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Abstract

Missing Not At Random (MNAR) values where the probability of having missing
data may depend on the missing value itself, are notoriously difficult to account
for in analyses, although very frequent in the data. One solution to handle MNAR
data is to specify a model for the missing data mechanism, which makes inference
or imputation tasks more complex. Furthermore, this implies a strong a priori
on the parametric form of the distribution. However, some works have obtained
guarantees on the estimation of parameters in the presence of MNAR data, without
specifying the distribution of missing data [18, 25]. This is very useful in practice,
but is limited to simple cases such as few self-masked MNAR variables in data
generated according to linear regression models. We continue this line of research,
but extend it to a more general MNAR mechanism, in a more general model of the
probabilistic principal component analysis (PPCA), i.e., a low-rank model with
random effects. We prove identifiability of the PPCA parameters. We then propose
an estimation of the loading coefficients, and a data imputation method. Both
are based on estimators of means, variances and covariances of missing variables,
for which consistency is discussed. These estimators have the great advantage of
being calculated using only the observed information, leveraging the underlying
low-rank structure of the data. We illustrate the relevance of the method with
numerical experiments on synthetic data and also on two datasets, one collected
from a medical register and the other one from a recommendation system.

1 Introduction

The problem of missing data is ubiquitous in the practice of data analysis. Theoretical guarantees
of estimation strategies or imputation methods rely on assumptions regarding the missing-data
mechanism, i.e. the cause of the lack of data. Rubin [22] introduced three missing-data mechanisms.
The data are said (i) Missing Completely At Random (MCAR) if the probability of being missing
does not depend on any values observed or missing, (ii) Missing At Random (MAR) if the probability
of being missing only depends on observed values, (iii) Missing Not At Random (MNAR) if the
unavailability of the data may depend on both observed and unobserved data such as its value itself.
We focus on this later case, which is frequent in practice, and theoretically challenging. A classic
example of MNAR data is surveys about salary for which rich people would be less willing to disclose
their income.

When the data is MCAR or MAR, statistical inference is carried out by ignoring the missing data
mechanism [[10]. In the MNAR case, the observed data are no longer representative of the population,
which leads to selection bias in the sample, and therefore to bias in the parameters estimation when
using for instance complete case analysis. One solution to handle MNAR data, known as selection
model [10], is to model missing data distribution; most of the time, by logistic regression models
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[4)[19] 24]. This comes at the price of an important computational burden to perform inference and is
often restricted to a limited number of MINAR variables. In the recommender system community,
some authors [12} [3,[11} 28] suggest that not MCAR values can be handled using a joint modelling of
the data and mechanism distributions by matrix factorization; then they debiase existing methods for
MCAR data, for instance with inverse probability weighting approaches.

In addition, a key issue of MNAR data is to establish identifiability, which is not always guaranteed
[[LS]]. The literature on this topic is abundant, both in the non-parametric [17, 16, 16} 123} 20], and
semi-parametric settings [27, [14]. For parametric models, in the case of multivariate regression,
Tang et al. [25] and Miao et al. [[L5] guarantee the identifiability of the coefficients of the conditional
distribution of Y'| X, when Y is missing. Tang et al. [23]] estimate them by calculating the coefficient
of the distributions of X and X|Y using only observations with no missing values. Besides, in a
linear model with self-masked missing mechanism, i.e., the lack depends only on the missing variable
itself, Mohan et al. [18]] consider a related approach based on graphical models, adopting a causal
point of view. Despite the great advantage of not modeling the distribution of missing values, the
assumption of a self-masked MNAR mechanism and the restriction to a linear model are yet strong.

