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Broader Impact

The aim of this work is to address the possible pitfalls to the independence assumption in a social
network, as used in the study of influence maximization. As discussed previously, how an idea,
product, or piece of news makes its way through a network could very well be impacted by natural
social biases, thus connecting parts of a social network in ways that could have been unforeseen. The
methodology presented thus attempts to make this possibility a consideration during the selection
of seed set, and hence find “influential" members to a network regardless of whatever underlying
correlations may exist. This potentially can reduce the impact of biases that the independence
assumption may cause.

The Correlation Robust Influence Function [

Theorem[d] Let G = (V, E) be a directed graph, S C V a seed set, and p € [0,1]¥ a vector of
edge likelihoods. Then mingco Eeg [Z(€, S)] is the value to the following polynomial sized linear
program.

min Ezg [Z(¢,S)] = min e
min [Z(¢,S)] Jmin, ie;s
s.t m =1 fori €S, @)
m—m; < 1—p4; for(i,j) € E,
0<m <1 forieV

Proof: According to [1]], if we let M assume a large value (anything at least |V \ SJ), then
mingeo(p) Be~o [Z(€, S)] can be formulated as the following linear program:
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Upon inspection, the program reduces to the desired program. (|

Corollary 1] (Correlation Robust Influence Likelihood) For an arbitrary seed set S and vector of
edge likelihoods p € [0,1]¥, let m* solve . Then for eachi € V' \ S,

+
= | max L ,
; LEF(SJ) (7)}

Py« (Node i is reachable from S in G(€)) = w Vo* € arg Ieniél E:w0[Z(¢,S)].
€

In light of this, we define the correlation robust influence likelihood of i as ©}. In par-
ticular, ™} is no greater than the IC model’s likelihood that i is influenced, that is, w7 <
Py, (Node i is reachable from S).

Proof: We begin by establishing the equality

+
* = ax L .
m; L max. (7)]
Let i be such that I'(S, ¢) # (). Consider any path v € I'(S,4) and let v = (ip — 41 — 42 = ... —

i = 1), where iy € S. Since 7* is feasible to , we must have,
*

*
oy — T <1 —Digsy
* *
Ty — iy < 1= piy s
* *
Ty — T <1 — Pii_1it

Summation of these inequalities gives 7; — 7} < Zﬁzl(l — Di;_,.i,)- Since ig € S, it follows that
7} =1,sothat 7} > L(v). Hence, 7} = [max,er(s,s) Ly]*
On the other hand, observe that if I'(S, ¢) # (), then the decision variable ; has no lower bound other
than 0. Further, [max.cr(s,i) L(7)] * 20, in such a case, as desired.
We next establish the remaining equality

Py~ (Node i is reachable from S) = 7 V0" € arg Jénig Eeo [Z(C,S)].

€

Taking note of

in Eg[Z(c = mi P i hable fi i C
min 0[Z(€,S)] min 'e;\s ¢9(Node 1 is reachable from S in G(¢))

+

> in Pg(Node i i hable fi i c)) > L

> Z min ¢(Node i is reachable from S in G(€)) > | Lenl}?;(’i) ('y)}
i€V\S i€V\S

= > = min Ey[Z(¢,S)],
iEV\S



and that for any ¢ € V' \ S, it holds that

+
gﬂiél Py(Node i is reachable from S in G(€)) > { max L(y)} ,
4 .

so we arrive at the desired conclusion. O

Corollary 2] (Path existence under Correlation Robustness) Let S be an arbitrary seed set, and
let 0* € © be any solution to mingce Eg[R(C,S)]. Let I'(S, 1) := argmazcr(s, L(Y), and 7 is
any optimal solution to (EI) Ifi ¢ S and max.cp(g,;) L(7y) > 0, then

Py« (Uyer(s,i) [G(€) contains path v]) = 77 = Py« (N, er(s,i) [G(€) contains path +]),
In addition, if maxer(s ;) L(y) > 0, then for any path ~ € I'(S, i), at most one of the arcs in 7y is

ever missing in the random graph G(¢) ~ 6*, almost surely.

Proof: If 0* solves mingco Eg[R(€,S)], 7 ¢ S, and Hll?;( )L( 7) > 0, then for any v* € ['(S, i),
Ye i

rrllz(ag( )L( 7) = Py~ (Node i is reachable from S in G(€)) = Py~ (U,er(s,i) [G(€) contains path +])
e 7

()
> Py« ([G(€) contains path v*]) g L(v*) = rrrl?é( )L(v)
VED(S,i

So we conclude that
Py« (Uyer(s,:) [G(€) contains path 7]) = Py~ ([G(€) contains path 7*]),
which implies
Py (U,er(s,i) [G(€) contains path 7]) > Py~ ([G(€) contains path v*])
= Py~ (Uver(‘g’i) [G(€) contains path 7]),
as desired.
For the remaining equality in the statement, we note that if

Py« (N,er(s,i) [G(€) contains path 7]) < Py~ ([G(€) contains path v*]),

then Py ([G(€) contains path v*] \ [G(€) contains path 7']) > 0 for some 4" € T'(S,4), which

means

Py- (Uyer(s,:) [G(€) contains path 7]) > Py~ ([G(€) contains path »'])
+ Py« ([G(€) contains path ~*]
> Py« ([G(€) contains path v*]

\ [G(€) contains path +'])
\ [G(€) contains path 7']),

a contradiction.

