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Abstract

The brain takes uncertainty intrinsic to our world into account. For example,
associating spatial locations with rewards requires to predict not only expected
reward at new spatial locations but also its uncertainty to avoid catastrophic events
and forage safely. A powerful and flexible framework for nonlinear regression
that takes uncertainty into account in a principled Bayesian manner is Gaussian
process (GP) regression. Here I propose that the brain implements GP regression
and present neural networks (NNs) for it. First layer neurons, e.g. hippocampal
place cells, have tuning curves that correspond to evaluations of the GP kernel.
Output neurons explicitly and distinctively encode predictive mean and variance, as
observed in orbitofrontal cortex (OFC) for the case of reward prediction. Because
the weights of a NN implementing exact GP regression do not arise with biological
plasticity rules, I present approximations to obtain local (anti-)Hebbian synaptic
learning rules. The resulting neuronal network approximates the full GP well
compared to popular sparse GP approximations and achieves comparable predictive
performance.

1 Introduction

Predictive processing represents one of the fundamental principles of neural computations [1]]. In the
motor domain the brain employs predictive forward models [2], and a fundamental aspect of learned
behavior is the ability to form associations between predictive environmental events and rewarding
outcomes. These are just two examples of the general task of regression, to predict a dependent target
variable given explanatory input variable(s), that the brain has to solve. The brain does not only
predict point estimates but takes uncertainty into account, which led to coinage of the term “Bayesian
brain” [3]]. On the behavioral level, sensory and motor uncertainty have been shown to be integrated
in a Bayesian optimal way [4]]. There is also neurophysiological evidence, e.g. in the case of reward
learning individual neurons in the orbitofrontal cortex (OFC) encode (average) value [5], while others
explicitly encode the variance or ‘risk’ of the reward [6].

Above experimental findings lead to the corollary that the brain performs (non)linear regression while
taking uncertainty into account. A principled framework to do so is a Gaussian process (GP) that has
enjoyed prominent success in the machine learning community [7]. Furthermore, behavioral work in
cognitive science suggests that people indeed use GPs for function learning (8, 9, |10]]. In this paper I
propose how the brain can implement (sparse) GP regression ((S)GPR).

Contributions While the correspondence between infinitely wide Bayesian neural networks (NN)
and GPs is well known [[11]], I show how the equations for the GP’s predictive mean and variance can
be mapped onto a specific NN of finite size. Further training its weights using standard deep learning
techniques, it outperforms Probabilistic Back-propagation [12]] and Monte Carlo Dropout [13]].
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Although a network wiring exists that exactly implements (S)GPR, it does not arise with biologically
plausible plasticity rules. I present approximations to obtain local (anti-)Hebbian [[14} |15] synaptic
learning rules that result in a neuronal network with comparable performance as the exact NN.

Biological evidence Tuning curves of my first layer neurons correspond to the GP kernel evaluated
at training or inducing points for full or sparse GPs respectively. Prominent examples of neural
tuning curves resembling (RBF) kernels are orientation tuning in visual cortex [16], place cells in
hippocampus [17], and tuning curves in primary motor cortex [18]. Output neurons, e.g. in OFC
for predicting reward, explicitly and distinctively encode predictive mean [3] and variance [6] of
the encoded function evaluated at the current input. Synaptic learning rules are local and rely on
prediction and risk prediction errors respectively, both of which have strong neurophysiological
evidence [19, 20]. All other (hyper) parameters, such as the tuning curve centers [21], can be
optimized using REINFORCE gradient estimates [22]], which avoids biologically implausible error
back-propagation. Using REINFORCE for biologically plausible updates was discussed by [23].

Related work Several other works have investigated how the brain could implement Bayesian
inference, cf. [24} 25]] and references therein. They proposed neural codes for encoding probability
distributions over one or few sensory input variables which are scalars or vectors, whereas a Gaussian
process is a distribution over functions [7]]. Earlier works considered neural representations of the
uncertainty p(x) of input variables x, whereas this work considers the neural encoding of a probability
distribution p(f) over a dependent target function f(x). To my knowledge, this is the first work to
suggest how the brain could perform Bayesian nonparametric regression via GPs.

2 Background

In this section, I provide a brief summary of GPR and sparse GPR (SGPR) for efficient inference. 1
adopt the standard notation of [26], see Table|S1|in the supplement for a summary of notation. I use
boldface lowercase/uppercase letters for vectors/matrices and I for the identity matrix.

