
Supplement to “FedSplit: an algorithmic framework for fast313

federated optimization”314

A Proofs315

We now turn to the proofs of our main results. Prior to diving into these arguments, we first introduce316

two operators that play a critical role in our analysis. Given a convex function ' : Rd ! R, we317

define318

prox'(z) ··= argmin

x2Rd

⇢
'(x) +

1

2
kz � xk2

�
and (21a)

refl'(z) ··= 2prox'(z) � z. (21b)

These are called the proximal and reflected resolvent operators associated with the function '. The319

first operator is also known as the resolvent; the second operator above is also known as the Cayley320

operator of '. Moreover, our analysis makes use of the (semi)norm on Lipschitz continuous functions321

f : Rd ! R given by322

Lip(f) ··= sup
x 6=y

|f(x) � f(y)|
kx � yk . (22)

For short, we say that that f is Lip(f)-Lipschitz continuous when it satisfies this condition.323

A.1 Proofs of guarantees for FedSplit324

We begin by proving our guarantees for the FedSplit procedure, including the correctness of325

its fixed points (Proposition 3); the general convergence guarantee in the strongly convex case326

(Theorem 1); the general convergence guarantee in the weakly convex case (Theorem 2), and327

Corollary 1 on its convergence with approximate proximal updates.328

A.2 Proof of Proposition 3329

By the fixed point assumption, the block average x? ··= z? satisfies the relation330

proxsfj (2x
? � z?j ) = x? for j = 1, 2, . . . ,m.

Since each fj is convex and differentiable, by the first-order stationary conditions implied by the331

definition of the prox operator (21a), we must have332

rfj(x
?
) +

1
s

�
x? �

�
2x? � z?j )

 
= rfj(x

?
) +

1
s

�
z?j � x?

 
= 0 for j = 1, . . . ,m.

Summing these equality relations over j = 1, . . . ,m and using the fact that x?
=

1
m

Pm
j=1 z

?
j yields333

the zero gradient condition334

mX

j=1

rfj(x
?
) = 0.

Since the function x 7!
Pm

j=1 fj(x) is convex, this zero-gradient condition implies that x? 2 Rd is335

a minimizer of the distributed problem as claimed.336

A.2.1 Proof of Theorem 1337

We now turn to the proof of Theorem 1. Our strategy is to prove it as a consequence of a somewhat338

more general result, which we begin by stating here. In order to lighten notation, we use the fact that339

the proximal operator for the function F (z1, . . . , zm) =
Pm

j=1 fj(zj) is block-separable, so that in340

terms of the block-partitioned vector z = (z1, . . . , zm), we can write341

proxsF (z) =
�
proxsf1(z1), . . . ,proxsfm(zm)

�
, for all z = (z1, . . . , zm) 2 (Rd

)
m.

We also recall the the approximate proximal operator used in the FedSplit procedure, namely342

]prox(z) ··= (prox_update1(z1), . . . , prox_updatem(zm)) , for all z1, . . . , zm 2 Rd.
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Theorem 3 (Convergence with general residuals). Suppose that the functions fj : Rd ! R are343

`j-strongly convex and Lj-smooth for j = 1, . . . ,m, and for t = 1, 2, . . ., define the residuals344

r(t) ··= ]prox(2z(t) � z(t)) � proxsF (2z
(t) � z(t)). (23)

Then with stepsize s = 1/
p
`⇤L⇤, the FedSplit procedure (Algorithm 1) has a unique fixed point z?,345

and the iterates satisfy346

kz(t+1) � z?k 6 ⇢tkz(1) � z?k + 2

tX

j=1

⇢t�jkr(j)k for t = 1, 2, . . ., (24)

where ⇢ ··= 1 � 2/(
p
+ 1) is the contraction coefficient.347

Let us use Theorem 3 to derive the claim stated in Theorem 1. Note that by Proposition 3, the fixed348

points of Algorithm 1 are minimizers of F , hence unique under the strong convexity assumption.349

Consequently, we have350

kx(t+1) � x?k 6 1p
m

kz(t+1) � z?k, for all t = 1, 2, . . ..