Contributions. We consider a framework where the data are generated according to a probabilistic
principal components analysis (PPCA) [26] model. Contrary to available works that handle only
MAR data in PPCA [5]], we consider that the missing values mechanism can be MNAR (on several
variables) and we also consider the possibility of having different mechanisms in the same data
(MNAR and M(C)AR).

e We prove the identifiability of the PPCA model parameters in a self-masked MNAR values setting
encompassing a large set of self-masked mechanism distributions.

e For more general MNAR mechanism, we give a strategy to estimate the PPCA loading parameters
without any modeling of the missing-data mechanism and use it to impute missing values.

e The proposed method is based on estimators for the mean, the variance and the covariance of the
variables with MINAR values. We show that they can be consistently estimated. Two strategies
lead to the proposed estimators: (i) the first one uses algebraic arguments based on partial linear
models derived from the PPCA model; (ii) the second one is inspired by [18] and uses graphical
models and in particular the so-called missingness graph.

e We derive an algorithm implementing our proposal. We show that it outperforms the state-of-
the-art methods on synthetic data and on two real datasets, collected from a medical registry
(Traumabase”) and from a joke recommender system (the Jester Online Joke Recommender
System [2]]). The code to reproduce all the simulations and the numerical experiments is available
athttps://github.com/AudeSportisse/PPCA_MNAR!

2 PPCA model with informative missing values: identifiability issues

Setting. The data matrix Y € R™*? is assumed to be generated under a fully-connected PPCA
model [26]] (a.k.a. a low-rank model with random effects), i.e. by the factorization of the loading
matrix B € R"*P and r latent variables grouped in the matrix W € R™*",

W = (Wi|...[Wn)T, with W;, ~ N(0,,1d,«,) € R”,

B of rank r < min{n, p}, |
aeRPand1=(1...1)T € R", O
€= (e1]...|en)T, with €. ~ N (0p,0%Id,x,) € RP,

Y =1a+ WB + ¢, with

for o2 and r known. In the sequel, Y ; and Y;, respectively denote the column j and the row 7 of Y. The
rows of Y are identically distributed, Vi € {1,...,n}, ¥; ~ N(a, X), with ¥ = BT B + ¢%1d, x .
We denote € {0, 1}"*? the missing-data pattern (or mask) defined as follows:

0 if Yj; is missing,
1 otherwise.

Vie{l,...,n}, Vi€ {l,....p}, Q]{ o

Some variables Y., ,...,Y.,,,, indexed by M := {mq,...,mq} C {1,...,p} (with d < p),
contain MNAR values. The other variables are considered to be observed (or M(C)AR see Appendix
[B.5). We define a general MNAR mechanism where the probability to have missing values may


https://github.com/AudeSportisse/PPCA_MNAR

depend on the d MNAR variables but also on p — d — r other variables that can be observed or
M(C)ARD The remaining r variables are called pivot variables and can be observed or MCAR. More

precisely, we denote the complementary of a set A as A := {1,...,p} \ A. The general MNAR
mechanism is defined as follows, with 7 C M the set of indices of the  pivot variables (|J| = r),
Yme M,Vie{l,....,n}, PQu,=1Y;) =P, = 1|(Yik)kej)- 3)
We also define a specific MNAR mechanism, called the self-masked MNAR mechanism as follows.
We assume that d variables are self-masked MNAR indexed by M and the p — d other variables are
MCAR (or observed), indexed by M , i.e, Vi € {1,...,n},
Ym e M, P(th = 1|Y;) = ]P)(Qim = 1|)/im)- 4

Model identifiability. We prove the identifiability of the PPCA model (see Appendix |A|for the
complete proof), i.e. the joint distribution of Y can be uniquely determined from the available
information, in the self-masked missing values case. More particularly, assume the following

A01. d variables are self-masked MNAR as in @) and the p — d other variables are MCAR
(or observed). The missing-data distributions (F;,)mem and (Fy) ¢ 57 are known strictly

monotone functions with a finite support, defined as follows, Vi € {1,...,n},
Vme M, P(Qim=1[Y;) = Fm(¢9n + ¢71nyzm)7
VieM, P(Qy=1]Y;)=P(Qy=1) = Fj(¢;),
with ¢; € R and ¢,,, = (6%, ¢1,) € R? the mechanism parameters.
A02. V(k,0) € {1,...,p}%, k#L, QL QY

Note that under Assumption @, any function F,,,m € M can be considered, as a logistic
function while [15]] presented many counterexamples when identification fails considering the logistic
distribution. [A02) requires that the missing-data patterns are independent conditionally to the data.

