Rayleigh quotient f7(¢) for vectors ¢ on the tangent space to this rotation manifold.

Explicitly, we consider an auxiliary function of the form,

1 1 1
Tr(0) = 51X = WaR(O) T ROWAX|[F + A2 ROWA [ + S[W2R(0)T AV 1%,

where R(0) is a rotation matrix parameterized by 6. The first term does not depend on 6, as R is
orthogonal. Thus, we need only compute the second derivative of the regularization terms. About the
global optimum, the regularization terms can be written as,

Tr (AR(O)WTWR(0)T)

We will consider rotations of the i*" and j*" columns only (a Givens rotation). To reduce notational

clutter, we write v; = (1 — \;0; %).

Tr(AR(H)WTWR(G)T) Ty <A[ vicos —v;sind } { cosf sinf }) n Z N

v;sing  vjcosf —sinf cosf

[y
v; cos? 0 + vj sin? 0 .
=T (A [ . v;sin? 0 4 v; cos® 0 + l;( A
i,
= \i(vi cos? 0 + vj sin? 0) + Aj (v sin? 6 + vj cos? 0) + Z ANy
I#i,5

= Vi()\i — )\]) cos? 0 + Vj(/\i — )\]) sin? 0 + Z Yy
I£i,j

We proceed to take derivatives.

%Tr (AR(G)WTWR(H)T) = 2sinfcos0(v; — v;) (A — Aj) =sin20(v; — v;) (N — Aj)

Thus, the second derivative, 4" (), is given by,
2(vj —vi) (A — Aj) cos 26
Which, when evaluated at § = 0, gives,

1(0) = 205~ v ).

Per Lemma |1} we also require the magnitude of the tangent to the path at # = 0, to compute the
Rayleigh quotient. At the global optimum, we have,

d 2

2
= H(I —ASTH2_R(O)T
F

d oot
deeme) a

F
2

0 V;/Q —cosf) —sinf

v/? 0 ] [ —sinf  cosf }
!
=V + Vj
Thus the Rayleigh quotient is given by,
vy —V;

fu(t) = -(Ai = Aj).

Vi+Vj

Without loss of generality, we will pick ¢ > j, so that \; > A;, 0; < 05, and v; < v;. Where the last
of these inequalities follows from A;o; zs /\icrj_2 > )\joj_Q.
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Conditioning of the objective We can combine the lower bound on the largest singular value with
the upper bound on the smallest singular value to give a lower bound on the condition number. The
ratio can be written,
2(0F — 7)) (vi + v5)
(A = A) (v — vi)
Thus, the condition number is controlled by our choice of placement of {); }k 1 on the interval
(0, ak) We lower bound the condition number by the solution to the following optimization problem,

2 2

cond(Hy) > mln max 201 — o) i +v5)

AR 1>] ()\z — )\j)(Vj — l/i)

To simplify the problem, we lower bound v; +v; > 2v;. Now the inner maximization can be reduced

to a search over a single index by setting ¢ = j + 1, as the entries of A and each v are monotonic
(decreasing and increasing respectively).

(16)

Further, we can see that at the minimum each of the terms vj11/ ((Aj41 — Aj)(v; — vj41)) must be
equal — otherwise we could adjust our choice of A to reduce the largest of these terms. We denote
the equal value as c;. Thus, we can write,

k—1 1 k—1 v
j+1
Mo — A\ = Nivg —A\i) = — il
I e
Jj=1 Jj=1
1 oy v
i+1 +1
— a=3— § J —E — (17)
E— Al = Vj — Vi1 V] —Vjt1

We can further bound c; by finding a lower bound for the summation in (I7). The minimum of (17)
can be reached when all terms in the summation are equal. To see this, we let the value of each
summation term to be co > 0. We have,

C2 .
Vigg = ———V; =1,...,k—1
J+1 1+ ¢y 5y J ; )
Forl = 2,...,k — 1, the derivative of (T7) with respect to v; is zero, and the second derivative is
positive.
k—1
o1 Vi+l  _ ii( e S E
8Vl 012@ = Vi —Vj41 l% 8 Vi1 — U Vp — V41
i( V-1 _ Vg1 )
o (o1 —w)? (v —viga)?
14-c: C:
_ i . l( 022 1+202 )
- 2 1+c _ 2
op wmi(H2-1)2 (12
=0
k—1
o2 1 Vit1 - i 2v_1(Vi—1 — ) 2v41 (v — Vl+1)) 50
aul ak U — Vi o2 (y—1 — )t (Vi — v41)?

Therefore, the minimum of (17)) can be reached when all terms in the summation are equal. We bound
co as follows,

k—1
Vi =V, = § (v; —vj41) E Vi1
Jj=1
k—1 k k k—1
1 1 02 1 9 9
— = —— > v >— > (1 >§ > =Y (07 —0o})
V] — Vg £ vy 4 oy *
j=1 1=2 =2 =2

We bound the condition number by putting the above step together,

k—1 2(k — 1) (03 — 03) 0, (02 — oF
cond(Hp) > 2(0% — o2)er > 2(0? — o) Loy > 2T DL = 08) iy (07 — 1)
o o10%
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C Deterministic nested dropout derivation

In this section, we derive the analytical form of the expected LAE loss of the nested dropout
algorithm [24].

As in Section[5] we define , as the operation that sets the hidden units with indices b+ 1,...,k to
zero. The loss written in the explicit expectation form is,

1
Lap(Wi, Wo; X) = E [ ||X — Wom(W1 X)||%] (18)
bpp () "2N

In order to derive the analytical form of the expectation, we replace 73, in (6) with element-wise
masks in the latent space. Let mgz) be 0 if the j'" latent dimension of the i*" data point is dropped
out, and 1 otherwise. Define the mask M € {0, 1}¥*" as,
mD
M =

e

We rewrite (18)) as the expectation over M (“o” denotes element-wise multiplication),

1
Lnp (W1, Wa; X) = Ep [%HX — Wa(M o W1 X)||7] 19)

Define X = Wy(M o W, X). We apply to (T9) the bias-variance breakdown of the prediction X,
Lxp (Wi, Wa; X) = Epn[Lxp (Wr, Wa, M)
1 - -
= E[Tr((X - X)(X - X)T
2n
1 - - -
= 2—Tr(XTX - 2X"E[X] + E[X]TE[X])
n
1 > o 1 _
= 5, Tr((X - EX])T(X - E[X])) + 5 Tr(Cov(X))
Define the marginal probability of the latent unit with index 7 to be kept (not dropped out) as p;,