As for the last statement, if v € T'(S, i), we observe that under the joint distribution #* it cannot be
the case that - with positive probability - more than one arc is missing from G(¢), else (5) would be a
strict inequality, contradicting the fact that Corollary [T]implies that it should be an equality. (]

Corollary 3] Given an arbitrary seed set S and vector of edge likelihoods p € |0, 1)%, let 7 denote
the optimal solution to (3)). Let G ~ Unif[0,1], V(q) :={i: ¢ < 7}},

E(q) :=A{(k, ) : 7 > 7}, 4 ¢ [mf = 1+ gy i} U{(R, ) 7 <75, G € (0, piy
and c(§) € {0,1}F be such that ¢(§);; = 1 iff (i,5) € E(G). Then c(§) ~ 0* for some 0*

solving Equation . In particular, V(§) is the set of all nodes reachable from S in the graph
G(q) = (V. E(q)), so that E [|V(q)|] = mingee Ecno[R(€,S)] = S| + Eg [Z(c(q), S)]-



Proof: Consider the max-flow problem of Z(c,S) for arbitrary ¢ € {0,1}¥. Then the two
collections {s} USU{j: 2}, =1,j € V\S}and {t} U{j: 2z}, = 0,5 € V\ S} form a minimum
s-t cut. In particular, {j : 3, = 1,5 € V' \ S} is precisely the set of nodes outside of S that are
reached, and j is reached if and only if the edge (7, t) runs across this minimum cut.

With 7* an optimal solution to (3), we may characterize a §* € © consistent with p that solves
mingee E [Z(¢,S)] = mingeo E[R(¢,S)] — |S|. This characterization will be defined on the
probability space (( 1], B, A) and for the sake of notation, in the following we’ll let F; denote
the cdf for edge (i, j) that is live with probability p;;. For all (i, j) € E, if 7} > 77, define for all

€ (0,1],

Flz( - ) 7r]’-*<q§7*r;‘
&ii(gq) = lel( pzj+ ) 0<qg<m—(1-pi)
Foo(L—piy—7i+q); 7 —(1—pij) <qg<;
F; 4 (q); T <q<l,
otherwise if 7} < 7 define ¢;;(q) := (1 — q). Finally, for all (¢, j) ¢ E but are auxillary arcs
with s or £ as an endpomt we can let ( ) :=4ooifi =s, else &;(¢g) := 1 for the case that j = t.

As well, we define
oy S T > g e T
Xij (q) == {Q; otherWISe

The resulting random vector ¢ has as its distribution a solution to mingee E [Z(¢, S)]. This follows
after adopting the arguments in Theorem 3.1 of [I]. It is not hard to see that with § ~ Unif(0, 1],
E(§) as defined in the statement is precisely {(k,j) : é;(§) = 1}. Furthermore, according to
Theorem 3.1 of [[1]l, x;:(g ) is 1 if and only if (j Js t) runs across the minimum cut - equivalently, when
j is reached. And since 7w} = 0 always, we arrive at the characterization of V'(§). ]

]7 7,]

Correlation Robustness: Maximization and Robust Ratios

Theorem 2] The problem of computing maxg. s|<j f°""(S), given a graph G = (V, E), a vector
of edge likelihoods p € [0,1]F, and an integer number k, is NP-Hard. In particular, we have the
following exact formulation as a mixed-integer program.

max foO"(S) = max Z zij(pij—l)—l—Zwi

s:|S|<k P < ;
(i,7)€E i€V

11—y — Z Zji + Z zij >20VieV
J:(4,H)EE J:(i,4)€E

w; > Vg, +y, — |V|VieV

w; < min(|V)z, ;) Vi e V

in:]{)

eV

vy >0w; >0VieV
zi; >0V(i,j) € E
z; €{0,1}VieV

Proof: We prove the hardness of computing maxgs;|s|<x f°°""(S) through a reduction from the
set cover problem. The proof is along the lines of the proof of hardness of the independent cascade
model in [2]]. In the set cover problem, there is a universe of elements = {1,...,n}, a collection
of subsets Ji, ..., J,, C € (whose union gives (), and an integer k. The decision version of the set
cover problem is to check if there exists a collection of k subsets, whose union gives 2. We will now
reduce an instance of set cover problem to (2). For this, consider a bipartite graph with a total of
m + n vertices corresponding to the m subsets and the n elements of €). This bipartite graph contains
an edge between a subset node 7 and an element node j if j € J;. Fix p;; = 1 for all edges (¢, j)
in this graph. Then there exist k subsets whose union is €2 is and only if the optimal value to (Z)) is
k+n.