2.1 Gaussian process regression

Probabilistic regression is usually formulated as follows: given a training set of n (d-dimensional)
inputs X = {x;}"_ ; and noisy (real, scalar) outputs y = {y;}?;, compute the predictive distribution
of y, at test location x,. A standard regression model assumes y; = f(x;) + €;, where f is an
unknown latent function that is corrupted by Gaussian observation noise €; ~ A (0, o2).

The GPR model places a (typically) zero-mean GP prior with covariance function k(x,x’) on f,
i.e. any finite subset of latent variables follows a multivariate Gaussian distribution; in particular
p(f)[j = N(f;0,Kg) where [Kg];; = k(x;,x;). The covariance function k(x,x’) depends on
hyperparameters, which are usually learned by maximizing the log marginal likelihood.

logp(y) = log N (y;0,Kg+0°I) = =3y " (Kg+02I) 'y — 1 log(|Kg+0°I|)— 2 log(27). (1)

In this simple model, the posterior over f, p(f|y), can be computed analytically. The regression-
based prediction for a test point x, is a Gaussian distribution p(y.|y) = N (ys; ft«, 2« ). Introducing
ke = [k(x1,%X4), o, k(Xpn, %,)] T and k.. = k(X4, X,), its predictive mean and variance are:

te = ki, (Kg + 0’I) "y (2)
Y, = by — ki, (Kg + 0°1) ke, + 02 3)

2.2 Sparse Gaussian process regression

The problem with the above expression is that inversion of the 1 x n matrix requires O(n?) operations.
This intractability can be handled by combining standard approximate inference methods with sparse
approximations that summarize the full GP via m < n inducing points leading to an O(nm?) cost.
A unifying view of early inducing point methods has been presented in [26]], contemporary methods

"Here I have collected the latent function values into a vector f = {f(x;)}7_,. The dependence on the
inputs {x; }i—, and hyperparameters is suppressed throughout to lighten the notation.



have been unified in [27]]. I focus on the popular sparse variational free energy (VFE) method [28]],
which performs approximate inference by maximizing a lower bound on the marginal likelihood of
the data using a variational distribution ¢( f) over the latent function [29]:

log p(y) > logp(y) — KL[g(f)|lp(fly)] = log N (y;0, Qe + 0°I) — 55 Tr(Kg — Qg) (4

where Qg = K, K, Ky is the Nystrom approximation of Kg and u is a small set of m < n
inducing points at locations {z; }7, so that [Kg,|ij = k(x;,2z;) and [Kuulij = k(2;,2;). The first
term corresponds to the deterministic training conditional (DTC, [26, 130]]), the added regularization
trace term prevents overfitting which plagues the generative model formulation of DTC. The prediction
for a test point x, is a Gaussian distribution ¢(y.) = N (Ys; s, 2 ) with predictive mean and
variance:

e = ko (Kt Ky + 02 Kou) " Kury )
Y = kg — kI*Kl_liku* + k.—_,r* (U_QKufou + Kuu)_lku* + 02 (6)

3 Neural network representations for Gaussian process regression

By writing p, = Y, w;k(x;,x,) where
w = (Kg +0°1)7 'y, ™

we see that the mean prediction of a full GP in Eq. (Z) is a linear combination of n kernel functions,
each one centered on a training point, which is one manifestation of the representer theorem [1]]. For
a sparse GP, cf. Eq. (), it is a linear combination of m kernel functions, each one centered on an

inducing point p1, = »; w;k(z;, ) where

W = (Kufou + O—zKuu)ilKufy~ (8)

Thus a simple linear neural network can implement the prediction of the mean. The neurons in
the first layer correspond to inducing points. Their activities ¢ are kernel evaluations between a
neuron’s preferred stimulus, i.e. inducing point location (e.g. place cell center), z; and the presented
stimulus x, (e.g. animal position), ¢;(x.) = k(z;, x.). The output layer consists of one (or more if
predictions y are not scalar but multidimensional) linear unit(s) with weights as defined above, cf.
Fig.[TA. The mean prediction network has been called a regularization network in [31] because it
was derived from the viewpoint of regularization theory, which is closely related to the maximum a
posteriori probability (MAP) estimator in GP prediction, and thus omits uncertainty in predictions.