1—1
pi=1-> pp(b=1)
j=1

We also define the matrices Pp and Py, that will be used in the following derivation,

n pP1 P2 - Pk
P2 P2 Pk

Pp = . , Pp=1. . (20)
Pk k Pk " Dk

We can compute E[X] and Tr(Cov(Z)) analytically as follows,
E[X] = En[Wa(M o W1 X)] = Wo PoW1 X

T(Cov(#)) = - Tr(E[XXT]) ~ - Tr(E[XJE[X])
= %Tr(XTVVlT(W;Wg o PL)W X) — %Tr(XTWfPDWJWQPDI/VlX)
Finally, we obtain the analytical form of the expected loss,
Lxp (W, Wa; X) = %Tr(XTX) - %Tr(XTWgPDWlX)

1
+ %Tr(XTWIT(WJWQ o PL)W1X)
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D Conditioning analysis for the deterministic nested dropout

In this section we present an analogous study of the curvature under the Deterministic Nested Dropout
objective. We recall from Appendix [C]that the loss can be written as (Pp, Py, as defined in (20),

1 1
Lxp (W, Wa; X) = %Tr(XTX) — ETr(XTWgPDWlX)
1
+ %Tr(XTWJ(W;Wg o P)W1X)

Let Q = diag(ql,...,qx), where ¢; € R, ¢; # 0, fori = 1,..., k. The global minima of the
objective are not unique, and can be expressed as,
Wy =QU" 1)
Wy =UQ™! (22)
We can adopt the same approach as in Appendix [B] We will compute quadratic forms with the Hessian

of the objective, via paths through the parameter space. We will consider paths along scaling and
rotation of the parameters.

Scaling curvature Let g(o) = Lnp (WS + aZ1, W5 + aZs; X). As in Appendix [Bl we need
only compute the second order («) terms in g(«),

1 1

o? - gTlr(XTZQPDZlX) + %TY(QXTZIT(((WQ*)TZg + Z] W3) o PL)W; X)
(23)

1 1

+ %TY(XT(WT)T(Z;% o PL)WiX)+ %TT(XTZ;((WJ)TWS o Pr)Z, X)]

Let Z = [u; 0] € R™** where u; € R™ is the first column of U. Let Z] = Z = Z, we have
the following identity,

Z'7Z =U"Z = diag(1,0,...,0) € RF** (24)
Substituting 1)), into (23), and applying identity (24), the second order term in g(c) becomes,
1 1 1
50°9"(0) = a® prof(1 + 5(ai + )) > o - 2p1o]
2 2 a4
= ¢"(0) > 4p1o?

Applying Lemma [l and notice that ||Z||r = 1, we can get a lower bound for the largest singular
value of the Hessian H,

vec([Z{  Z5])" Hvec([Z] ZQ])_ g"(0)

= > 2pio7
1[Z2] Z]l1% 2|Z||% '

Smax(H) >

Rotation curvature We use a similar approach as in Appendix [B|to get a upper bound for the
smallest singular value of the Hessian matrix. We consider paths along the (scaled) rotation manifold,

Wi = QR(0)Q™' Wy
W =W5QR(0)" Q!

where R(f) is a rotation matrix parameterized by 6, representing the rotation of the i*" and ;"
dimensions only (a Givens rotation).

Lo (W1, Wa; X) = Const — %Tr (XTWQ*QR(G)TQ_1PDQR(0)Q_1W1*X>

+ o (X7 TR ) TR ROV TWIQRI)TQ 0 1L ) QRI)Q WX )
(25)
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Without loss of generality, we consider the loss in the 2 x 2 case (i** and j*" dimensions only), and
denote all terms independent of § as Const. Substituting 1)) and 22)) into (23),

o7, | R

1 o2
£ND(W17 Ws; X) = Const — iTI‘( v

1
= Const — 5 [(07pi + 02p;) cos® 0 + (07 p; + 07p;) sin? 6]

We can compute the derivatives of the objective with respect to 6,

0 1 .
%ACND(WhW%X) = 5(03 —07)(pi — p;)sin26
82
@ﬁND(Wl’WQ;X)‘QZO = (07 — 0']24)(]? — p;) cos 29) = (07 — 02)(pi 2

Also, we compute the Frobenius norm of the path derivative. We use U; ; € R™*? to denote the
matrix containing only the i** and j* columns of U.

2
\MH“H = |sro+ praf, =+
el Rw%wug e
do’ J 2 Fooq 2
1
L e e

]

Applying Lemmal(I] we obtain an upper bound for the smallest singular value of the Hessian,

862£ND(W1,W2,X)‘0:0 (o2 —U?)(pi —pj)

Smln = =
2 4

i w7 wal ],

Conditioning of the objective Combining the lower bound of the largest singular value with the
upper bound of the smallest singular value of the Hessian matrix, we obtain a lower bound on the
condition number,

8p1o7
(0f — 03)(pi — pj)
The condition number is controlled by the choice of the cumulative keep probabilities p1, .. ., pg.

Thus, the condition number can be further lower bounded by the solution of the following optimization
problem,

8 2
cond(H) > min max — D101
prpk >3 (07 = 03)(pi — pj)

The inner optimization problem can be reduced to a search over a single index ¢, with j = ¢ + 1.
The minimum of the outer optimization problem is achieved when the inner objective is constant for
alle =1,...,k — 1 (otherwise we can adjust p1, ..., pi to make the inner objective smaller). We
denote the constant as ¢, and lower bound it as follows,

1 (pi —pj) .
= , Vi=1,...,k—1
c(of - 0]2‘) 8p10}
k-1 k—1
:>1 1 :Z('pi*pj)iplfpk 1
¢i= o} — 0J2 o1 8p1o7 8p1o? 80?2
k—1
1 8o2(k —1)2
— ¢ > 802 > 2%
C 01202_02— 0.%_0.]%
i=1 J



The last inequality is achieved when all terms in the summation are equal. The lower bound of the
condition number of the Hessian matrix is,

807 (k — 1)
cond(H)>%
0% — o}

Note that this lower bound will be looser if we do not have the prior knowledge of 01, ..., 0%, in
order to set pq, ..., pr appropriately.

E Deferred proofs

E.1 Proof of the Transpose Theorem

The proof of the transpose theorem relied on Lemma 2] (stated below). This result was essentially
proved in Kunin et al. [17]. We reproduce the statement and proof here for completeness, which
deviates trivially from the original proof.

Lemma 2. The matrix C = (I — WoW,)X X T is positive semi-definite at stationary points.
Proof. At stationary points we have,
Vw,Lo = 2WoWy — DXXTW] 4 2WoA =0
Multiplying on the right by W, and rearranging gives,
XXT(WoW)T = WoW XX T (WoWp) T + WoAW,"
Both terms on the right are positive definite, thus,
XXTWoW) T = WoW XX T (W) "

By Lemma B.1 in Kunin et al. [17], we can cancel (W>W;)" on the righﬂ and recover C = 0. O
Using Lemma[2] we proceed to prove Theorem [I] (the Transpose Theorem).

