
To Reviewer #1: Thank you for your supportive comments.1

A1: Special insights in proofs. The proof strategy of Theorem 3.1 is based on the construction of an inverse M -matrix.2

To the best of our knowledge, this is the first work to discuss and prove this special behavior of the `1 norm. In the proof3

of Theorem 3.8, we introduce a linear operator to handle the Laplacian constraints and derive a concentration bound for4

Laplacian GGM, which are new and necessary for the proof. The previous approaches do not solve these problems.5

Other comments: The initialization of Algorithm 1 is generated by converting the lower triangle matrix of (S + εI)−16

into a vector and removing the negative elements. For the k-th iteration, the initialization of Step 3 is set as ŵk−1. The7

c0 only depends on the true graph weights. The papers Wang-Ren-Gu AISTATS 2016 and Xu-Ma-Gu NeurIPS 20178

will be discussed. The performance of GGM methods is usually not satisfactory due to lack of Laplacian constraints.9

To Reviewer #2: Thank you for your supportive comments.10

B1: COVID-19 data with Laplacian GGM. In the case of the data following Laplacian GGM, our formulation in Eq.11

(3) can be viewed as a regularized maximum likelihood estimation of precision matrix. In a more general setting with12

non-Gaussian distribution such as COVID-19 data, Eq. (3) can be related to the log-determinant Bregman divergence13

regularized optimization, and the learned graph weights can quantify the similarity between nodes. This is because14

the trace term in Eq. (3) can be written as Laplacian quadratic [10, 20], which tends to assign a large weight between15

nodes if their signal values are similar. The COVID-19 data consists of two groups, red and green nodes. It is natural to16

assume that the nodes belonging to different groups are dissimilar from each other, while the nodes in the same group17

are similar. In this sense, the performance of our learned graph in Figure 4 is significant, because most connections are18

between nodes within the same group, and only a few connections (gray edges) are between nodes from distinct groups.19

Other comments: The insight behind the unexpected behavior of `1-norm is related to the Laplacian constraints, and20

related discussions will be added. We will further clarify the steps in Section 3.2, and update the broader impact section.21

To Reviewer #3: Thank you for your helpful comments.22

C1: Introduction and Related Work. We will include additional discussions on GGM and clarify the difference23

between GGM and Laplacian GGM. Some related works on GGM methods are discussed in the Introduction, and thus24

not repeated in the Related Work due to limited pages. We will reorganize the first two sections in the final version.25

C2: Left boundary in Theorem 3.1. We apologize that we did not make it clear our statement that a large regularization26

parameter of the `1-norm method will lead to learn a fully connected graph. We rephrase it here: As long as the27

regularization parameter is large enough (larger than the left boundary in Theorem 3.1), the learned graph by the28

`1-norm method must be fully connected. In practice, the bound leading to a fully connected graph may be smaller than29

the left boundary in the theorem.30

Figure 1: GLE-ADMM
with λ = 0.1.

C3: Experiments on COVID-19 data. We indeed tested many values of λ for GLE-ADMM.31

The presented result with λ = 0 in the paper is the sparsest one, and the other estimated32

graphs are denser. Due to the limited space, here we only show a result with λ = 0.1 in33

Figure 1 that is already a fully connected graph. We will add additional results in Appendix34

of the final version. We agree that the COVID-19 data set is small. This data set was collected35

while the pandemic was in its infancy, and thus the data availability was limited. We will36

update our results with a bigger data set in the final version.37

Other comments: Thank you for pointing out these typos and we will correct them.38

To Reviewer #4: Thank you for your supportive comments.39

D1: Theorem 3.1 and its empirical results. 1. We agree that the scaling of the sample data impacts λ∗. The theoretical40

characterization of the function of sparsity with respect to λ for λ ∈ [0, λ∗] is challenging, because the sparsity involves41

counting the number of nonzero elements which is always highly non-convex and non-continuous. 2. It is precisely42

the point of our paper to show under solid mathematical grounds and illustrate via extensive numerical results that the43

`1-norm method is an incorrect approach and many papers are following it improperly.44

D2: Scalability of the algorithm. The computational complexity of our algorithm is dominated by Cholesky decompo-45

sition, which can save computation for logdet and matrix inverse. Table 1 shows the running time for different numbers46

of nodes p, where the graph weight w has the dimension p(p− 1)/2. The numbers of outer iterations for different p are47

28, 28, 29 and 26, respectively, and the average numbers of inner iterations are usually less than 5. It is of great interest48

to develop more efficient algorithms and implement algorithms in faster programming languages such as C++ in order49

to accommodate larger data sets in future work.50 Table 1: Comparison of computational time (seconds)
p 50 100 500 1000

GLE-ADMM 0.117 0.676 57.032 485.465
NGL-SCAD 0.023 0.097 9.000 67.018

D3: COVID-19 data. 1. Regarding the concern that the51

data does not follow Laplacian GGM, please refer to B1; 2.52

We agree that the quality of the results cannot be precisely53

verified, because there is no underlying true graph in practice. Nonetheless, the synthetic experiments has shown the54

ability of our method to learn the ground truth. The significance of our result on COVID-19 data can be verified in some55

sense (Refer to B1). 3. Regarding GLE-ADMM with other parameter values and the size of data set, please refer to C3.56