The term for the variance, Eq. or Eq. @ has the form ¥, = k.. + 02 — kI*Aku* with
positive-definite matrix A, and u replaced by f for a full GP. Decomposing A as A = U U, e.g.
using the Cholesky decomposition or the singular value decomposition, one obtains k', Ak, =
(Ukus) " (Ukue) = 32 (Uky,)? = 3 9, where 1) in the last equation is defined as 1; = (Ug)3,
which can be implemented in a 2-layer network, cf. Figs.[TJA and[ST] The neurons in the hidden layer
have quadratic activation functions and are connected to the first layer with weights

1
U= (Kgs — (07 KutKe + Kua) ) 2. 9)

The output neuron has a linear activation function and sums up the activities of the hidden units. The
additional term k., + o2 merely adds a bias to the output neuron.

3.1 Learning

Thus far I derived an artificial neural network (ANN) that performs exact or sparse GPR. To obtain a
biologically plausible neuronal network (BioNN) one needs to consider how the network connectivity,
or at least an approximation to it, can arise with local synaptic learning rules. Throughout, I assume
covariance functions that decay with distance, specifically I employ a squared exponential kernel

with automatic relevance determination (ARD) k(x,x') = s exp(—3 S0_, (z, — 2)2/12).

I recognized that the analytic expression for w in Eq. (7)) is the solution of a least squares problem
with Lavrentiev regularization [32],

: . . . 1 - .
w = arglr‘lxllnﬁ(w) with L(w) = §||Kﬂ‘w - yHi; + %HWH2 (10)



Figure 1: A Neural network for (S)GPR. The network outputs mean p, and variance X, of the
predictive distribution for a test point x,.. The neural activation functions are depicted within the
nodes. Arrows are annotated with the synaptic weights. The special case of full GP regression is
obtained for u = f and m = n. B Biologically plausible neuronal network (BioNN) for SGPR.
Plastic synapses are drawn as arrows. The weights of the static synapses are described in the legend.
The linear output neurons could be replaced with linear-rectified units operating in the linear regime.

where I have used [[x||3, to stand for the weighted norm squared x " @x. The gradient of the

objective function £ evaluates to % = Kgw — y + o?>w. However, in an online setting one only
sees one data point (x;,y;) at a time and instead of gradient descent perform coordinate descent,
Aw; = —n (wkg¢; — y; + o?w;) with learning rate 7. Upon presentation of (x;, y;) only weight
w; should be updated, but how do weights know which input has been presented? For a RBF kernel
the presynaptic activity of neuron i will be above, and the activity of all other neurons j # 4 will
be below a threshold, ©(k;; — s*) = d,;, with Heaviside step function ©(x) = 1if 2 > 0 else 0,
and Kronecker delta §;; = 1 if j = ¢ else 0. This yields the following synaptic learning rule for all
neurons j upon presentation of pattern x;:

Aw; = =1 O(¢;(x;) — 8°) (W' p(xi) —yi + 0w;) Vi (11)
——
pre post weight decay

Importantly, the update involves merely a presynaptic input, a postsynaptic prediction-error (§ =
1 — 1), and a homeostatic term, that are all locally available to the synapse. However, the number of
first layer neurons equals the number of data points n, i.e. a new neuron is recruited for every new
data point. Hence, for even greater biological plausibility, I consider the case of SGPR where the
number of first layer neurons is fixed to the number of inducing points m in the remainder.

3.1.1 Predictive mean

I recognized that the analytic expression for w in Eq. (8] is the solution of a least squares problem
with Tikhonov regularization [33]],

1 2
w = argmin £(W) with L(W) = 3 [KraW — y[? + %H\?VH%(“. (12)
The gradient of the objective function £ evaluates to —% = Kur(y — Keuw) — PKyuW =

Eiot(nkui(y; — W' ky;) — 02Kuuw). The argument of the expectation is a gradient estimate to
perform stochastic gradient descent in the biological setting of online learning. For covariances that
decay with distance one can approximate K., by its diagonal s2I to obtain a local learning rule:

2 .
Awj = —n (d;(x:) (W' p(xi) —yi) + 5 s*w;) Yy (13)
~———
pre post weight decay

Indeed, well chosen inducing points tend to not cluster next to (or even on top of [34]) each other but
to be well spread out over the entire data range, such that the off diagonal values are actually small.