Proof of Theorem[I] All stationary points must satisfy,

2
Vi, Lo = EWQT(WQW1 ~DXXT +2AW; =0

2
Vw, Lo = —(WaWi — DXXTW +2WoA =0
n

‘We have,

0=Vw,Le — Vi, L
2
= ﬁ(W1 — W ) (I = WiWo) XX T 4 20(Wy — W)
By Lemma we know that C' = %(I — WiW3)X X T is positive semi-definite. Further, writing
A=W, - W, ,
0=v ACATv+v AAATv, Yo

As ACAT > 0, we must have Vo, vT AAATv < 0. Consider setting v = e;, where ¢; is the i*"
coordinate vector in R¥ (ith entry is 1, and all other entries are 0). We have,

ef AAATe; = N[ Aill3 <0,

where A; denotes the it" row of A. Since A\; > 0, we have A; = 0. Since this holds for all
i=1,...,k, wehave A = 0. O

“This result is a simple consequence of properties of positive semi-definite matrices
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E.2 Proof of the Landscape Theorem

Before proceeding with our proof of the Landscape Theorem (Theorem [2), we will require the
following Lemmas. We begin by proving a weaker version of the landscape theorem (Lemma [3)),
which allows for symmetry via orthogonal transformations.

T c {1,--- ,m} contains the indices of the learned dimensions. We define Sz, Az, Uz and Iz
similarly as in Kunin et al. [17]].

e [ =|Z|. i < --- <4 are increasing indices in Z. We use subscript [ to denote matrices of
dimension [ x .

e S = diag(ail, Ce 701‘1) c Rle, Ar = diag()\il, ey )\“) € R
o Uz € R™*! has the columns in U with indices 41, . . . , i;.
o I7 € R™*! has the columns in the m x m identity matrix with indices i1, ..., ;.
Lemma 3 (Weak Landscape Theorem). All stationary points of (3) have the form:
Wy = O(, — AS72)2U;]
Wy = Ur(I, — AS;2)207
where O € R*¥** is an orthogonal matrix.

To prove Lemma3] we introduce Lemma ] and Lemma 5}

Lemma 4. Given a symmetric matrix @ € R™*™, and diagonal matrix D € R™>*™. If D has
distinct diagonal entries, and Q, D satisfy

2QD*Q = Q*D? + D*Q? (26)
Then Q is diagonal.
Proof of Lemmald| We prove Lemma ] using induction. We use subscript [ to denote matrices of
dimension ! x .
When [ = 1, Q) is trivially diagonal, and Equation (26) always holds.
Assume for some [ > 1, ); is diagonal and satisfies for subscript [.
We have for dimension [ x I:

2Q:D7 Q1 = Qi D} + D} Q7 27)
We write ;11 and D12 ", 1 in the following form (a € R!*1 ¢, s are scalars)

Q a D? 0
Ql+1=[aT p D}y, = ot 2

Expand the LHS and RHS of Equation for subscript [ + 1:
a|l [D? 0 a
2Qu41 D711 Qi1 =2 [L;QTZ q] [O'ZF dQ} L?Tl q}

_9 {QlDsz +d?aa’  QD?a+ d2qa}

a'D?Q, + d?qa” o' Dia + d*q? (28)

q q

_ | RHS100 RHSy44
RHS; 41,10 RHS; 41,41

2 2
al”[D? 0 D? 0][Q a
R e b N A R e

RHS1.14 = Q7 D} + D}Q? + aa' D} + D}aa’ (29)
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Equate the 1 to [** row and column of LHS and RHS (top-left of Equation and ), and apply
the induction assumption (27):

2d*aa’ = aa' D} + D}aa"
— 0 =aa' (D} —d*I) + (D} — d*Iaa"
= 0=2a2(s? —d*), Yi=1,---,1, D} =diag(s?,---,s?)
Since D, is a diagonal matrix with distinct diagonal entries, s? — d? # 0 for Vi = 1, -, I. Hence
a = 0, and Q41 is diagonal.
It’s easy to check that a = 0 satisfies Equation (26)), hence diagonal @;; is a valid solution.
By induction, @ € R™*™ is diagonal. O

Lemma 5. Consider the loss function,

L(Q1,Q2) = tr(Q2Q15%Q{ QF —2Q2Q:15?

+2Q1Q2A + 5?)
where S? = diag(o%,...,0%), A = diag(\1, ..., \i) are diagonal matrices with distinct positive
elements, and Vi = 1,...,k,0? > ). Then all stationary points satisfying Q7 = Qo are of the

form,

Q1 =0, — ArS;2)3 1]

Proof of Lemma 5] Taking derivatives,

oL
30, = 2Q5 Q20Q15% —2Q5 §* +2A°Q; =0
oL 24T 24T T A2
TCQQ =2Q2Q15°Q; —25°Q, +2Q,A*=0
Multiplying the first equation on the left by @ , and using Q> = @/, we get,
Qf Q1Q] Q15* — Q1 Q15* + Q1 A’Q1 =0 (30)

Similarly, multiplying the second equation on the right by (1,
QI Q15°Q] Q1 — S?Q] Q1 + Q] A*Q1 =0
Writing Q = Q{ Q1, and equating through Q{ A%Q1,
0S2Q = Q252 + 52Q — QS?
Taking the transpose and adding the result,
2052Q = Q252 + 522

Applying Lemma we have that @ is a diagonal matrix. Following this, Q commutes with both 52
and A2, thus we can reduce (30) to,

Q7 = Q(s - A7)
= 52(52 7A2)71QQ(52 7/\2)*152 _ 52(52 *Az)ilQ

Thus, S?(S? — A?)~1Q is idempotent. From here, we can follow the proof of Proposition 4.3 in [17],
with the additional use of the transpose theorem, to determine that,

Q1 =0 — A2S7%)51]
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Proof of Weak Landscape Theorem We can now proceed with our desired result, the weak
landscape theorem.

ProofofLemma Let Q1 = WU, and Qo = U T W,. We can write the loss as,
Lo =Tr(Q2Q15%Q7 QF —2Q2@1S +2Q1 QoA + 8%) + [|AY2(Q1 - @1)IF (D)

To see this, observe that,

IAY2(Q1 — Q3)||% = Tr(Q1Q] A + Q4 Q2A — 2Q1QaA)
= [|AY2Qu |3 + [|Q2AY2|3 — 2Tr(Q1Q2A)

The Transpose Theorem guarantees that the second term in (31)) is zero at stationary points. Applying
Lemma 5] all stationary points must be of the form:

Wi = O(I, — AzS72)3 U7 (32)
Wy = Uz(l, — AzS72)207 33)
O

Proof of the (Strong) Landscape Theorem We now present our proof of the strong version of the
Landscape Theorem, which removes the orthogonal symmetry present in the weaker version.

