
Appendix to “Auxiliary Task Reweighting for
Minimum-data Learning”

Anonymous Author(s)
Affiliation
Address
email

1 Additional Discussion on ARML1

In this section we add more discussion on validity and soundness of ARML, especially on the three2

problems (True Prior (P1), Samples (P2), Partition Function (P3)), and how we resolve them3

(Sec. 3.3).4

1.1 Full Version and Proof of Theorem 1 (P1)5

In True Prior (P1) (Sec. 3.3) we use6

min
α
Eθ∼pJ log

pm(θ)

pα(θ)
(A1)

as a surrogate objective for the original optimization problem7

min
α
DKL(p∗(θ) ‖ pα(θ)). (A2)

In this section, we will first intuitively explain why optimizing (A1) can end up with a near-optimal8

solution for (A2), and what assumptions do we need to make. Then we will give the full version of9

Theorem 1 and also the proof.10

Let f(α) = Eθ∼pJ log pm(θ)
pα(θ) = 1

Z(α)

∫
pm(θ)pα(θ) log pm(θ)

pα(θ) dθ be the optimization objective11

in (A1), where pJ(θ) = pm(θ)pα(θ)
Z(α) andZ(α) =

∫
pm(θ)pα(θ)dθ is the normalization term. Assume12

p∗(θ) has a compact support set S. Then we can write f(α) as13

f(α) =
1

Z(α)

∫
θ∈S

pm(θ)pα(θ) log
pm(θ)

pα(θ)
dθ +

1

Z(α)

∫
θ/∈S

pm(θ)pα(θ) log
pm(θ)

pα(θ)
dθ

=
Z(S;α)

Z(S;α) + Z(S̄;α)

∫
θ∈S

pm(θ)pα(θ)

Z(S;α)
log

pm(θ)

pα(θ)
dθ

+
Z(S̄;α)

Z(S;α) + Z(S̄;α)

∫
θ/∈S

pm(θ)pα(θ)

Z(S̄;α)
log

pm(θ)

pα(θ)
dθ

= f(α;S) + f(α; S̄),

(A3)

where we denote the first and second term by f(α;S) and f(α; S̄) respectively, Z(S;α) =14 ∫
θ∈S p

m(θ)pα(θ)dθ and Z(S̄;α) =
∫
θ/∈S p

m(θ)pα(θ)dθ are the normalization terms inside and15

outside S.16

To build the connection between the surrogate objective f(α) and the original objective KLα :=17

DKL(p∗(θ) ‖ pα(θ)), we make the following assumption,18

Assumption 1. The support set S is small so that pα(θ) and pm(θ) are constants inside S, and p∗(θ)19

is uniform in S.20

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

This assumption is reasonable when S is really informative, which we assume is the case for the true21

prior p∗(θ) [3]. With this assumption, we have22

KLα =

∫
θ∈S

p∗(θ) log
p∗(θ)

pα(θ)
dθ = log

p∗(θ∗)

pα(θ∗)
·
∫
θ∈S

p∗(θ)dθ = log
p∗(θ∗)

pα(θ∗)
, (A4)

where θ∗ ∈ S is the optimal parameter. We can also write f(α;S) as23

f(α;S) =
Z(S;α)

Z(S;α) + Z(S̄;α)

∫
θ∈S

pm(θ)pα(θ)

Z(S;α)
log

pm(θ)

pα(θ)
dθ

=
Z(S;α)

Z(S;α) + Z(S̄;α)
log

pm(θ∗)

pα(θ∗)
·
∫
θ∈S

pm(θ)pα(θ)

Z(S;α)
dθ

=
Z(S;α)

Z(S;α) + Z(S̄;α)
log

pm(θ∗)

pα(θ∗)

=
Z(S;α)

Z(S;α) + Z(S̄;α)
(log

p∗(θ∗)

pα(θ∗)
+ log

pm(θ∗)

p∗(θ∗)
)

=
Z(S;α)

Z(S;α) + Z(S̄;α)
(KLα + C1),

(A5)

where C1 = log pm(θ∗)
p∗(θ∗) is a constant invariant to α. Since pm(θ) also covers other “overfitting” area24

other than S, we can assume that p∗(θ∗) ≥ pm(θ∗), which gives C1 ≤ 0. Furthermore, we can notice25

that26

Z(S;α) =

∫
θ∈S

pm(θ)pα(θ)dθ =

∫
θ∈S

pm(θ)pα(θ)

p∗(θ)
p∗(θ)dθ =

pm(θ∗)pα(θ∗)

p∗(θ∗)
= C2e

−KLα , (A6)

where C2 = pm(θ∗) is a constant invariant to α. Then we can write f(α;S) as27

f(α;S) =
C2e

−KLα

C2e−KLα + Z(S̄;α)
(KLα + C1). (A7)

In this way, we build the connection between the surrogate objective f(α) and the original objective28

KLα.29

Now we give an intuitive explanation for why optimizing f(α) gives a small KLα as well. We can30

write f(α) as31

f(α) = f(α;S) + f(α; S̄)

=
C2e

−KLα

C2e−KLα + Z(S̄;α)
(KLα + C1) +

Z(S̄;α)

C2e−KLα + Z(S̄;α)

∫
θ∈S̄

pm(θ)pα(θ)

Z(S̄;α)
log

pm(θ)

pα(θ)
dθ.