Proposition 1. Under Assumptions and the parameters (a, 2) of the PPCA model @
and the mechanism parameters ¢ = (¢¢)oc{1,...py are identifiable. Assuming that the noise level o

is known, the parameter B is identifiable up to a row permutation.

3 Estimators with theoretical guarantees

In this section, we provide estimators of the means, variances and covariances for the MNAR variables,
when data are generated under the PPCA model described in (T)). These estimators are used to derive
an estimator of the loading matrix B in (I). This makes it possible to derive a new imputation method
with MNAR data as detailed in Algorithm|[T}

We denote J_; := J \ {j} and assume

Al Yme M,Yje J, (Bm (Bj)jyes.,)isinvertible,
A2. Ym € M, VJ € j, Yj 4 Qm,|(yk)kem

Note that Assumption implies that B has a full rank r and that any variable in Y is generated
by all the latent variables’| (named a "fully-connected" PPCA). Assumption is implied by the
general MNAR mechanism in (3).

We start by illustrating the methodology and the assumptions using an example in small dimension,
before turning to the general case.

3.1 Estimation of the mean of a MNAR variable

Consider a toy dataset where p = 3,7 = 2, in which only one variable is missing, M = {1} and
there are two pivots variables 7 = {2, 3}. Note that the MNAR mechanism is self-masked in such a
context, because Equation (3) leads to P(Q2; = 1|Y1,Y5,Y3) = P(Q21 = 1|Y1), but the method
can be extended to more general cases. Our aim is to estimate the mean of Y ;, without specifying
the distribution of the missing-data mechanism.

Note that it implies that d < p — .
21t does not require that the linear combination coefficients are non-zero.



Using algebraic arguments. We proceed in three steps: (i)[A1] allows to obtain linear link between
the pivot variables (Y2, Y 3) and the MNAR variable Y ;. For instance,

Yo =By 130 +Basiam Y+ BasizYis + ¢, (%)

with ¢ a noise term, By_,1 3(0), Ba—s1,3(1] and Ba_, 33 the intercept and the coefficients in the
model (the arrow 2 — 1, 3 indicates the regression model of Y, on Y; and Y 3, while the squared
bracket represents the coefficient, for instance 3 for the coefficient of Y3) ; (i) Assumption[A2] i.e.
Yo L Q4]Y,,Y s, is required to obtain identifiable and consistent parameters of the distribution of

Y given Y1, Y 3 in the complete-case when €2 1 = 1, denoted as 65%1,3[01’ 85%1,3[1} and 85%1,3[3],
(Y2)\Q.1:1 = B;al,B[O] + B§a1,3[1]Y.1 + Bgﬁl,S[B]Yvﬁ + ¢ (6)

(note that the regression of Y1 on (Y2, Y 3) is prohibited, as[A2] does not hold); (iii) using again[A2.]
E [Y2|Y1; YS; Q.l = 1] =E Bg_ﬂ,g[o] + Bg_ﬂ,g[l]Yl + B§_>173[3]Y3|Y17 Y3:| )

and taking the expectation leads to
E[Yo] = B3,y 510) + Booy, B [Ya] + By 53 E [Ya].-

The latter expression can be reshuffled so that the expectation of Y ; can be estimated: the means of
Y, and Y 3 are estimated by standard empirical estimators (it will be Assumption @] in the sequel).

Using graphical arguments. The PPCA
model can be represented with structural causal

graphs [21]], as illustrated in Figure[I] The top “
left graph in which each variable is generated by '
a combination of all latent variables, see Assump- @ @ @ @

tion[AT] can be represented as the top right one,
asY; < W, — Ysisequivalentto Y; < Y,
(see [21) page 52]). Then, six reduced graphical @
models can be derived from the top right graph
(two instances are represented in the bottom).