Proof of Theorem 2] By Theorem at stationary points, W; = W,'. We write W; =

T . . .
[w{ wy -+ wl] ,and Wy = [w1 ws --- wy], where w; for i = 1,--- ,k is the i*"

column of the decoder.
Define the regularization term in the loss as (W7, Wa).

(Wi, Wa) = | A2 W[+ [[Wo A2 = 2| A2 W17

Let W, = R;;W; and Wy = WgRiTj, where R;; is the rotational matrix for the i** and j*"
components.

cos —sin@

sin 6 cosf
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(Wi, Wa) = [|AV2WA |3 + [|[WaA/2)[3
= Te(AYV2W, W, AY2) 4+ Te(AY2 W, WyAt/?)
= Te(AV2R;;WiWy REAY?) 4+ Te(AV2 Ry W) WaRAY?)
[ wy 17 wy 17

T T

w; cosf —w; T T

sinf| |w; cosf —w,; sinf
= 2Tr(AY/? : : AY/?2)

w;rsint‘)—l—w;rcosﬂ w;'—sing—i—w;rcosé

T T
Wy,

4 r ST
)\}/2wT A1/2w1

)\1/ (w;" cos 9 wT sin 0) )\1/ (w;' cos 9 wT sin @)

= 2Tx( : : )
1/2 1/2

Aj (w] sinf +w] cos) Aj (w; sinf +w] cos)

)\1/2 T )\1/2

L K W 4L K W §
=2[\i(w, cosb — ij sinf) " (w, cosf — w;r sin 0)
k
+ X (w; sin9+ij cosf) " (w; sin@—&—ij cosf)) + Z Nw; wy)
I=1,14£4,i#]
= 2[(Alszwl + /\]w]ij) COS2 0 + ()\JwZTwZ + Aleij) sin2 0
k
+4(N\j — \i)w; w;sin 6 cos O + Z Nw; wy
1=1,14,i#]
k
=2[Acos(20+ B) +C + Z Nw; wi)
I=1,1£4,i#]
Where A, B, C satisfy:
1
Acos B = i(Aj - )\i)(w;rwj — w, w;) (34)
AsinB = —2(/\j — Al)wZij (35)

In order for 1/)(17[/1, Wg) to be a stationary point at § = 0, we need either of the two necessary
conditions to be true for Vi < j:

Condition 1: A =0 <= w,

w; =0 and w; w; = ijwj
Condition2: A# 0 and B = fr, B €Z <= w/ w; =0 and w; w; # w, w;
The two conditions can be consolidated to one, i.e. the columns of the decoder needs to be orthogonal.
Vi,j e {1l,---  k}, w w;=0
The following Lemma uses such orthogonality to constrain the form that the matrix O in (32)) and (33)

can take.
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Lemma 6. Let W, W be in the form of 32 and (33). And let W} = [w] w] - w]
and Wy = [wy  wo -+ wy], where w; € R™ fori=1,--- , kis the it" columns of the W3.
Ifforvi,j € {1,--- k}, w;rwj = 0, then O has exactly one entry of £1 in each row and at most

one entry of =1 in each column, and zeros elsewhere.

Proof of Lemmalf]

(W3)TW5 = Ol = AS7*)2UL Ur(If — AS7%)*0T = O(L — ASz%)0T  (36)
Note that (I; — AST %) is a diagonal matrix with strictly descending positive diagonal entries, so (36)
isan SVD to (W) TW5.
Because W3 has orthogonal columns, (W5) T W5 is a diagonal matrix. There exists a permutation
matrix P € RFEXE, such that W5 Py has columns ordered strictly in descending magnitude. Let
Wy = W5 P}, and O = PO, then

(W) W3 = (W3 Py )T W3 Py
= P,O(I, - AS;?)O" Py

=0(I — ASI_Q)OT 37
=1, —AS;? (38)
Note that O = P,O also have orthonormal columns, we have 0OTO = I. Let O =
[of o7 - OZ]T, where 0; € R are rows of O. From (37) and (38), we have for

i< {17... 7[}73' c {1,... ,k}:

O' (I, — AS7?) = (I, — AS;%)07

OT(I; — AS7?))i; = (I — AS7%)OT)y; Vi,je{l,-- k}
Oj)i(l — )\jai;z) = (Oj)i(l — )\10‘;2)
Oj)i(/\io'i_iz — )\jO'Z-;2) =0

Ll

(
(
(

Since (I; — AS7 %) is a diagonal matrix with strictly descending entries, we have Aio;, - Aj o, 240
fori # j. Hence (0;); = 0 fori # j, i.e. O is diagonal. Since O has orthonormal columns, it has
diagonal entries £1.

O=P,'0=PF) O

Therefore, O has exactly one entry of 1 in each row, and at most one entry of 1 in each column,
and zeros elsewhere. O

We now finish the proof for Theorem[2] Applying Lemmal6] we can rewrite the stationary points
using rank k£ matrices S and U:

Wi =P(I—AS 220"
Wi =U(I—-AS?)32P

Where P € R¥*k hag exactly one %1 in each row and each column with index in Z, and zeros
elsewhere. This concludes the proof.

O
E.3 Proof of recovery of ordered, axis-aligned solution at global minima
Lemma 7 (Global minima — necessary condition 1). Let the encoder (W) and decoder (W5) of

the non-uniform Uy regularized LAE have the form in @) and @). If0 < \; < o2 forVi=1,--- ,k,
then (W, W3) can be at global minima only if P has full rank.
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Proof of Lemma(]] We prove the contrapositive: if rank(P) < k, then (W7, W5) in @) and () is
not at global minimum.

Since rank(P) < k, there exists a matrix P € R¥** such that J P has all but one element equal to 0,
and 0P;; = h > 0, for some i, j € {1,...,k}, where the i" row and j'" column of P are all zeros.