(A8)

As one can notice, f(α) not only depends on KLα, but also on Z(S̄;α) and the integral32 ∫
θ∈S̄

pm(θ)pα(θ)
Z(S̄;α)

log pm(θ)
pα(θ) dθ. First we remove the dependency on the integral by taking its lower33

bound and upper bound. Concretely, with Jensen’s inequality, we have34 ∫
θ∈S̄

pm(θ)pα(θ)

Z(S̄;α)
log

pm(θ)

pα(θ)
dθ ≤ log

∫
θ∈S̄(pm(θ))2dθ

Z(S̄;α)
= log

C3

Z(S̄;α)
, (A9)

where C3 =
∫
θ∈S̄(pm(θ))2dθ is a constant invariant to α. Likewise, we have35 ∫

θ∈S̄

pm(θ)pα(θ)

Z(S̄;α)
log

pm(θ)

pα(θ)
dθ =

∫
θ∈S̄
−p

m(θ)pα(θ)

Z(S̄;α)
log

pα(θ)

pm(θ)
dθ

≥ − log

∫
θ∈S̄(pα(θ))2dθ

Z(S̄;α)

≥ − log
C4

Z(S̄;α)
,

(A10)

where C4 = maxα

∫
θ∈S̄(pα(θ))2dθ is a constant invariant to α. In this way, we get the lower bound36

and upper bound for f(α):37

f(α) ≥ fl(α) =
C2e

−KLα

C2e−KLα + Z(S̄;α)
(KLα + C1)− Z(S̄;α)

C2e−KLα + Z(S̄;α)
log

C4

Z(S̄;α)
,

f(α) ≤ fu(α) =
C2e

−KLα

C2e−KLα + Z(S̄;α)
(KLα + C1) +

Z(S̄;α)

C2e−KLα + Z(S̄;α)
log

C3

Z(S̄;α)
.

(A11)

2

(a) e−KLα∗ is large. (b) e−KLα∗ is small.

Figure 1: f(e−KLα)’s upper bound fu(e−KLα) (golden line) and lower bound fl(e−KLα) (blue
line). α∗ = arg maxα(e−KLα) = arg minαKLα denotes the largest e−KLα we could possibly
reach. Shaded region denotes where (e−KLα̂ , f(e−KLα̂)) could possibly be.

We plot fl and fu as functions of e−KLα in Fig. 1 (here we assume Z(S̄;α) is constant w.r.t. α for38

brevity). f(α) lies between the upper bound (golden line) and the lower bound (blue line).39

Our goal is to find the optimal α∗ that minimizes KLα, i.e., α∗ = arg minαKLα =40

arg maxα e
−KLα . By optimizing f(α), we end up with a suboptimal α̂ = arg minα f(α). Ideally,41

we hope that KLα̂ is close to KLα∗ , which means when we minimize f(α̂), we can also get a large42

e−KLα̂ . This is the case when e−KLα∗ is large (see Fig. 1a). When e−KLα∗ is large, the upper43

bound fu and the lower bound fl are close to each other around e−KLα∗ (this is the case when44

Z(S̄;α) is small). Since we have45

fl(e
−KLα̂) ≤ f(e−KLα̂) ≤ f(e−KLα∗) ≤ fu(e−KLα∗), (A12)

we can assert that (e−KLα̂ , f(e−KLα̂)) lies in the shaded region, because if e−KLα̂ is on the left side46

of the region, we have f(e−KLα̂) ≥ fu(e−KLα∗) which is contradictary to (A12), and if e−KLα̂47

cannot be on the right side of the region because e−KLα∗ is the furthest we can go. Since the shaded48

region is small, KLα̂ is thus close to the optimal solution KLα∗ .49

Unfortunately, this may not hold anymore when e−KLα∗ is small (see Fig. 1b). This is because fl50

will reach a local minima when e−KLα → 0. If e−KLα∗ is not large enough, it may be higher than51

lime−KLα→0 fl(e
−KLα), which means the shaded region near y-axis is also included. In this region52

f(α) could be really small (which is the goal when optimizing the surrogate objective f(α)), but53

KLα could be extremely large.54

To avoid this situation, we only have to assume that55

fu(e−KLα∗) ≤ lim
e−KLα→0

fl(e
−KLα) = − log

C4

Z(S̄;α)
, (A13)

or if we denote γ1 = minα Z(S̄;α) and γ2 = maxα Z(S̄;α), then we only need the following56

assumption:57

Assumption 2. The optimal KLα∗ is small so that fu(e−KLα∗) ≤ − log C4

γ1
.58

This assumption holds as long as there is at least one task that is related to the main task (having59

a small KLα), which is reasonable because if all the tasks are unrelated, then reweighing is also60

meaningless. See the remark below for more discussion on the validity of the assumption.61