Indeed, a bidirected edge Y.; <> Y5 can be in-
terchanged (see [21} rule 1, page 147]) with an @

D ®
@)
()—)
oriented edge Y1 — Yo, if each neighbor of
Y, (ie. Y1 or Y3) is inseparable of Y (see @

[21, page 17]). The bottom left graph can also )

be represented by Equation (), which gives a Figure 1: Graphical models for the toy example

connection between the algebraic and graphical ~With one missing variable Y1, p = 3 and r = 2.
approaches.

3.2 Estimation of the mean, variance and covariances of the MNAR variables

In a general case, estimators of the mean, variance and covariances of the variables with MNAR
values can be computed one by one. We detail the results only for one variable Y.,,,, m € M, but the
results hold for several variables with MNAR values. In addition, the other variables are considered
to be observed for simplicity but they could contain MCAR and MAR values as well, as explained in
Appendix [B.5] We adopt the algebraic strategy here to derive estimators (see Appendix [B]for proofs)
but graphical arguments can also be used to obtain similar results (see Appendix [F). The starting
point is to exploit the linear links between variables, as described in the next lemma.

Lemma 2. Under the PPCA model (1)) and Assumption[A1] choose j € J. One has

Yj=B3m7 0+ Z B m,g_;1inY5 + Bism,g_jim)Ym + C, @)
J'ed—;
where ( = — Zj/ej_j Bj sm,g_;1i1€.5" — Bjsm,7_;[m)€.m + €5 is a noise term.

B sm,g_,10p Bism.g_ ;15 ad Bj_m. 7. [m) are given in Appendix@]and depend on the coeffi-
cients of B given in (I)). '



Then we define the regression coefficients of Y ; on Y, and Y, for k € J_; in the complete case,
that will be used to express the mean of a variable with MNAR values.

Definition 3 (Coefficients in the complete case). For j € J and k € J_;, let ng LT [0]
BJC. o, T [ml and BJ”r N be respectively the intercept and the coefficients standing for the

effects of Y j on (Y., (Y.j1)jic7_,) in the complete case, i.e. when §) , = 1:

(Yj)\QAm:1 = ]c‘—>m,\7,j[0] + Z B]C'—wn,J,j[j’]Yj' + Bjc'—nn,J,j [m]}fm + ¢ ®)
ieJ—;

With C° = =2 jieg ; Bismg 1€ = Bjom.g_jm€m + €4
Then, we make the two following assumptions:

B¢

J—=m,J—;[m]

A3. Forall j € J, for all m € M, the complete-case coefficients B;r em, T [0]

and BJC. —em, T k] k € J_; can be consistently estimated.

A4. The means (o), e, variances (Var(Y;)) e and covariances (Cov (Y ;,Y.j))jes e 7
of the r pivot variables can be consistently estimated.

Note that Assumption[A4]is met whether the 7 pivot variables are fully observed.

Proposition 4 (Mean estimator). Consider the PPCA model (1). Under Assumptions[AL] and[A2)]
an estimator of the mean of a MNAR variable Y ,,,, for m € M, can be constructed as follows:
choose j € J, and compute

A,_ AC —_— AC .
. @ Bj—ml,J,j[O] Zj'ej,j Bj-)m,J,j[jq%'

Q2= 5 ; ©))
B .7 _sm)
with ([;’;?_)m,jﬂ_ (k] )ke{o)m}u‘yﬂ. estimators of the coefficients obtained from Deﬁnition

Under the additional Assumptions[A3. and this estimator is consistent.

The proof is given in Appendix Proposition @] provides an estimator easily computable from all
observed cells. Furthermore, different choices of Y ;, j € J can be done in Equation (E) and all the
resulting estimators may be aggregated to stabilize the estimation of av,,.

Proposition 5 (Variance and covariances estimators). Consider the PPCA model (I). Under As-
sumptions[AL] and[A2.] an estimator of the variance of a MNAR variable Y ,,,, for m € M, and its
covariances with the pivot variables, can be constructed as follows: choose a pivot variable Y ; for
7 € J and compute

(Var(Yom) Cov(Yum, (Yj)yeq) = (M) 1P, (10)

assuming that o2 tends to zero, with Mj_1 e RO+Dx(r+1) ﬁj € R detailed in Appendix
These quantities depend on (&) jie 7, G, given in Proposition on (Var(Y ;1)) j e and on

complete-case coefficients such as (Bjc'/ﬁm,Jij/ [k])ke{m}uj,j/ forj' € J.