§Wy = 6P(I — AS~2)2U7
SWo=U(I — AS~2)26PT
EJ’(WI* =+ (5VV17 WQ* + (5W2)
1
= EHX — (Wy + 6Wa)(Wy + 6Wh) X | |3
AW + W) |5 + |[(W5 + 6Wa)AY2||3,
1
= ﬁTr((I — (W5 4+ W) (Wi + W) XX T (I — (W5 + 6Wa) (W5 4 6Wh)))
+ Te(AY2(W + W) (Wi + W) TAY2) + Te(AY2 (W5 + 6Wa) T (Wi 4 dWa)AY/?)
= Tr((I — (I — AS™2)(P +6P)" (P + 6P))%5?%)
+ 2Tr(A(P + 6P)(I — AS72)(P +6P) ")
= Lo/ (W7, W3) 4+ [(1 = (1 = No; 2)h%)? = 1)o? 42X\ (1 — Nioy) "2)h?
= Lo (W5, W3) —2(02 = X)) (1 — No 2R 4+ (1 — Njoy 2)202h?
= Lo (W) — Wy, Wi — 6Ws)

The first derivative of (W, W) along (6Wy, §W3) is zero:
o Lo (Wi 4 Wy, Wy + 6Wy) — Lo (W], W)

h—0 h

iy 22007 = A= Xioy?)h? + (1= Mo ) a2k
h—0 h

=0

The second derivative of (W, W5 along (§W7, §W5) is negative (note that 0 < \; < o2):
Lo/ (Wi + Wy, Wy + 0Ws) — 2L (W, W3) + Lot (W] — W1, W5 — 6W>)

lim

h—0 h2

. 2L (Wi 4 W, W5 + OWa) — 2L, (W], W)
= lim

h—0 h2

_ 2y, Y. f2 2 Y. f2 2,2 4

— lim 2 2007 — M) (1= Nio, F)R* + (1 — No “)%o7h

h—0 h2
= —4(0‘2»2 — )\2)(1 — )\iU;2)
<0

Therefore, if rank(P) < k, (W7, W5) is not at global minima. The contrapositive states that if
(W7, W5) is at global minima, then P has full rank. O

Lemma 8 (Global minima — necessary condition 2). Let the encoder (W) and decoder (Ws') of the
non-uniform {y regularized LAE have the form in (@) and (), and P has full rank. Then (W7, W)

can be at global minimum only if P is diagonal.

Proof of Lemma([8] Following similar analysis for the proof of Theorem 2} we have (34) and (33). In
order for § = 0 to be a global optimum, it must be a local optimum. Therefore, for Vi < j, we need
either of the following necessary conditions to be true:

Condition 1: A =0 <= w; w; =0 and w, w; = ijwj

Condition 2: AcosB< 0 and B= 8w, € Z < wij =0 and quZ > w]TwJ

i
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The two conditions can be consolidated to the following (¢ < j):

w,

— T s Tows
; wi =0 and w; w; > w; w

Then, (W3) T (W) is a diagonal matrix with non-negative diagonal entries sorted in descending
order.

(W3)"(W3) = P(I, - AS7*)PT (39)

Since the diagonal entries of (I; — AS7 2) are positive and sorted in strict descending order, and
that (39) is an SVD of (W) T (W), we have:

(W) T (W3) = (I — ASZ?)
We can use the same technique as the proof of Lemmal6]to prove that P must be diagonal. O

Lemma 9 (Global minima — sufficient condition). Let I € R*** be a diagonal matrix with diagonal
elements equal to £1.The encoder (W) and decoder (W) of the following form are at global
minima of the non-uniform {5 LAE objective.

Wi =I(I—-AS2):U" (40)
Wi =U(I—-AS 23] (41)

Proof of Lemma(9] Because the objective of the non-uniform regularized LAE is differentiable
everywhere for W and W5, all local minima (therefore also global minima) must occur at stationary
points. Theorem 2] shows that the stationary points must be of the form (@) and (3). Lemma [7 further
shows that a necessary condition for the global minima is when [ = k, i.e. the encoder and decoder
must be of the form in @0) and @I).

In order to prove that (@0) and (T are sufficient condition for global minima, it is sufficient to show
that all W, W5 that satisfy (@0) and (@T)) (i.e. all ]) result in the same loss. Notice that /2 = I, then:

* * 1 * YA/ * * *
Lor (W7, W5) = —||X = W WX [T+ [[A2W[F + (W5 A2

1 * * * *
= EHX — W Wi X5 + Te(AV 25 (W) TAY?)

+ Tr(AY2(W3) TWEAY?)
1 1 — 1
= E||X —U(I -—AS™)21*(I - AS™?)2UTX||%
+ 2Te(AY2I(1 — AS2)2UTU(I — AS™2)2TTAV?)
1
= —|lX - U1 - ASTHUTX||% 4 2Tr(A(I — AS™?)) (42)

According to #2), L, (W, W) is constant with respect to I. Hence, {@0) and {T) are sufficient
conditions for global minima of the non-uniform ¢ regularized LAE objective. O

Proof of Theorem 3] From Lemma [7] [8] and [9] we conclude that the global minima of the non-
uniform {5 regularized LAE are achieved if and only if the encoder (W) and decoder (IW5) are of
the form in (0) and @T), i.e. ordered, axis-aligned individual principal component directions.

We have proven in Lemma that for [ < k, there exists a direction for which the second derivative
of the objective is negative. We have proven also that stationary points with [ = k are either global
optima, or saddle points (Lemma|8] [9). Hence, there do not exist local minima that are not global
minima. O
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E.4 Proof of local linear convergence of RAG

Proof of Theorem 5] Applying Assumption [I] the instantaneous update for RAG is,

. 1
Wy = —AW

n

. 1
Wy = —W)A

n

The instantaneous update for YY ' is,
d

yr —(YY") = (AYYT +YYTAT)

Let y;; be the 7, j*" element of YY T, and i < 7, then,

k
yu - Zygl + Z y?l)
I=i+1
d 1
dtyw = 7E(yu ng Yij + Zyvlyjl + Z yzly]l (43)
_]J,»l
With Assumption 2] we can write @3)) as:
d 1 €?
dty” = _g(yii - yjj)yij + O(z) (44)

The first term in (@4) collects the products of diagonal and off-diagonal elements, and is of order
O(%). The second term in collects second-order off-diagonal terms. With 0 < € < 1, we can
drop the second term.

Also, applying Assumption@ we have y;; > y;;.
1
£|yij| ~ _ﬁ(yii = Yij)|yis |

The instantaneous change of the “non-diagonality” N d( YYT) 1s,

d d k—1 k 1 k—1 k 1 d
dtNd( Yy') dt(zz,z ny”|> 22.2 n<dt|y”|>

X
[N
o
|
-
(]~
S|
/\
3\»—
{E
$
<
—
N
=
S~

1=1 j=1i+1
i L
RO ym)
i=1 j=i+1
1
=—g-Nd(-YY")
n
Hence, N d(%YYT) converges to 0 with an instantaneous linear rate of g. O

E.5 Convergence of latent space rotation to axis-aligned solutions

We first state LaSalle’s invariance principle [13] in Lemma[I0} which is used in Theorem []to prove
the convergence of latent space rotation to the set of axis-aligned solutions.

