Implicit Distributional Reinforcement Learning: Appendix

A Proof of Lemma[l

Denote
H= anﬂg(a\s) log 7[-9(0"8)7
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Notice that £s are from the same distribution, so we have
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= ]E§(0>v--v(L)~p(§)Ea~7r9(a ‘ s)g(O):(L)) log 7T9(a|s, E(O):(L>).
Use the identity that IEGNWGMS) = ]Eg(o),.,,(L)Np(g)EaNﬂ,e(a | 8,£(0):(L)), We can rewrite H as
7‘[ = Eg(o),..,(L)Np(g)Eane(a ‘ 875(0):@)) log 7r9(a|s).
Therefore, we have
mo(als, 5(0):(L))
HL —H= EE(O),..,(L)Np(g)]EaNﬂ-B(a | 5,£(0):(L)) log W
= KL(mg(als, £V 1))||mq(als)) > 0.
To compare between H, and H 1, rewrite Hy, as
Hi = Ee). 0.4 mp(e)Bammg(a] s,e0:0)) log To(als, £(0:(0))
and Hr as

HL+1 = Es(o),...(L),(L+1)Np(£)EaNTr9(a | 5’5(0)) 1og 7T9(CL|S, E(O):(L+1))

= Ee©. .40 mp(e)Eammg(a | .60 log Ta(als, €0 ()
and the difference will be
Hr —Hi+1 = Eeo .00 p(e) Eammg (a ] 5,60:0)) [log mg(als, )y ogmg(als, E(O):(LH))]
= Ee...00.t+1) op(e)KL(70 (als, €01 g (als, £ EH)) > 0.
Finally, we arrive at the conclusion that for any ¢, we have

H < Hoprr < He.
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B Detailed pseudo code

Algorithm 2 Implicit Distributional Actor-Critic (IDAC)

Require: Learning rate A, batch size M, quantile number K, action number J and noise number L, target
entropy H:.
Initial policy network parameter 8, action-value function network parameter w1,w2, entropy parameter 7).
Initial target network parameter W = wi,w2 = wa.
for the number of environment steps do
Sample M number of transitions {st, al,ri 8t+1}z ; from the replay buffer

Sample et’(k), etﬁ), £t’(e) from N(0,I)fori=1---Mandk=1---Kand¢{=0---L
Sample aj,, ~ 7o(- |st+1,£t’(0 ) =N(Tg (stH,{t’(o)) Té (3t+1:§t+1 ))fori=1---M.

Apply Bellman update to create samples (of return distribution)
Yk =71 +7Ga (8i41, @i, e;ﬁ)) # Calculate target values

Y2,ik = ri4 VG, (s§+1, aiﬂ, e;_ﬁ)) # Calculate target values
and let

(717@1, R 71,@;() = StopGradient(sort(y1,i,1,...,¥Y1,5,)) # Obtain target quantile estimation

(V2.i1,--., Yo.ix) = StopGradient(sort(y2 .1, . .., y2.i.c)) # Obtain target quantile estimation
Yiw=min(Y1in, Youik), fori=1---M;k=1---K

Generate samples 21,; 1 = G, (s}, al, ei’““)) and 22, = G, (si, al, ei’<k)), and let
(T ity s Trir) = sOM(T1, -, 210 )

(T 21y s Toir) = sort(w2,i1, ., 2,0, K)
Update action-value function parameter w; and w2 by minimizing the quantile loss

J(w1,w2) = MZ ZZka ik — T i) MZ ZZka ik — Do)

k=1k'=1 k=1k'=1

Sample 20", €'Y from N(0,1), for i = "M,j = 1---Jandh = 0---L + J, and form

55(]’[) from 2" by concatenating L of them to the rest of Js. Sample at’u) ~ 7rg( | si, b0y =
NT (51, €299), T8 o1, £5)) using

ar? = To(si, &7 ) = To (51, €7V) + €t © T4 (51, €777), ei ~ N (0, )
fori=1,---, M.
Update the policy function parameter @ by minimizing

2 J i,(3) 7(j7€)
1 0@ i 1 Siome(a; st &)
J(0) = {2J E E w. (s}, al (J), m —exp(n E 5 [log =£=0 Lt+1 ] ¢

= =1

We also use stop gradient on (7g (s, 52’“ >), Té (st, éi‘(j ) )) to reduce variance on gradient as mentioned
in Eq (16).

Update the log entropy parameter ) by minimizing

1,(0) ) i ¢%:(€
log 2o me(ar " Is;,€17)
L+1

M
J(n) = % Z[StopGradient(—

=1

= He)n]

end for
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C Hyperparameters of IDAC

Table 3: IDAC hyperparameters

Parameter Value
Optimizer Adam
learning rate 3e-4
discount 0.99
replay buffer size 106
number of hidden layers (all networks) | 2
number of hidden units per layer 256
number of samples per minibatch 256
entropy target —dim(.A) (e.g., —6 for HalfCheetah-v2)
nonlinearity ReLU
target smoothing coefficient 0.005
target update interval 1
gradient steps 1
distribution of & N(0,15)
distribution of € N(0,1I5)
J 51

K 51

L 21

D Additional ablation study

Additional ablation studies on Ant is shown in Fig. a] for a thorough comparison. In Ant, the
performance of IDAC is on par with that of IDAC-Gaussian, which outperforms the other variants.

Furthermore, we would like to learn the interaction between DGN and SIA by running ablation
studies by holding each of them as a control factor; we conduct the corresponding experiments on
Walker2d. From Fig. @bl we can observe that by removing either SIA (resulting in IDAC-Gaussian)
or DGN (resulting in IDAC-noDGN) from IDAC in general negatively impacts its performance,
which echoes our motivation that we integrate DGN and SIA to allow them to help strengthen each
other: (i) Modeling GG exploits distributional information to help better estimate its mean () (note
C51, which outperforms DN by exploiting distributional information, also conducts its argmax
operation on )); (if) A more flexible policy may become more necessary given a better estimated ().
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Figure 4: Additional plots for ablation study
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E Additional comparison with SDPG

In Fig.[5] we include a thorough comparison with SDPG (implemented based on the stable baselines
codebase).
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Figure 5: Training curves on continuous control benchmarks. The solid line is the average performance over 4
seeds with + 1 std shaded, and with a smoothing window of length 100.

F Late stage policy visualization

We show in Fig. [f]the visualization of the late stage policy of one seed from Walker2d-v2 environment.
We can see that SIA does provide a more flexible policy even in the late stage, where the correlations
between action dimensions is clear on plot, and the marginal distributions are more flexible than a
Gaussian distribution. Moreover, we randomly choose 1000 states and conduct normality tests as
well as correlation tests on them. As a result, all of the tests indicate that the SIA policy captures
the non-zero correlations between the selected dimensions, and the marginal distributions for each
dimension across different states are significantly non-normal.
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Figure 6: Visualization of the SIA on Walker2d-v2. The density contour of 1000 randomly sampled actions at
a late training stage, where the x- and y-axis correspond to dimensions 1 and 4, respectively.
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