Under the additional Assumptions [A3)] and the estimators of the variance of Y., and its
covariances with the pivot variables given in are consistent.

The proof is given in Appendix [B3] Note that to estimate the variance of a MNAR variable, only
r pivot variables are required to solve (T0) and r tasks have to be performed for estimating the
coefficients of the effects of Y1, on (Y¢)¢efmyus_, forallk € J.

All the ingredients can be combined to form an estimator 3. for the covariance matrix Y. Define

£ = (Cov(vie ), (an

e if Y and Y, have both consistent mean/variance estimators, then Cov(Yy, Y ) can be trivially
evaluated by standard empirical covariance estimators.



e if Y, is a MNAR variable and Y, is a pivot variable, then Cov(Y, Y,,) is given by (T0),

e if Y is a MNAR variable and Y is not a pivot variable, i.e. £ € J \ {k}, a similar strategy as the

one above can be devised. Then Cov(Y, Y,) is given by (48) detailed in Appendix and for
which some additional assumptions similar as the ones above are required. This estimator relies on
the choice of  — 1 pivot variables indexed by j and H C 7, and only necessitates to evaluate the
effects of Y; on (Y ;1) jcr,eyun in the complete case.

3.3 Performing PPCA with MNAR variables

With the estimator ¥ in (TT) at hand, one can perform the estimation of the loading matrix B in (T).
Definition 6 (Estimation of the loading matrix). Given the estimator N of the covariance ma-
trix in (M), let the orthogonal matrix U = (t1]...|4,) € RP*P and the diagonal matrix
D = diag(dy,ds,...,dp) € RP*P withdy > do > ... > d, > 0 form the singular value de-

composition of the following matrix o 2 1dyxp =: UDUT . An estimator B of B can be defined
using the r first singular values and vectors, as follows

The estimation of the loading matrix is used to impute the variables with missing values. More
precisely, a classical strategy to impute missing values is to estimate their conditional expectation
given the observed values. One can note that with ¥ = BT B + ¢%1d,« , the conditional expectation
of Y.,,, for m € M given (Y1), o x7 reads as follows

E[Y il (V) pertl = om + B w550 57 (Vg — @) -

with Zm,ﬂ = (Zme)fEJW’ E./W./W = (Ek’k,)k,k/éﬂ’ Y./W = (Yk)keﬂ’ and O[M = (ak)keﬂ.

Definition 7 (Imputation of a MNAR variable). Set I':= BTB + ¢2 Id, «p for B given in Definition
@ The MNAR variable Y ,,, with m € M can be imputed as follows: for i such that €); ,,, = 0,

Vi = o + Ty ol o o (Yfm - dﬂ) (13)

with f‘m,ﬂ = (Fm’k)feﬂ’ f‘ﬂ,ﬂ = (f‘k’k,)k,k/eﬂ’ Y./W = (Yk)keﬂ and OA[M = (dk)ke/v'

3.4 Algorithm

The proposed imputation method described in Algorithm|l|can handle the different MNAR mech-
anisms, the self-masked MNAR case and the general MNAR cases where the probability to have
missing values on variables depends on both the underlying values and values of other variables
(observed or missing).

Algorithm 1 PPCA with MNAR variables.

Require: 7 (number of latent variables), o2 (noise level), 7 (pivot variables indices), {2 (mask).