Lemma 10 (LaSalle’s invariance principle (local version)). Given dynamical system & = f(x) where
x is a vector of variables, and f(x*) = 0. If a continuous and differentiable real-valued function
V(z) satisfies,

V(x) <0forVaz
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Then V() — 0ast — oc.

Moreover, if there exists a neighbourhood N of x* such that for x € N,
V(z) > 0if x # a*
And,
V(z)=0Yt>0 = z(t) =a* V>0
Then x* is locally asymptotically stable.

In Section[6.3] we gave an informal statement of Theorem[] Here, we state the theorem formally.

Theorem 4 (Global convergence to axis-aligned solutions). Let Oy € R¥** be an orthogonal matrix,
W € R¥*™ (k < m). X and U are as defined in Section 2 ~(-) and () are as defined in
Algorithm[T] Consider the following dynamical system,

W= %(Q(WXXWT) —NWXXW )W (45)
W(0) =0uU " (46)

Then W (t) — PUT ast — oo, where P € RF** is a permutation matrix with non-zero elements

+1. Also, the dynamical system is asymptotically stable at IUT, where I is a diagonal matrix with
diagonal entries +1.

It is straightforward to show that and are equivalent to the instantaneous limit of RAG on
the orthogonal subspace W; = W, = OU ' (O is an orthogonal matrix). To see this, notice that on
the orthogonal subspace, the gradient of W7 and W with respect to the reconstruction loss are zero,

Vi, LW, =0U ", Wy =UO0";X) =0

Vi, LWy =0U ", Wo =U0";X) =0
Theorem []states that in the instantaneous limit, an LAE that is initialized on the orthogonal subspace
and is updated by Algorithm|[I] globally converges to the set of axis-aligned solutions. Moreover, the

convergence to the set of ordered axis-aligned solutions is asymptotically stable. We provide the
proof below.

Ot)UT forVt,

Proof. We first show that W (¢) remains on the orthogonal subspace, i.e. W (t) =
= (NWXXWT) -

where O(t) is orthogonal. To reduce the notation clutter, we define A(W) =
(WX XW T)). We take the time derivative of WW T,
dWWwWT)

= WWT+WWT = AWYWWT +WWTAW)T = AW)WW T —WWTAW)

The last inequality follows from the observation that A(T) is skew-symmetric, so that A(W) T =
— A(W). Since W(0)W(0)T = I,and WWT =T = WD _ o we have,
WHW ()T =IforYt>0
From the dynamical equation (@3), we know that W (¢) has the form W (t) = G(t)U " for some
matrix G(t) € R¥**_ We have,
WHOW ()" =G UTUGH)" = G(t)G(t)" =1 = G(t) is orthogonal.

We move on to use LaSalle’s invariance principle to prove Theorem[d] The rest of the proof is divided
into two parts. In the first part, we prove that W (t) — PU " ast — oo, i.e. W (t) globally converges

to axis-aligned solutions. In the second part, we prove that the ordered, axis-aligned solution IU " is
locally asymptotically stable.

Let ¥ = LXXT. We define V(W) as,
V(W) =Tr((S? = WEW ")D) (47)
Where S is as defined in Section and D = diag(dy,...,dy), withdy > -+ > dg > 0.

Note that definition (47) is the Brockett cost function [[1]] with an offset. The Brockett cost function
achieves minimum when the rows of W are the eigenvectors of X. See Appendix [G]for a detailed
discussion of the connection between the rotation augmented gradient and the Brockett cost function.
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Part 1 (global convergence to axis-aligned solutions) In this part, we compute V(W), and invoke
the first part of LaSalle’s invariance principle to show global convergence to axis-aligned solutions.

Denote the (transposed) it row of W as w; € R™*!. We rewrite (@3) in terms of rows of W,

i—1 k
1 1
Wi =5 D (! Sws)w; + 3 > (w Swy)uw;
j=1 j=i+1
We proceed to compute V (W),
k i—1 k
(W) ==2>"diw S = Zd,[ (w Sw;)® = > (wjzwjf]
i=1 j=1 j=it+1
ki1 k=1 k
S T - Y Y D
=2 j=1 i=1 j=i+1
ki1 k=1 k
=3 diw) Zwy)® =) dj(w] Sw;)?
i=2 j=1 j=1i=j+1
k i—1 k i—1
=3 di(w] Lw;)? > dj(w] Yw;)?
=2 j=1 =2 j=1
ki1
=D (di = dj)(w] Swy)?
i=2 j=1
Since d; < d; for V¢ > j, we have,
V(W) <0 (48)

The equality in (@8)) holds if and only if Vi # j, w;' $w; = 0, or, written in matrix form, WX X TW T
is diagonal.

V(W)=0 < WXX W' is diagonal (49)

Since we also have W = OU T, and using the SVD of X, we can see that (#9) is equivalent to,
W="prPUT

Also, W = PU are stationary points of the dynamical equation (@3)). By LaSalle’s invariance
principle, we have,

V(W)= 0ast— oo = W(t) = PU" ast — oo
W (t) globally converges to the set of axis-aligned solutions. This concludes the first part of the proof.
Part 2 (asymptotic convergence to optimal representation) We break down this part of the proof

into two steps. First, we show that V(W) is positive definite locally at IUT. Then, we show that
IU is the only solution to V(W) = 0 in its neighbourhood.

We first show that V(W) is positive definite at W — JU". Note that columns of U contain the
ordered left singular vectors of X. We can rewrite (47) as,

k k k k
V(W) =-Tr(0S?0" D)+ Y dio} ==Y dic;O} + Y _dio} (50)
i=1 =1

i=1 j=1

We use O;; to denote the component with row and column index 4, j respectively. (50) is minimized
when O = T and takes value zero. It is positive everywhere else, and thus, V (W) is positive definite
atW =1U".
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Now, we show that W = IU T is the only solution to V(W) = 0 within some neighbourhood around
itself. Since permutation matrices P are finite and distinct, we can find a neighbourhood around

each I on the Stiefel manifold V; (R¥), in which W = IU " is the unique solution for V(). We
mathematically state this below,

3 some neighbourhood N on Vj,(R¥) around I, such that
[OeN, VOUT)=0Vt>0] = O0=1

This means that local to W = TU T, V(W) = 0 for V t > 0 implies W = U .

We have satisfied all the necessary conditions to invoke LaSalle’s invariance principle. Thus, W =
IUT is locally asymptotically stable. O

F Connection of non-uniform /¢, regularization to linear VAE with diagonal
covariance

Consider the following VAE model,
plalz) = N(Wz+ p,0°1)
q(zlz) = N(V(z = p), D)
Where W is the decoder, V is the encoder, and D is the diagonal covariance matrix. The ELBO
objective is,
ELBO = —KL(q(z|2)|[p(2)) + Eq(z|)[log p(x]2)]
It’s shown in [19] that such a linear VAE with diagonal latent covariance can learn axis-aligned

principal component directions. We show in this section that training such a linear VAE with ELBO
is closely related to training a non-uniform /5 regularized LAE.