Using Theorem 3 and the error bound, we then conclude that351

kx(t+1) � x?k 6 1p
m

✓
1 � 2p

+ 1

◆t
kz(1) � z?k + (

p
+ 1)b,

as claimed.352

A.2.2 Proof of Theorem 3353

We now turn to the proof of the more general claim. Given additive decomposition354

F (z) =
Pm

j=1 fj(zj), the reflected resolvent induced by F is block-separable, taking the form355

reflsF (z) = (reflsf1(z1), . . . , reflsfm(zm)) , for all z = (z1, . . . , zm) 2 (Rd
)
m.

Similarly, consider the approximate reflected resolvent defined by the algorithm, namely356

grefl(z) ··= 2]prox(z) � z, for all z = (z1, . . . , zm) 2 (Rd
)
m.

It also has the same block-separable form.357

Using these two block-separable operators, we can now define two abstract operators, each acting on358

the product space (Rd
)
m, that allow us to analyze the algorithm. The first operator T underlies the359

idealized algorithm, in which the proximal updates are exact, and the second operator bT underlies360

the practical algorithm, which is based on approximate proximal updates. The idealized algorithm is361

based on iterating the operator362

T (z) ··= reflsF

�
reflIE (z)

�
. (25)

In this definition, we use IE to denote the indicator function for membership in the equality subspace363

E, so that reflIE is the reflected proximal operator for this function.364

On the other hand, the practical algorithm generates the sequence {z(t)}1t=1 via the updates z(t+1)
=365

bT (z(t)), where bT : (Rd
)
m ! (Rd

)
m is the perturbed operator366

bT (z) = grefl
�
reflIE (z)

�
. (26)

Note that the idealized operator T and perturbed operator bT satisfy the relation367

bT � T =

⇣
grefl � reflIE � reflsF � reflIE

⌘
. (27)

Our proof involves verifying that with the stepsize choice s = 1/
p
`⇤L⇤, the mapping T is a368

contraction, with Lipschitz coefficient369

Lip(T ) 6 1 � 2p
+ 1| {z }

=·· ⇢

< 1. (28)
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Taking this claim as given for the moment, the contractivity implies that T has has a unique fixed370

point [12]—call it z? 2 (Rd
)
m. Comparing with Proposition 3, we see that the definition of fixed371

points given there agrees with the fixed point z? of the operator T , since we have the relation372

reflIE (z) = 2z � z.373

Using this contractivity condition, the distance between this fixed point z? and the iterates z(t) of the374

FedSplit procedure can be bounded as375

kz(t+1) � z?k = kbT z(t) � T z?k
(i)
6 kT z(t) � T z?k + 2k]prox reflIE z(t) � proxsF reflIE z(t)k
(ii)
6 Lip(T )kz(t) � z?k + 2kr(t)k
(iii)
6 ⇢kz(t) � z?k + 2kr(t)k, (29)

where inequality (i) applies the triangle inequality to the relation (27) between the perturbed and376

idealized operators; step (ii) follows by definition of the residual r(t) at round t; and step (iii) follows377

from the bound (28) on the Lipschitz coefficient of T . Performing induction on this bound yields the378

stated claim.379

Proof of the bound (28): It remains to bound the Lipschitz coefficient of the idealized operator T .380

Since the composite function F (z) ··=
Pm

j=1 fj(zj) is `⇤-strongly convex and L⇤-smooth, known381

results on reflected proximal operators [11, Theorems 1 and 2] imply that with the stepsize choice382

s = 1/
p
`⇤L⇤, the operator reflsF satisfies the bound383

k reflsF (z) � reflsF (z
0
)k2 6

⇣
1 � 2p

+ 1

⌘
kz � z0k2 for all z, z0 2 (Rd

)
m. (30)

On the other hand, the reflected proximal operator reflIE for the indicator function reflIE is non-384

expansive, so that385

k reflIE (z) � reflIE (z)k2 6 kz � z0k2 for all z, z0 2 (Rd
)
m. (31)