Next we will derive the MILP formulation. Using Theorem m we have,

max f;°""(S) = max min Zﬂ'i
i

S:|S8|<k zeRVmeRY

subjectto xz; <m VieV

T, — Ty § 1 — Dij V(Z,]) cFk

0<m <1 VieV

>k

icV

x; €{0,1} VieV
The dual of the inner minimization problem is,

zzo,glzag,(wzo Z zij(pij — 1) + Z:clyz 1l -y — Z Zj; + Z zij > 0VieV
(i.4)eE US4 J:(Ji)EE J:(i.j)EE
Further we linearize the product terms w; = x;y;. Summing up the inequality over all ¢ gives us,
Yiev(X =Y =325 ner Zi + 2j.i.5)er #i7) = 0. The terms involving z cancel out and we are
left with ZiEV y; < V and since y; > 0 for all 4, we get an upper bound y; < V.
Using the bounds 0 < z; < 1 and 0 < y; < |V, the McCormick inequalities introduced in [3] for
w; give us,
Ve, + yi — V] <w; <min(|V|x;,y;) VieV

To see that these inequalities are sufficient to capture w; = x;y;, when x; € {0, 1}, first let z; = 0.
Then the inequalities give us y; — |V| < w; < min(0, y;) and along with the fact that w; > 0, we
get w; = 0. Now Let #; = 1. Then the inequalities give us y; < w; < min(|V|,y;) = y;. Therefore
we get w; = y; and hence these inequalities are tight.

Theorem 3] The correlation robust influence function f°'" : 2V — R is a monotone, submodular
function.

Proof: Since f°"(S) = |S| + mingeco Eg[Z(C,S)], submodularity of ¢(S) :=
mingee Ez9Z [¢,S] implies submodularity of <. If two seed sets S and T with S C T
and vertex v ¢ T are given, then by ,

g(S+v) = g(8) = > max ([ max L), [ max L))

i¢(Suv) YED(8,4) YEr({v},i)
i#(S+v) [761@?’3{} R Lo - ['ygll"z(is}’(z) Lo )]+] + - [»YGI?E?(U) L]t )]
oy s HOU s 2] - L e, L

=9(T +v) —g(T),
as desired. As for monotonicity, simply observe that by (T)),

FET(S +v) = fOT(S) = g(S +v) —g(S) + 121~ max L(y)]* > 0.
YEL(S;v)

O

Corollary[d] Let S2,,,. denote the seed set generated upon termination of the greedy algorithm for
maximization of f°°"". Then

F(SErr) 2 (1 = 1/e) max f77(S)

|S|<k



Proof: By Theorem 3|and known approximation guarantees for submodular optimization [4] we
get the result. |

Computations for Example 2, POC study

Figure 1: Example 2 for POC study

We consider the tree in Figure|l| with a root node, containing [ children. There are a total of [ paths
from the root to all the leaf nodes, starting from the root node. Each path contains m + 2 nodes (apart
from the root). The labels on the nodes indicate the “type” of each node. Between nodes of type 0
and 1 as well as between type 1 and type 2 nodes, the activation probability = 0.5. For all other edges,
activation probability is 1. The total number of nodes in the graph is n = I(m + 2) + 1. Suppose we
are interested in choosing a single seed node, so k = 1.

Independent cascade model: We first compute the values of f%(.) for each type of node.

Type 2: For such nodes, f%({2}) = m + 1. Also it can be verified that nodes of type 2 reach more
than nodes of type 3, 4, ... m + 2.

Type 1: There is one random edge which, if active, will enable m + 1 nodes to be reached. However
if this edge is inactive, none of the nodes are reached. Therefore, f**({1}) = ™1 + 1.

Type 0 (root): Here we are [ sub-trees (each corresponding to a path graph) in which the nodes could
be potentially reached. Let the number of nodes reached in each of the sub-trees be denoted by the

random variables Xl, ... ,Xl. The object of our interest is Eg,, [22:1 f(l} + 1. f(i takes values

m + 2,1 and 0 with probabilities 0.25,0.25 and 0.5 respectively. and therefore E[X;] = (m + 3) /4.
Therefore the overall reachability f*“({0}) =1 + I(m + 3)/4.

Clearly the choice to be made is between the root node and any node of type 2 (as node 2 is always
better than node 1 (assuming m > 1). The root node is preferred when {(m + 3)/4 > m which

occurs when [ > 27
m—+3

Worst case analysis: We perform a similar analysis on the values of f¢°"" () too. For any type 2 node,
we have " ({2}) = m + 1. When S = {1}, f*""({1}) = 1 4+ 2L as an optimal solution to the
LP that computes " ({1})is 75 = 75 = ... = 7}, ;o = 0.5 from Corollary

Type 0 (root): In each sub-tree of the root node, our LP solution gives 77 = 0.5,75 =73 = ... =
749 = 0. Therefore f°""({0}) =1 +1/2.

Between type 0 and type 2 nodes, type 0 is selected whenever [ > 2m and a type 2 node can be
selected otherwise.

Suppose % <1 < 2m. Thenif k = 1, S.or is any one of the type 2 nodes while S;. = {0}. Then

the price of correlations is % Ifl = %’ then POC = % which tends to zero as
m — OQ.
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