Methods that have an exactly diagonal K, have been proposed [35], but these rely on spectral
inter-domain features [36]. If o is small or n large one can also neglect the noise term entirely.

3.1.2 Predictive variance

For the exact variance prediction one needs weights U given in Eq. (9). It is unclear to me how these
weights can be learned in a biologically plausible manner, one can however approximate them. The
second term in Eq. (9) is approximately zero and can be neglected compared to the first term, because

ns? . . . .
J*Qk;rjkfj = O(s*%5) > k;; = s* as long as data size n and signal-to-noise ratio s/¢ are not
extremely small. One can approximate K, by its diagonal s21I, yielding weights U = s~ I that are
constant, so no plasticity (rule) is necessary. Consequently, the input to the hidden layer neurons is

always non-negative and the quadratic activation functions can be replaced with biologically realistic
(37,138, 39] half-squaring (-) = (max(-,0))2.

Thus far I assumed knowledge of the signal and noise level s and o respectively. One can extend the
neural net to estimate these quantities based on the data. I assume for now that the noise term in Eq.
is negligible and consider, without loss of generality, neural activations that are normalized to have a
maximal activity of 1, i.e. ¢;(x) = k(z;,x)/s?. Scaling ¢ by s~2 merely results in weights w scaled
by s2, leaving the mean prediction i, = w ' ¢(x,) invariant. If one lets the weights U be identical to
the identity matrix U = I, and the bias term be 1, then the output of the variance prediction network
in Figs. [1]A and[S1]is the approximate non-normalized variance of f., p(x.) ~ s~ 2V (f.)P|cf. Eq. (6)
and Fig. The variance of the observation V (y,.) is thus s%p(x.) + 02, i.e. p(x,) multiplied by
some weight w> plus some bias >, and can therefore be represented by a linear neuron, cf. Fig. .
Weight and bias can be learned using a delta rule that minimizes the squared error between target
value y = 62 = (y — p)? and current prediction ¥ = w*p + b*,

Ab” = —n (wp+b” — x) (14)
Aw®=-n p (wZp+b” —¥) (15)
~N —
pre post

Importantly, the update involves merely a presynaptic and a postsynaptic term, that are all locally
available to the synapse. To provide the target value x one merely needs to introduce a neuron with
quadratic activation function, which might rather be encoded by two complementary half-squaring
neurons [38]], that takes  as input from the mean prediction network, cf. Fig. Neurons encoding
the postsynaptic ‘risk prediction error’ term > — x have been reported in OFC [20].

Once learning converged the weight encodes the signal strength w> = s2 and the bias the noise level
b* = o2. These values can be read out in form of neural activity, if one assumes “up” and “down”
states in the cortex [40] implement on and off switching of the bias respectively. Transitioning from
“up” to “down” state the network output switches from variance V (y.) to V(f,). If no input x, is
provided, i.e. ¢ = 0 and p = 1, the activity of the output neuron is the signal strength s2 in the
“down” state and the sum of signal strength s and noise variance o2 in the “up” state.

3.1.3 Receptive field plasticity

Until now I assumed that the positions {z; }'"

=y of the inducing points, i.e. tuning curve centers,
are given. While regular equidistant or even random placements (e.g. approximate determinant
based sampling, [35]) can be quite effective, the locations can also be optimized. Such tuning curve

adaptation is also observed experimentally [21} 41].

The usual approach is to follow the gradient of some objective function L, e.g. the objective function
in Eq. or the ELBO in Eq. (@) that is maximized in the VFE method. The gradient of £ with
respect to z; is obtained using the chain rule as the product of % (where k;; = [Kgy)i;) and the
‘Z]Zj = k;;j(x; — z;)/I?. Updating the tuning curve of neuron j
would thus require not only knowledge of its own activity k;; = ¢;(x;) and the difference between
presented and preferred stimulus (x; —z; ), but also jk—i, which is questionable from a biological point

derivative of the activation function

2 o) = 1) + 1 = |1 - ¢(x)Td(x) ) = L5 2(her — kil diag(Kid Jkun) |+ ~
572V (f.). Here I added linear rectification |- | = max(-,0) to ensure that my approximations do not result in
negative variance estimates.



of view. While the same conclusion holds for more complex objectives such as the ELBO, I consider
for simplicity the gradient of the data fit term in Eq. 1) ﬁ” $Kew —y|? = (W' o(x:) — yi)w,
would require either implausible symmetric feedforward and feedback connections to back-propagate
the error, or a global error signal (w ' ¢(x;) — y;) and knowledge of efferent synaptic strength w.
The global error signal could well be encoded by neuromodulatory signals such as dopamine, but
because synaptic strength depends on postsynaptic quantities such as dendritic spine size and number
of receptors a neuron does likely not know its efferent synaptic efficacies.

