
We greatly thank the reviewers for their constructive comments. We would like to specifically emphasize that the1

proposed frequentist confidence interval method is different but complementary to a Bayesian UQ approach; please see2

our response to Reviewer 2. We will also include the suggested references for Bayesian UQ methods.3

Response to Reviewer 1. Thank you for the valuable feedback about model misspecification and low-rank parameteri-4

zation. In the neuronal connectivity application, while it is commonly agreed that Hawkes process is a good fit for the5

spike train data, such data are generated from a scientific model (i.e., not exactly Hawkes; in fact, the synthetic data are6

generated by solving a complex PDE system), so there is indeed a slight model mismatch in our numerical example. In7

future work, it will be very interesting to study the influence of model mismatch and the confidence sequences when the8

weight matrix A is low-rank or sparse.9

Response to Reviewer 2. 1) The first-order Taylor approximation of gk(α∗
i ) at α̂i is for the purpose of giving a10

tangible form (polyhedron) of the confidence set. However, we can definitely evaluate gk at every αi and perform11

numerical inversion to find the confidence set. Moreover, we have empirically validated the performance of the12

confidence set from Algorithm 1 in the numerical example. 2) The integrals in Section 3.3 (which go into Algorithm 1)13

is a one-dimensional integral over t, and hence can be solved efficiently by standard quadrature techniques. 3) The UQ14

for the intensity can be derived from the UQ for the weights A; this will be an interesting future work.15

4) Comment on the comparison with Bayesian approach. Given sufficient computing resources and little domain16

knowledge, we agree that a fully Bayesian nonparametric approach may provide a richer quantification of uncertainty.17

However, in certain applications, there is scientific evidence for a parametric form of the triggering kernel (e.g., [Beggs18

(2008)] for our neural spike data application). For large networks, the full posterior may also be computationally19

expensive to sample with HMC, since one needs to tune both the stepsize and number of leapfrog steps, among other20

settings. We will add further context on when our method may be more or less preferable to a fully Bayesian approach21

in practice.22

5) Due to space limitation, we did not include in the paper a simulated example of confidence bands as a function of T .23

We show here a small example with 5 nodes in Fig. 1. We see that the proposed CIs are valid and becomes narrower as24

T increases, as desired. Moreover, when T is small, Fig. 1 also shows that the asymptotic CI can have poor coverage25

performance (i.e., it does not contain the true parameter), whereas our proposed method uniformly covers the true26

parameter even for small T . We have similar observations for recovering other edges in this example.27
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0.4Figure 1: The CIs for two select
edges at level ε = 0.05 over time
T , for a Hawkes network with 5
nodes and influence functions are
ϕij(t) = e−t. In this picture, the
solid blackline is true αij and the
dashed line is the zero level. In
each picture, the two blue curves
outline the proposed CIs, and the
two red curves outline the asymp-
totic CI. Note that the proposed CI
uniformly covers the true parameter
even when T is small, whereas the
asymptotic CI can have poor cover-
age when T is small. This shows
the advantage of our method over
the asymptotic approach, and that
our method works well for small T .

Response to Reviewer 3. We agree that the idea can be extended beyond Hawkes29

processes, and it would be an interesting future direction.30

1) The reason for focusing on the Hawkes model is motivated by the neural31

connectivity application, and we would like to generalize this to broader models32

in future work. Moreover, we will adjust Section 2-3 as suggested.33

2) The width of the main confidence band in the non-asymptotic case in Corol-34

lary 1 will be similar to that of the asymptotic confidence band width shown in35

Proposition 1, since the estimated Fisher information Îi will converge to the true36

I∗i as T → ∞.37

3) Proof of Theorem 3.3 mirrors the proof of Theorem 3.2 by replacing the fixed38

vector z with the adapted measurable function z : (Ht)
T
t=0 → RD, and Corollary39

1 is a straightforward consequence of Theorem 3.3 by considering multiple z40

functions, the choice of z in Corollary 1 is inspired by Proposition 1.41

4) An example of the integral in Line 121 for the exponential kernel function42

is given in Appendix A; The αi in Lemma 3.1 actually can be an arbitrary αi,43

not necessarily α∗
i ; Equation (10) holds uniformly in z; the departure set of44

the function z means that z is determined by past event times; as justified in45

Response to Reviewer 2 - point 1, the approximation aims to provide a tangible46

form of confidence set and is validated empirically, and we can also evaluate gk47

numerically to find the exact confidence set; the analysis on dNt is a standard48

technique in Hawkes literature and is commonly seen in related literatures, such49

as [Hawkes (1971)] [Bacry and Muzy (2016)].50

5) Comment on Line 378: We appreciate reviewer’s careful reading and sug-51

gestion; we believe the final conclusion is correct (as validated by numerical52

examples); we will make this more rigorous in the full paper.53

Response to Reviewer 4.54

1) In the revised paper, we will add a paragraph to discuss the difference between our parametric approach with Bayesian55

model and add all mentioned references. 2) Currently there is no sparsity structure imposed in the maximum likelihood56

estimate, since our main goal is to obtain confidence intervals rather than point estimators; this is an interesting direction57

and we will leave it for future work.58
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