As derived in Appendix C.2 of [19], the gradients of the ELBO with respect to D, V and W, are,

n, -1 1. T
VD = §(D —I- ﬁdlag(W W)
VV = (W — (WW +02I)V)S
g

VW = 2 (SVT —DW - WVEVT)
o
Where ¥ = LX X T. The optimal D* = o*(diag(W W) + 02I)~!. The “balanced" weights in
thiscaseisV=M"WT, M =WTW + 2]

Assume optimal D = D* and balanced weights, we can rewrite the gradients. First, look at the
gradient for V,

vV = %(WT — (WTW +0*D)V)S
- %((WTW + 2NV — (WTW + 02)V)S
=0

The gradient for V' simply forces V' to be “balanced" with W. Then for W,
VW = %(EVT —DW —WwvVEVT)
%(EVT — o (diag(W W) + o2I)'W — WVEV )
1
—(XXTVT = noPdiag(M)"'W - WVXXTVT)
o

1
— (XY —no’diag(M)"'W —WYYT)
g

1
=S (X -WY)Y" —n-dag(M)"'W

g
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This is exactly non-uniform ¢5 regularization on W. The ¢ weights are dependent on .
diag(M)~! = diag(W ' W + %)~}

G Connection between the rotation augmented gradient and the Brockett
cost function

In this section, we discuss the connection between our rotation augmented gradient and the gradient
of the Brockett cost function. In particular, we show that the two updates share similar forms.

Since the Brockett cost function is defined on the Stiefel manifold, we assume throughout this section
that Wi = Wy, and W))Wy = I. Let ¥ = LX X7 be the data covariance, the Brockett cost
function is,

Tr(W, SWoN) subj. to Wy Wy = I (ie. Wa € St(k,m))

Where N = diag(p1,..., k), and 0 < pg < --- < g are constant coefficients. To make the
gradient form more consistent with the rotation augmented gradient, we switch the sign of the loss,
and reverse the ordering of the diagonal matrix /N. This does not change the optimization problem,
due to the constraint that W5 is on the Stiefel manifold. We define,

Le(Wy) = —Tr(W,' SWoD) subj. to W, Wy = I,
Where D = diag(dy, ..., dg), dy > - > di, > 0. Let skew(M) = £(M — M "), the gradient of

the cost function on the Stiefel manifold is,
Vw,Lp = —2(I — WoW, ) SWoD — Waskew (2W, W, D)
The gradient descent update in the continuous time limit is,
Wy = 2(I — WoW, )XWy D + 2Waskew (W, W, D) 51

Rotation augmented gradient With 1W," = W5, the rotation augmented gradient update is,

Wy = 2(I — WoW, )SWy — 2Waskew (N(W, SW2)) (52)

The updates (51)) and (52)) appear to have similar forms. We can make the connection more obvious
with further manipulation. We express the second term in (51) with the triangular masking operations
Nand D,

skew (W, YWoD) = skew(S(W. 2W2 ) + MW, XW,D))
= skew(N(W. »D) — (W, SWoD) ™)
= skew(N(W, XW5)D — ( (W, SW3)D )T)
= skew(w(w2 EW2)D D (WY o) )
= skew (N(W, W) D — DN(W, £W5))
Then, we write the masks explicitly with element-wise multiplications,
1 - 1 dy
skew (W, SW,D) = skew(< oWy EWQ)
1 dy,
dy 1 -1
- < oWy 2W2>)
dy, 1
0 do—dy ds—di -+ dp—dy
0 ds—dy -+ dip—ds
= skew( : oWy ZWQ)
0 dp—dg

0
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Finally, we compare the two updates below,

Brockett update
0 di—dy dy—ds --- dy—dy
0 do—ds -+ do—dy
Wy = 2(1-WoWy )2W2D2W2skew< : oW, EWQ)
0 dp—1—dx
0
Rotation augmented gradient update
0 1 --- 1
Wy = 2(I — WoW, )XWy — 2W25kew( 0 o (WJZVI@))
1
0

Both algorithms account for the rotation using the off-diagonal part of W, %W,. The rotation
augmented gradient applies binary masking, whereas the Brockett update introduces additional
coefficients (d1, . . ., dy) that “weights” the rotation.

H Experiment details

We provide the experiment details in this section. The code is provided at https://github.
com/XuchanBao/linear—ae.

H.1 Convergence to optimal representation

In this section, we give the details of experiments for convergence to the optimal representation on
the MNIST dataset (Figure 2] and [3).

The dataset is the MNIST training set, consisting of 60,000 images of size 28 x 28 (m = 784)).
The latent dimension is £ = 20. The data is pixel-wise centered around zero. Training is done in
full-batch mode.

The regularization parameters Ay, ..., Ax for the non-uniform ¢y regularization are chosen to be
VA =01, VA =0.9,and v/ Xg, . .., v/ Au_1 equally spaced in between.

The prior probabilities for the nested dropout and the deterministic variant of nested dropout are both
chosen to be: pp(b) = p?(1 — p) forb < k, and pp(k) = 1 — 215;11 pp(b). We choose p = 0.9 for
our experiments. This is consistent with the geometric distribution recommended in Rippel et al. [24],
due to its memoryless property.

The network weights are initialized independently with A'(0,10~%). We experiment with two
optimizers: Nesterov accelerated gradient descent with momentum 0.9, and Adam optimizer. The
learning rate for each model and each optimizer is searched to be optimal. See Table 2] for the search
details, and the optimal learning rates.

H.2 Scalability to latent representation sizes

The details of the experiments for scalability to latent representation sizes correspond to Figure ]

The synthetic dataset has 5000 randomly generated data points, each with dimension m = 1000.
The singular values of the data are equally spaced between 1 and 100. In order to test the scalability
of different models to the latent representation sizes, we run experiments with 10 different latent
dimension sizes: k = 2,5, 10, 20, 50, 100, 200, 300, 400, 500.

The regularization parameters A1, ..., A; for the non-uniform ¢, regularization are chosen to be

VAL =01, v, =10,and Vs, . .., /A1 equally spaced in between.

33


https://github.com/XuchanBao/linear-ae
https://github.com/XuchanBao/linear-ae

The prior probabilities for the nested dropout and the deterministic variant of nested dropout, the
initialization scheme for the network weights, and the optimizers are chosen in the same way as in

Section[H.1]

We perform a search to find the optimal learning rates for each model, each optimizer with different
latent dimensions. See Table for the search details, and Table E] for the learning rates used in the
experiments.