Instead I suggest to perform updates using the (unbiased) gradient estimates of REINFORCE [22]]. In
order to minimize some objective function £({z;}) the z are perturbed z’ = z + £ with £ ~ P(§).
For the gradient of the expectation (L) holds V(L) = ((£ — B)V,log P(z’)) where baseline B is
some (optional) control variate. For Gaussian distributed & ~ N(0, €2T) the so called ‘characteristic
eligibility’ or ‘score function’ is V, log P(z') = £&/¢2, yielding the simple update rule
Azj=-n (L—B) (z;—1z;j) Vi (16)
——

J

global modulatory signal  perturbation £;

where the objective L is for example the squared prediction error that I already introduced earlier

L=x=0=((kz,,%;), . k(z,x:))w—y;)" . (17)

The same method can be used to not only update the centers of the tuning curves, but also their widths
l. Whereas a GP kernel uses one length scale (or d for an ARD kernel and d-dimensional input), it
seems far fetched to assume that the tuning curves of all neurons vary in a coordinated way. Therefore
I let each neuron have its own length scale [; and update it analogously to Eq. @ The additional
flexibility of varying widths for basis functions further permits better sparse approximations [42]].

Taken together we are thus equipped with methods to update all hyperparameters.

4 Experiments

I compare my NNs with GP implementations of GPy [43]. (My source code can be found at
https://github.com/j-friedrich/neuronalGPR). The performances are compared using two
metrics: root mean square error (RMSE) and negative log predictive density (NLPD).

I applied my derived neuronal networks to the Snelson dataset [44]], that has been widely used for
SGPR. Throughout I considered ten 50:50 train/test splits. I first studied how the synaptic weights can
be learned online by performing the synaptic plasticity update for each presented data pair (x;, y;),
passing multiple times over the training data. (Fig.[S5|considers a streaming case that does not revisit
data points.) Fig. shows the RMSE for the test data while learning the weights to represent the
mean of a full GP using Eq. (TT). The hyperparameters were set to the values obtained with GPy.
After few epochs the weights converged, yielding the same performance as the GP. Fig. and C
shows the RMSE and NLPD while learning the weights to represent the mean and variance of a sparse
GP with m = 6 inducing inputs using the BioNN depicted in Fig.[TB with learning rules Egs. (I3{I3).
The length scale of the kernel and the positions of inducing points were set to the values obtained
with VFE throughout the paper until mentioned otherwise later. The other hyperparameters (s, o) are
automatically inferred by the network and the noise term in Eq. (I3) has been neglected. Although my
network has been designed to approximate the predictive distribution of VFE, the network converges
to RMSE and NLPD values that outperform the VFE result. I attribute that to two facts. First, VFE
tends to over-estimate the noise [34]], cf. Fig.[3] Second, my network considers the output variable y
to calibrate the noise, whereas the predictive variance of VFE (and full GP) only takes the inputs X
into account.

In my network derivation I alluded to negligible noise terms and well separated inducing inputs
that render Ky, close to diagonal. It is therefore of interest to study the influence of noise variance
o2 and number of inducing points m. I considered ten 50:50 train/test splits. Fig. depicts fits
for full GP, VFE and BioNN (with converged weights) for one split. In Fig. and C I scaled the
noise in the data up and down by two orders of magnitude. My network predicts the noise variance
more accurately than VFE and FITC [26/44] and performs better according to NLPD. I confirm the
finding reported in [34] that VFE tends to over- and FITC to under-estimate the noise. This is also
visible in Fig. where I varied the number of inducing points. Fig.[3E shows that the predictive
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Figure 2: Online learning the weights of biologically plausible NNs for the Snelson dataset [44]. A
Root mean square error (RMSE) for GPR trained with coordinate descent, Eq. (TT). Lines and shaded
areas depict mean £ SEM. B RMSE and C Negative log predictive density for SGPR trained with
stochastic gradient descent, Eqs. (T3}{I3).
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Figure 3: Comparison of my BioNN for SGPR, cf. Fig.[IB, with full GP, VFE and FITC. A Fits for
full GP, VFE and BioNN. Thick and thin lines represent mean and 95% confidence region (mean
=+ 2 standard deviations) respectively. B Tukey boxplots of inferred noise variance normalized by
true noise variance, and C NLPD as function of the noise level. D Tukey boxplots of inferred noise
variance, E NLPD, and F KL divergence between full GP p and sparse approximation ¢ as function
of the number of inducing inputs.