1: for each MNAR variable (Y.,;,)mer do 6: Form f) covariance matrix estimator in @
2:  Evaluate &, the estimator of its mean | 7. Compute the loading matrix estimator B
given in (9) using the r pivot variables in- given in (12).
dexed by J. . 8: Compute I' = BT B + 021dpxp-
3:  Evaluate Var(Y.,,), and Cov(Y.,,, Y) for | 9: for each missing variable (Y ;) do
te J, usiﬂg\@]). 10:  for ¢ such that Q;; = 0 do
4:  Evaluate Cov(Y,,,Y,) for¢ € T\ {m} | 11: Yi; « Impute Y;; as in (T3).
using Proposition [§] 12:  end for
5: end for 13: end for

Algorithm [T] requires the set 7, i.e. the selection of 7 pivot variables on which the regressions in
Propositions [4] [5] and [8] will be performed. If there are more than r variables that can be pivot,
we suggest selecting a bigger set (> ) and computing the final estimator with the median of the
estimators over all possible combinations. The efficiency of this strategy is illustrated in Appendix



The estimators associated to any missing variable in the steps 1 to 5 are computed in the complete
case, i.e. with the rows for which the missing variable is observed. When the pivot variables are
also missing, the complete case corresponds to discarding all rows where the pivot variables or the
MNAR one are missing and not all rows containing missing values. This could be problematic in the
high-dimensional setting, but here the low-rank assumption ( < min{n, p}) ensures that the number
of pivot variables is small enough, so that the complete case analysis will not result in discarding
many rows of the dataset.

In order to estimate the coefficients in Definition 3] we use ordinary least squares despite that the
exogeneity assumption, i.e. the noise term is independent of the covariates, does not hold. It still leads
to accurate estimation in numerical experiments as shown in Section[d] Actually, the consistency
required by Assumption[A3]holds as the variance of the noise tends to 0.

4 Numerical experiments

4.1 Synthetic data

We empirically compare Algorithm[I|(MNAR) to the state-of-the-art methods, including

(i) MAR: our method which has been adapted to handle MAR data (inspired by [18 Theorems
1, 2, 3] in linear models), see Appendix |Gl for details;

(ii) EMMAR: which consists in an EM algorithm to perform PPCA with MAR values [5];

(iii) SoftMAR: a matrix completion method using an iterative soft-thresholding singular value
decomposition algorithm [13] relevant only for M(C)AR values;

(iv) MNARparam: a matrix completion technique modeling the MNAR mechanism with a
parametric logistic model [24].

Note that Method [(i1)]is specially designed to estimate the PPCA loading matrix and not to perform
imputation, but this is possible combining Method [(il)] with steps 8 and 9 in Algorithm[I} This is the
other way around for completion Methods and but the loading matrix can be computed as in
(I2). Note also that Methods|(iiD)] and [(iv)| are developed in a context of low-rank models with fixed
effects. They require tuning a regularization parameter A\: we consider an oracle value minimizing
the true imputation error. We also use oracle values for the noise level and the rank in Algorithm|[I]
These methods are compared with the imputation by the mean (Mean), which serves as a benchmark,
and the naive listwise deletion method (Del) which consists in estimating the parameters empirically
with the fully-observed data only. A comparison of the methods in terms of computational times is
given in Appendix D}

Measuring the performance. For the loading matrix, the RV coefficient [8]], which is a measure
of relationship between two random vectors, is computed between the estimate B and the true B. An

RV coefficient close to one means high correlation between the image spaces of Band B. Denoting
the Frobenius norm as ||.|| 7, the quality of imputation is measured with the normalized imputation

error given by ||(}A/' -V)o(1-Q)%/lY o (1 - Q)||§,

Setting. We generate a data matrix of sizen = ** mE RV
1000 and p = 10 from a PPCA model (I) with |’ MNAR | 0.007
two latent variables (r = 2) and with a noise level . - EMMAR | 0.988
o = 0.1. Missing values are introduced on seven oo ===~ == m—— SofAR | e
variables (Y1) re[1:7) according to a logistic self- s ¥ w§’ égv g‘f £

S

masked MNAR mechanism, leading to 35% of R
missing values in total. Results are presente

for one missing variable Y ; (same results hold
for other missing variables). All the observed
variables (Y1) re(s:10] are considered to be pivot.

Figure 2: Imputation error (left) and median of
the RV coefficients for the loading matrix (right).