Applying the triangle inequality and using the definition (25) of the idealized operator T , we find that386

kT (z) � T (z0)k2 6 k reflsF

�
reflIE (z)

�
� reflsF

�
reflIE (z

0
)
�
k2

(iv)
6
⇣
1 � 2p

+ 1

⌘
k reflIE (z) � reflIE (z

0
)k2

(v)
6
⇣
1 � 2p

+ 1

⌘
kz � z0k2,

where step (iv) uses the contractivity (30) of the operator reflsF , and step (v) uses the non-387

expansiveness (31) of the operator reflIE . This completes the proof of the bound (28).388

A.2.3 Proof of Corollary 1389

By construction, the function hj is smooth with parameter M ··= sL⇤
+ 1 and strongly convex with390

parameter m ··= s`⇤ + 1. Consequently, if we define the operator Hj(u) ··= u � ↵rhj(u), then by391

standard results on gradient methods for smooth-convex functions, the stepsize choice ↵ =
2

M+m392

ensures that the operator Hj is contractive with parameter at least ⇢ = 1 � m
M . Thus, we have the393

bound394

ku(e+1) � u⇤k2 6 ⇢eku(1) � u⇤k2,

where u⇤
= proxsfj (x

(t)
j ) is the optimum of the proximal subproblem. Unpacking the definitions of395

(m,M) and recalling that s = 1/
p
`⇤L⇤, we have396

M

m
=

sL⇤
+ 1

s`⇤ + 1
=

q
L⇤

`⇤
+ 1

q
`⇤
L⇤ + 1

6
p
+ 1,

and hence ⇢ 6 1 � 1p
+1

, which establishes the claim.397
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A.2.4 Proof of Theorem 2398

Recalling the definition (17) of the regularized objective F�, note that it is related to the unregularized399

objective F via the relation F�(x) = F (x) + m�
2 kx � x(1)k2, where x(1) is the given initialization.400

The proposed procedure is to compute an approximation to the quantity401

x?
�

··= argmin

x2Rd

 
mX

j=1

n
fj(x) +

�

2
kx � x(1)k2

o

| {z }
=:F�(x)

!
.

Now suppose that we have computed a vector bx 2 Rd satisfies F�(bx) � F�(x?
�) 6 "/2. Letting402

F ?
= F (x?

) denote the optimal value of the original (unregularized) optimization problem, we have403

F (bx) � F ?
=

n
F (bx) � F�(x

?
�)

o
+

n
F�(x

?
�) � F (x?

)

o
. (32)

By definition of F�, we have F (bx) 6 F�(bx). Moreover, again using the definition of F�, we have404

F�(x
?
�) � F (x?

) = F�(x
?
�) � F�(x

?
) +

m�

2
kx? � x(1)k2

6 m�

2
kx? � x(1)k2,

where the inequality follows since x?
� minimizes F� by definition. Substituting these bounds into the405

initial decomposition (32), we find that406

F (bx) � F ? 6
n
F�(bx) � F�(x

?
�)

o
+

m�

2
kx? � x(1)k2

6 "

2
+

"

2
= ". (33)

where the inequality follows since since bx is ("/2)-cost-suboptimal for F�, and by our selection of407

�. Thus to finish the proof, we simply need to check how many iterations it takes to compute an408

("/2)-cost-suboptimal point for F�.409

Let us define the shorthand notation L ··=
Pm

j=1 Lj and � ··= L⇤+�
� . Since F� is a sum of410

functions that are �-strongly convex and (Lj + �)-smooth, it follows that from initialization x(1), the411

FedSplit algorithm outputs iterates x(t) satisfying the bound412

F�(x
(t+1)

) � F�(x
?
�)

(i)
6 L+m�

2
kx(t+1) � x?

�k2

(ii)
6 L+m�

2

✓
1 � 2

p
� + 1

◆2t kx(1) � z?�k2

m
. (34)

In the above reasoning, inequality (i) is a consequence of the smoothness of the losses fj when413

regularized by �, along with the first-order optimality condition for x?
�; and bound (ii) then follows414

by squaring the guarantee of Theorem 1 with b = 0. By inverting the bound (34), we see that in order415

to achieve an "/2-optimal solution, it suffices to take the number of iterations t to be lower bounded416

as417

t >
⇠p

� + 1

4
log

⇢
(L+ �m)kx(1) � z?�k2

m

�⇡
.