performance of my network is comparable to VFE and FITC, and for about 6 to 10 neurons even
to the full GP. Only for an unnecessary large, and metabolically costly, number of neurons does
the diagonal approximation of K,,,, break down, whereas VFE never worsens when adding inputs.
Although we are mostly interested in good predictive performance, I also evaluated how well my
BioNN approximates the GP. Fig. [3F shows that it does not do quite as well as VFE but better than
FITC, as measured by the divergence KL(p(y.|y)||¢(y«)) between the true test posterior p(y.|y)
and each of the approximate test posteriors.

I next evaluated the performance of my BioNN on larger and higher dimensional data. I replicate
the experiment set-up in [[12] and compare to the predictive log-likelihood of Probabilistic Back-
propagation [12] and Monte Carlo Dropout [13]] on ten UCI datasets [435], cf. Table |I[ I set the
number of inducing points equal to the number of hidden layer neurons in [[12} [13]]. For the too big
Year Prediction MSD dataset I used the Stochastic Variational GP of [46]. Again, the kernel length
scales and the inducing point positions of the BioNN were set to the values obtained with VFE.
On these tasks VFE performs about as well as, if not better than, Dropout and PBP. Fig. ] reveals
overall comparable performance of my BioNN to VFE and FITC. (As a biologically plausible control
baseline, I also considered a RBF network that connects not only the mean but also the variance
predicting neuron directly to the first layer neurons, but it performed badly due to overfitting.)
Although the main objective is good predictive performance, I was also interested in how well my
BioNN approximates the GP. For the five datasets with merely O(1,000) data points I was able to fit
the full GP. Table [2]shows that my BioNN approximates the full GP nearly as well as VFE and much



Table 1: Characteristics of the analyzed data sets, and average predictive log likelihood + Std. Errors
for Monte Carlo Dropout (Dropout, [[13]]), Probabilistic Back-propagation (PBP, [12]), sparse GP
(VFE, [28]]), an artificial neural network (ANN) with architecture corresponding to a sparse GP (but
differing weights), cf. Fig.[TJA, and a biologically plausible neural network (BioNN), cf. Fig.[TB.

Dataset n d Dropout PBP VFE ANN BioNN

(O8]

Boston Housing 506 13 -2.46£0.06 -2.574+£0.089 -2.483+0.050 -2.424:+0.060 -2.605+0.087

Concrete Strength 1,030 8 -3.04+0.02 -3.161+0.019 -3.161£0.016 -3.089+0.025 -3.18040.026
Energy Efficiency 768 8 -1.9940.02 -2.042+0.019 -0.712+0.025 -0.660+0.032 -0.729+0.038
Kin8nm 8,192 8 0.95+0.01 0.896+0.006 0.972£0.003 1.058+0.005 1.031£0.005
Naval Propulsion 11,934 16 3.80£0.01 3.731£0.006 8.8004+0.022 9.171+£0.012 9.059+0.015
Power Plant 9,568 4 -2.80£0.01 -2.837+£0.009 -2.8104+0.009 -2.796+0.014 -2.807+0.010
Protein Structure 45,730 9 -2.89£0.00 -2.973£0.003 -2.894+0.005 -2.809+0.008 -2.887-£0.006
Wine Quality Red 1,599 11 -0.93+0.01 -0.968+0.014 -0.957£0.013 -0.938+0.014 -0.978+0.016

Yacht Hydrodynamics 308 6 -1.55£0.03 -1.634+0.016 -0.7174+0.041  0.060+£0.042 -0.867+0.102
Year Prediction MSD 515,345 90 -3.59+£ NA -3.603+ NA -3.613£ NA -3.430+ NA -3.612+ NA
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Figure 4: Comparison of my BioNN for SGPR, cf. Fig.[IB, with VFE and FITC on nine UCI datasets
using M = 50 (100 for the protein dataset) inducing points. Shown are Tukey box plots as well as
the means (filled circles).

better than FITC, as measured by the KL divergence between the true and each of the approximate
test posteriors.