3For a given set of PPCA parameters, the stochasticity comes from the process of drawing 20 times the latent
variables, the additive noise and the missing-data pattern.



Figure [3] shows that Algorithms [I] is the only o .

one which always gives unbiased estimators of 0'“%‘%’? %%7
the mean, variance and associated covariances of %% 4 = =3

Y ;. As expected, the listwise deletion method 1 5] ==
provides biased estimates inasmuch as the ob- I =
served sample is not representative of the pop- o s RS §s
ulation with MNAR data. Method [(i0} specifi- & 8 & & g9 &35 § & &9
cally designed for PPCA models but assuming §
MAR missing values, provides biased estimators. p—
Method[(iv)]improves on the benchmark mean im-  * " &= ?
putation and on Method|[(iiD)]as well as it explicitly =~ 3-

takes into account the MNAR mechanism, but it  2-

still leads to biased estimates probably because - = L

of the fixed effects model assumption. Figureg] o- — i 0- i

shows that Algorithm [T] gives the best estimate & &5 ffJ ST FEQ
: : : - SIS SFES SIS FES

of the loading matrix and the smallest imputation ) § ) s

error. Method[(1)] based on the same arguments

as Algorithm [I|but considering MAR data, may Figure 3: Mean (top left) and variance (top right)

be considered as a second choice for this low- estimations of the missing variable and covari-

dimensional example as the biais is quite small ances (bottom) estimations of Cov(Y1,Ys) (i.e.

(yet not in higher dimension, see Appendix[C). ~ covariance between two missing variables) and of
Cov(Y.1,Yg) (i.e. between one missing variable
and one pivot variable). True values are indicated
by red lines.

Misspecification to the PPCA model. The O»OO%L 020 ﬁ
data matrix Y € R"*P of size n = 200 and %%

p = 10 is now generated under the fixed effects '212 - o Lﬁ == $ #
model such that Y = © + ¢, with © € R™? "~ $ $ o.10

a low-rank matrix with 7 = 2ande € R"?a o~ =~ 1 o g $ ‘
Gaussian noise matrix with o = 0.1. Figure [ SEE S S&E &S
shows that mean and variance estimators given S ® §$ S $ gf

by Algorithm [I]have a larger variance than those ) ) )
given by Method [(iv)] precisely dedicated to this Flgqre 4: Mean (left) and variance (right) esti-
specific setting. But surprisingly, Algorithm [T] mations of Y; when data are generated under the
provides less biased estimates than Method [(iv)] fixed effects model.

In Appendix [C} we report further simulation results, where we vary the features dimension (p = 50),
the rank (r = 5), the missing values mechanism using probit self-masking and also multivariate
MNAR (when the probability to be missing for a variable depends on its underlying values and on
values of other variables that can be missing) and the percentage of missing values (10%, 50%).
We obtain similar results as before, and as expected, all the methods deteriorate with an increasing
percentage of missing values but our method remains stable.

In addition to the model misspecification experiment (assuming a fixed effect model), we assess
the robustness of the methods in terms of noise level and we evaluate the impact of under- or
overestimating the number r of latent variables. When the level of noise increases, our method is very
robust in terms of mean and variance estimations, and despite a bias for some covariances estimations
for large noise it outperforms competitors regarding the imputation error. It also turns out that the
procedure remains stable at a wrong specification of the number 7 of latent variables.

4.2 Application to recommendation system data

To show the extent and feasibility of our methodology on real data, we detail the methodology on the
Jester dataset [2]] of 5000 users who rated 100 jokes, with 27% of missing values.

Discussion on the assumptions. First, considering MNAR and self-masking values is plausible
because users only rate jokes they like or dislike strongly or might be ashamed to assume their taste
for sexual jokes for instance. Then, Assumption which can be viewed as a low-rank assumption
for the loading matrix, makes sense in the rating context: any variable (i.e. user preferences) can be



expressed as a linear combination of 7 latent variables. In particular, the first latent variable opposes
individuals who like jokes about physics but dislike jokes about sexuality, and conversely. Finally,
Assumption[A2] means that a user’s non-response for a sexual joke given all jokes may depend on
the scores of the sexual and physical jokes but not on the musical and computer jokes.