Evaluating this bound with the choice � = 1 + L⇤/� and recalling the bound (33) yields the claim418

of the theorem.419

A.3 Characterization of fixed points420

In this section we give the two fixed point results for FedSGD and FedProx as stated in Section ??.421
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A.3.1 Proof of Proposition 1422

We begin by characterizing the fixed points of the FedSGD algorithm. By definition, any limit point423

(x?
1, . . . , x

?
m) 2 (Rd

)
m must satisfy the fixed point relation424

x?
j =

1

m

mX

j=1

Ge
j(x

?
j ), j = 1, 2, . . . ,m.

Thus, the limits x?
j are common, and this gives part (a) of the claim. Expanding the iterated operator425

Ge
j gives part (b).426

A.3.2 Proof of Proposition 2427

We now characterize the fixed points of the FedProx algorithm. By definition, any limit point428

(x?
1, . . . , x

?
m) satisfies429

x?
j =

1

m

mX

j=1

proxsfj (x
?
j ), j = 1, 2, . . . ,m. (35)

Thus, the limits x?
j are common, and this gives part (a) of the claim.430

For any convex function, f : Rd ! R, the proximal operator satisfies431

proxsf (v) = v � srMsf (v), for all s > 0 and v 2 Rd.

Using this identity in display (35) yields part (b) of the claim.432

B Details for simulation studies433

All of the experiments were conducted on a 2.6 GHz Intel Core i7 processor, in Python 3.7.3. Our434

logistic regression experiments used CVXPY, convex programming [10] software that we used to435

implement the exact proximal operators.436

B.1 Results presented in Figure 1437

For the simulation, we construct a least squares problem where for j 2 [m], the response vector438

bj 2 Rnj obeys the linear model bj = Ajx0 + vj , where x0 2 Rd is the unknown parameter vector439

to be estimated, and the noise vectors vj are independently distributed as vj
ind.⇠ N

�
0,�2Inj

�
for some440

� > 0. For our experiments reported here, we constructed a random instance of such a problem with441

m = 25, d = 100, nj ⌘ 500 and �2
= 0.25. We generated the design matrices with i.i.d.entries442

of the form (Aj)kl
i.i.d.⇠ N (0, 1), for k = 1, . . . , nj and l = 1, . . . , d. The aspect ratios of Aj satisfy443

nj > d for all j, thus by construction the matrices Aj are full rank with probability 1.444

B.2 Results presented in Figure 2445

B.2.1 Synthetic dataset446

Here, we have design matrices Aj 2 Rnj⇥d and label vectors bj 2 {1,�1}nj . We denote the rows447

of Aj by aij 2 Rd for i = 1, . . . , nj . The conditional probability of positive class label bij = 1448

under unknown parameter vector x0 is then449

P{bij = 1} =
e
aT
ijx0

1 + e
aT
ijx0

, for i = 1, . . . , nj . (36)

Given observations of this form, we solve the logistic regression problem, This problem is smooth450

and convex,and clearly a special case of the more general class of federated problems (1).451

We construct random instances of logistic regression problems with the settings d = 100, nj ⌘ 1000452

and m = 10. Hence, we have a total sample size of n = 10000. We draw aij
i.i.d.⇠ N (0, Id) for all i, j453

and x0
i.i.d.⇠ N (0, Id). The binary labels then are constructed to follow the Bernoulli model (36).454
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B.2.2 FEMNIST datset455

For this experiment only, we used Amazon EC2 to carry out these experiments (on c5.metal456

instances). The original dataset is comprised of 28 ⇥ 28 images, which we vectorize in row major457

order to obtain data points in uij 2 R784. We further preprocessed these datapoints by adding a458

constant feature, and adding (Ru)+ and (Gu)+, where R 2 {±1}3000⇥784 and G 2 R3000⇥784 are459

filled with i.i.d. Rademacher and standard Normal entries. Here, (·)+ denotes the entrywise positive460

part of a vector. Therefore our final datapoints are461

aij = (1, uij , (Ruij)+, (Guij)+) 2 R6785.