Taking a little detour and ignoring biological plausibility for a short moment, I was interested in
how the ANN, Fig.[TJA, performs when its weights are only initialized to values that correspond
to a sparse GP, Egs. (8}[9), but then trained using standard deep learning techniques. I used the
negative log-likelihood as loss function and performed 40 passes over the available training data
using the Adam optimizer [47] with learning rate tuned by splitting the training data into a new
80:20 train/validation split. As Table[T|shows the ANN outperforms Dropout and PBP on almost all
datasets. For deeper networks the quality of Dropout (and PBP) predictions increases slightly, but
even then my ANN remains competitive and does not suffer from long prediction times needed to
draw multiple MC samples (Fig.[S3).

Thus far I set the tuning curves to be the VFE kernels at the inducing points, and were primarily
interested in how the approximations needed to render the network biologically plausible affect the
performance compared to VFE. Fig. [5| shows how the centers, as well as the widths, of the tuning
curves can be learned using REINFORCE, Eq. (T6). For each train/test split the 6 tuning curve centers
were initialized on a regular grid at {0.5, 1.5, ..., 5.5} and updated to minimize the squared prediction
error. As control variate I used a running average of the MSE. This resulted in predictions on the test

Table 2: Average KL(p||q) and Std. Errors between full GP p and sparse approximation q.

Dataset VFE BioNN FITC

Boston Housing 1537+ 0.83 29.05 + 1.54 527.89 + 64.73
Concrete Strength 25.64 £ 1.38 29.71 £ 2.04 69,425.31 £+ 12,791.64
Energy Efficiency 479+ 1.74 524+ 1.88 103,854.63 + 42,970.59
Wine Quality Red 482.06 + 16.32 494.57 + 16.21 5,391.73 £ 941.12
Yacht Hydrodynamics 2692 + 147 31.96 £ 3.00 2,721.97 £  248.67




data that outperform VFE, and possibly even full GP. When applied to the annular water maze task
[48] optimizing inducing points leads to the experimentally observed place cell accumulation effect
at the goal location [48, 49| (Fig.[S4).

A o036 — Bo.4o . C
VFE VFE
—— BioNN optimize z —— BioNN optimize z
0.34 —— BioNN optimize z & | 0.35 —— BioNN optimize z &/
w a
2 5030 >
< 0.32 =
0.25 —— BioNN — “Truth"
—— BioNN optimize z x Training Data
0.30 —~—— —— BioNN optimize &/~ x  Test Data
0.20 A " " it PR
0 250 500 750 1000 0 250 500 750 1000 0 1 2 3 4 5 6
Iterations Iterations X

Figure 5: Tuning curve adaptation using REINFORCE [22]. A RMSE and B NLPD decrease with
iterations. Lines and shaded areas depict mean + SEM. C Fits for BioNN with tuning curves from
VFE (green), optimized tuning curve centers z (purple), and optimized tuning curve centers z and
width [ (brown). Black lines show the “Truth” obtained with a full GP on the combined test and
training data.

5 Conclusion

I have introduced a biologically plausible Gaussian process approximation with good predictive
performance and close approximation of the full Gaussian process. As real world regression example
I considered the case of associating spatial locations with rewards. Once simultaneous recordings of
e.g. place cells in hippocampus, the first layer of my network, and reward and risk prediction cells
in OFC [50}51]] (potentially also ventral striatum [52} 53 154]), the output layer of my network, in
freely behaving animals become feasible, a more direct test of my predictions will be possible.

Broader Impact

This paper introduces a biologically plausible implementation of Gaussian processes. It bridges the
fields of machine learning and neuroscience with potential impact in both fields. With regard to
machine learning this paper shows a correspondence between Gaussian processes and certain neural
networks (of finite size) and raises the question of how best to perform nonlinear regression with
uncertainty estimates. Should one use Gaussian processes, neural networks, or a combination of both
— such as the presented Gaussian process initialized neural networks? With regard to neuroscience
the paper introduces a biologically plausible Gaussian process approximation with good predictive
performance and close approximation of the full Gaussian process, compared to VFE and FITC. It
yields initial results in line with existing experimental data and motivates new experiments for a more
direct test of the model.
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