Selecting the number r of latent variables and estimating the noise variance. In practice, to
select r, one could use complete observations only but this is not possible when the number of
features is large. As an alternative, we use a cross-validation strategy assuming M(C)AR mechanism
as detailed in [7]. Algorithm [I]is robust to a misspecification of the rank (see Appendix [C) and
thus a reasonable heuristic may already be enough. With 7 at hand, the noise variance is obtained
directly using weighted residual sum of squares as in [9]]. Without further information on the missing
mechanisms, we select the r pivot variables with the lowest missing rate.

Imputation performances. To assess the quality of our

method, we introduce additional MNAR values using a logistic .
self-masked mechanism in a chosen variable with an initial rate ~ os- =—

of 33% and a final one of 65%. The other variables are consid- ,,. . | ==
ered M(C)AR. The process is repeated 10 times. We compare oo

our method to the EMMAR, SoftMAR and add an imputation o s - .
method based on deep generative models Deep [Tf'} The para- § 5 § §

metric method MNARparam is not performed as it does not scale
on such large data. Figure [5|shows that Algorithm[TJoutperforms Figure 5: Imputation error for the
the competitors (mean imputation corresponds to an error of 1). Jester dataset.

4.3 Application to clinical data

We illustrate our method on the TraumaBase® dataset containing the clinical measurements of 3159
patients with brain trauma injury (see Appendix [E|for more information). Nine quantitative variables,
selected by doctors, contain missing values (11% in the whole dataset). After discussion with doctors,
some variables can be considered to have MNAR values, such as the variable HR.ph, which denotes
the heart rate. Indeed, when the patient’s condition is too critical and therefore his heart rate is either
high or low, the heart rate may not be measured, as doctors prefer to provide emergency care.

As for the Jester dataset, we introduce additional MNAR values
in the variable HR.ph (which has an initial missing rate of 1%)

1.0 _—

using a logistic self-masked mechanism leading to 50% missing 4 ——

values. Both the rank and the noise level are estimated using ©6 ==

the complete-case analysis (1862 observations). The selection ** e — & —

of the pivot variables was discussed with experts (doctors) who S IQ§Y § g ¢
identified M(C)AR variables. In Figure [6] Algorithm [T] gives o §
significantly smaller imputation error than other methods. In Figure 6: Imputation error for the

addition, a supervised learning task is also performed in Appendix TraumaBase dataset.
for which Algorithm T]also gives the smallest prediction error.

Conclusion

In this work, we propose a new estimation and imputation method to perform PPCA with MNAR data
(possibly coupled with M(C)AR data), without any need of modeling the missing mechanism. This
comes with strong theoretical guarantees as identifiability and consistency, but also with an efficient
algorithm. Estimating the rank in the PPCA setting with MNAR data remains non trivial. Once
the number of latent variables is estimated, the noise variance can be estimated. A cross-validation
strategy by additionally adding some MINAR values is a first solution, but this definitely requires
further research. Another ambitious prospect would be to extend work to the exponential family to
process count data, for example, which is prevalent in many application fields such as genomics.

“Note that this method requires to be trained on a complete dataset.



Broader impact

Our goal is to provide a rigorous and consistent method for processing MNAR missing values, in
data with an underlying low-rank structure. The low-rank assumption has become widespread in
applications in recent years and it plays a key modeling role in many scientific and engineering tasks,
such as collaborative filtering, genome-wide studies, or even functional magnetic resonance imaging.

The problem of missing data is particularly evident for large data, possibly aggregated from multiple
sources, that is why we illustrate this work on a real dataset such as the medical register TraumaBase,
coming from different hospitals.

Managing informative missing data is a double challenge: on the one hand, because most of the
available data contains missing values, preventing the use of standard machine learning techniques;
and on the other hand, because the MNAR data can introduce large bias in the statistical analysis of
databases.

Because of the PPCA hypothesis and the processing of informative missing data, this work has a
wide range of applications.
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