There were K = 62 classes in the dataset; we encode the labels as vectors bij 2 {±1}K . Formally,462

if aij belongs to class k 2 [K], we set bij = 2ek � 1, where ek denotes the kth standard basis vector463

in RK .464

We added the additional random features given above to improve the performance of our model on465

held out data. We set � = 0.01 by cross-validation on a smaller subsample of the FEMNIST dataset.466

Formally, for each client, we select a random, 20% fraction of the data to reserve as a heldout set,467

not used for training our classifier. We train the one-versus-all multiclass classifier, according to the468

objective given in (19) by FedSplituntil approximately satisfying the optimality condition of the469

distributed problem. We then compute the accuracy of our multiclass classifier on the held out data470

and repeated this for choices of � 2 [10
�3, 103]; � = 0.01 worked best on the held out data, giving471

an accuracy of 73%. As mentioned in the paper, the proximal solves for FedSplitwere carried out472

using accelerated gradient descent.473

B.3 Results presented in Figure 3474

We now describe the results of a simulation study that demonstrates the accuracy of these predicted475

iteration complexities. At a high level, our strategy is to construct a sequence of problems, indexed476

by an increasing sequence of condition numbers , and to estimate the number of iterations required477

to achieve a given tolerance " > 0 as a function of . In order to do, it suffices to consider ensembles478

of least squares problems (8), but with a carefully constructed collection of design matrices, which479

we now describe.480

For a given integer ` > 2, let O(`) denote the set of ` ⇥ ` orthogonal matrices over the reals, and let481

Unif(O(`)) denote the uniform (Haar) measure on this compact group. With this notation, we begin482

by sampling i.i.d.random matrices483

U ()
j ⇠ Unif(O(nj)) and V ()

j ⇠ Unif(O(d)), for j = 1, . . . ,m. (37)
For a given condition number  > 1, we define a padded diagonal matrix—that is484

⇤
()
j =

h
diag(�()

j ) 0d,(n�d)

i
where �()

j = (
p
, 1, . . . , 1) 2 Rd.

Above, the matrix 0d,(nj�d) 2 Rd⇥(nj�d) has all entries equal to zero. Given the random orthogonal485

matrices and the matrix ⇤
()
j 2 Rnj⇥d, we then construct the design matrices A()

j 2 Rnj⇥d by486

setting487

A()
j

··= U ()
j ⇤

()
j V ()

j , for all j = 1, . . . ,m.

These choices ensure that the federated least squares objective (8) has condition number .488

As before, the response vectors b()j obey a Gaussian linear measurement model,489

b()j = A()
j x0 + v()j , for j = 1, . . . ,m, and for all  2 K.

We again take v()j
ind.⇠ N

�
0,�2Inj

�
. In our experiments, we draw the parameter x0 ⇠ N (0, Id), and490

use the parameter settings491

m = 10, d = 100, nj ⌘ 400, and �2
= 1.

With these settings, we iterated over a collection of condition numbers  2492

{100, 100.5, . . . , 103.5, 104}. For each choice of , after generating a random instance as described493

above, we measured the number of iterations required for FedGD and the FedSplit procedures,494

respectively, to reach a target accuracy " = 10
�3, which is modest at best.495

16


	Introduction
	Existing algorithms and their fixed points
	Federated gradient algorithms
	Federated proximal algorithms
	Example: Incorrectness on a least squares problem

	FedSplit and convergence guarantees
	Splitting procedures for federated optimization
	Convergence results

	Experiments
	Discussion
	Proofs
	Proofs of guarantees for FedSplit
	Proof of Proposition 3
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Corollary 1
	Proof of Theorem 2

	Characterization of fixed points
	Proof of Proposition 1
	Proof of Proposition 2


	Details for simulation studies
	Results presented in Figure 1
	Results presented in Figure 2
	Synthetic dataset
	FEMNIST datset

	Results presented in Figure 3