Table 2: Learning rate search values for experiments on MNIST (Figure [2| and . The optimal
learning rates are labelled in boldface. Note that the Adam optimizer does not apply to RAG.

Model Nesterov learning rates Adam learning rates
Uniform /5 le—3 le—-3
Non-uniform ¢4 le—4,3e—4,1e—3,3e—3 1le—3, 3e—3, le—2, 3e—2
Rotation le—3, 3e—3, le—2
Nested dropout (nd) le—2, 3e—2, le—1 3e—3, le—2, 3e—2, le—1
Deterministic nd le—2,3e—2, le—1 3e—3, le—2, 3e—2, le—1
Linear VAE 3e—4, 1le—3, 3e—3 3e—4, 1le—3, 3e—3

Table 3: Learning rate search values for experiments on the synthetic dataset (Figure . The optimal
learning rates are labelled in boldface. Note that Adam optimizer does not apply to RAG, even though
the experiments are shown here.

(a) k=20
Model Nesterov learning rates Adam learning rates
Non-uniform ¢4 le—4, 3e—4,1e—3, 3e—3 1le—3, 3e—3, le—2, 3e—2
Rotation 3e—5, le—4, 3e—4, le—3 le—4, 3e—4, 1le—3
Nested dropout (nd) le—4, 3e—4, 1le—3,3e—3 1le—3, 3e—3, 1le—2, 3e—2
Deterministic nd le—4,3e—4,1e—3,3e—3 1le—3, 3e—3, le—2, 3e—2
Linear VAE 3e—>5, le—4, 3e—4, le—3 3e—4, 1le—3, 3e—3, 1le—2
(b) £ =200
Model Nesterov learning rates Adam learning rates
Non-uniform ¢4 le—4, 3e—4,1e—3, 3e—3 1le—3, 3e—3, le—2, 3e—2
Rotation 3e—5, le—4, 3e—4, le—3 le—4, 3e—4, 1le—3
Nested dropout (nd) le—4, 3e—4, 1le—3,3e—3 3e—4, le—3, 3e—3, le—2
Deterministic nd le—4, 3e—4,1e—3,3e—3 1le—3, 3e—3, le—2, 3e—2
Linear VAE 3e—>5, le—4, 3e—4, le—3 3e—4,1e—3, 3e—3, le—2

(c) k=500

Model
Deterministic nd 3e—3, 1le—2, 3e—2, le—1

Adam learning rates

I Additional experiments

I.1 Non-uniform ¢, regularization with optimal penalty weights (at global minima)

In this section, we show the experimental results of the learning dynamics of the non-uniform ¢
regularization on MNIST, with “optimally” chosen ¢ penalty weights. Specifically, we set the latent
dimension k£ = 20, and obtain the A1, ..., A values by solving the min max optimization problem
in (T6). These choices of the ¢» penalty weights are optimal at global minima, because the condition
number of the Hessian of the objective at global minima is minimized.
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Table 4: Learning rate used for experiments on the synthetic dataset (Figure . Note that Adam
optimizer does not apply to RAG, even though the experiments are shown here.

(a) Nesterov accelerated gradient descent (k < 50)

k 2 5 10 20 50
Non-uniform #5 le—=3 1le—-3 1le—-3 1le—3 1le-3
Rotation le—4 le—4 1le—4 1le—4 1le—4

Nested dropout (nd) 1le—3 1le—3 1le—3 1le—3 1le—3
Deterministic nd le—3 1le—3 1le—3 1le—3 1le—3
Linear VAE 3e—4 3e—4 3e—4 3e—4 3e—4

(b) Nesterov accelerated gradient descent (k > 100)

k 100 200 300 400 500
Non-uniform /5 le—3 1le—3 1le—3 1le—3 1e-3
Rotation le—4 le—4 1le—4 1le—4 1le—4

Nested dropout (nd) le—3 1le—3 1le—3 1le—3 1le—3
Deterministic nd le—3 1le—3 1le—3 1le—3 1le—3
Linear VAE 3e—4 3e—4 3e—4 3e—4 3e—4

(c) Adam optimizer (k < 50)

k 2 5 10 20 50
Non-uniform /5 3e—3 3e—3 3e—3 3e—3 3e—-3
Rotation 3e—4 3e—4 3e—4 3e—4 3e—4

Nested dropout (nd) le—2 1le—2 1le—2 1le—2 3e—3
Deterministic nd 3e—3 3e—3 3e—3 3e—3 3e—3
Linear VAE 3e—3 3e—3 3e—3 3e—3 1le—3

(d) Adam optimizer (k > 100)

k 100 200 300 400 500
Non-uniform ¢5 3e—3 3e—3 3e—3 3e—3 3e-3
Rotation Je—4 3e—4 3e—4 3e—4 3e—4

Nested dropout (nd) 3e—3 3e—3 3e—3 3e—3 3e—3
Deterministic nd le—2 1le—2 1le—2 1le—2 1le—2
Linear VAE le—3 1le—3 1le—3 1le—3 1le—3

In practice, the £ penalty weights in Figure [5]are not accessible without knowing the o values of the
dataset. However, we show in Figure[6|that even with this knowledge, using the  values optimal at
global optima significantly slows down the initial phase of training. This means that these A values
are suboptimal away from global optima. In general, it is difficult to determine the A values that are
optimal for the overall training process. This contributes to the weakness of symmetry breaking by
the non-uniform /5 regularization.

L2 Mini-batch training on MNIST

In this section, we show the learning dynamics of the models in Section[7]trained on MNIST using
mini-batches. The uniform ¢ regularized LAE is not included, as it doesn’t recover the axis-aligned
solutions. Figure [7and[§] show the learning dynamics with & = 20 and mini-batch size 1000 and
100, respectively. We observe similar results as in the full-batch setting (Figure [2), with additional
stochasticity introduced by mini-batch training.
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Figure 5: Optimal /5 penalty weights on MNIST, with k£ = 20.
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Figure 6: Learning dynamics of non-uniform ¢ regularized LAEs on the MNIST (k = 20), with
different choices of penalty weight values. All models are trained with Adam optimizer for 1000
epochs. The optimal X values are as in Figure[5] Results with different learning rates are shown,
provided that the learning rates are small enough to maintain training stability.
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Figure 7: Learning dynamics of different LAE / linear VAE models trained on MNIST (k = 20),
with mini-batch size 1000. Solid lines represent models trained using gradient descent with Nesterov
momentum 0.9. Dashed lines represent models trained with Adam optimizer.
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Figure 8: Learning dynamics of different LAE / linear VAE models trained on MNIST (k£ = 20),
with mini-batch size 100. Solid lines represent models trained using gradient descent with Nesterov
momentum 0.9. Dashed lines represent models trained with Adam optimizer.
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