Now we give the formal version of the theorem:62

Theorem 1. (formal version) With Assumption 1, 2, if γ2 ≤ min(C3

e ,
C4

e), then we have63

KLα̂ ≤ KLα∗ +
2γ2

2

C
log

C′

γ2
(A14)

Proof. From Assumption 2 we have64

C2e
−KLα∗

C2e−KLα∗ + Z(S̄;α∗)
(KLα∗ + C1) +

Z(S̄;α∗)

C2e−KLα∗ + Z(S̄;α∗)
log

C3

Z(S̄;α∗)
≤ − log

C4

γ1
. (A15)

3

Since γ2 ≤ C3 and γ2 ≤ C4, we have log C3

Z(S̄;α∗)
≥ log C3

γ2
≥ 0, and − log C4

γ1
≤ − log C4

γ2
≤ 0.65

Then leaves us KLα∗ + C1 ≤ 0 in order to make (A15) satisfied. Then we can relax (A15) into66

KLα∗ + C1 ≤ − log
C4

γ1
, (A16)

which gives67

C2e
−KLα∗ ≥ C5

γ1
, (A17)

where C5 = C4C2e
C1 . This bounds the value of KLα∗ .68

Moreover, from (A12) and Assumption 2 we have69

fl(e
−KLα̂) ≤ fu(e−KLα∗) ≤ − log

C4

γ1
, (A18)

which gives70

fl(e
−KLα̂) =

C2e
−KLα̂

C2e−KLα̂ + Z(S̄; α̂)
(KLα̂ + C1)− Z(S̄; α̂)

C2e−KLα̂ + Z(S̄; α̂)
log

C4

Z(S̄; α̂)
≤ − log

C4

γ1
.

(A19)
Since Z(S̄; α̂) ≥ γ1, we can relax (A19) into71

C2e
−KLα̂

C2e−KLα̂ + Z(S̄; α̂)
(KLα̂ + C1)− Z(S̄; α̂)

C2e−KLα̂ + Z(S̄; α̂)
log

C4

Z(S̄; α̂)
≤ − log

C4

Z(S̄; α̂)
, (A20)

which can be simplified into72

KLα̂ + C1 ≤ − log
C4

Z(S̄; α̂)
≤ − log

C4

γ2
, (A21)

which means73

C2e
−KLα̂ ≥ C5

γ2
. (A22)

This bounds the value of KLα̂.74

Now we build the connection between KLα̂ and KLα∗ . Since fl(e−KLα̂) ≤ fu(e−KLα∗), we have75

C2e
−KLα̂

C2e−KLα̂ + Z(S̄; α̂)
(KLα̂ + C1)− Z(S̄; α̂)

C2e−KLα̂ + Z(S̄; α̂)
log

C4

Z(S̄; α̂)

≤ C2e
−KLα∗

C2e−KLα∗ + Z(S̄;α∗)
(KLα∗ + C1) +

Z(S̄;α∗)

C2e−KLα∗ + Z(S̄;α∗)
log

C3

Z(S̄;α∗)
.

(A23)

Since KLα̂ + C1 ≤ − log C4

γ2
≤ 0, KLα∗ ≥ 0, and also with (A17) and (A22), we can relax (A23)76

into77

KLα̂ + C1 −
Z(S̄; α̂)

C5/γ2
log

C4

Z(S̄; α̂)

≤ KLα∗ +
C2e

−KLα∗

C2e−KLα∗ + Z(S̄;α∗)
C1 +

Z(S̄;α∗)

C5/γ1
log

C3

Z(S̄;α∗)
,

(A24)

which gives78

KLα̂ ≤ KLα∗ −
Z(S̄;α∗)

C2e−KLα∗ + Z(S̄;α∗)
C1 +

Z(S̄; α̂)

C5/γ2
log

C4

Z(S̄; α̂)
+
Z(S̄;α∗)

C5/γ1
log

C3

Z(S̄;α∗)
. (A25)

Since Z(S̄; α̂) ≤ γ2 ≤ C4

e , we have Z(S̄; α̂) log C4

Z(S̄;α̂)
≤ γ2 log C4

γ2
. Similarly, we have79

Z(S̄;α∗) log C3

Z(S̄;α∗)
≤ γ2 log C3

γ2
. Then we have80

KLα̂ ≤ KLα∗ −
Z(S̄;α∗)

C2e−KLα∗ + Z(S̄;α∗)
C1 +

γ2
2

C5
log

C4

γ2
+
γ2

2

C5
log

C3

γ2
. (A26)

Since C1 ≤ 0, we can get81

KLα̂ ≤ KLα∗ +
γ2

2

C5
(−C1) +

γ2
2

C5
log

C4

γ2
+
γ2

2

C5
log

C3

γ2
, (A27)

4

which gives82

KLα̂ ≤ KLα∗ +
2γ2

2

C5
log

C6

γ2
, (A28)

where C6 =
√
C3C4e−C1 .83

84

Remark. From Theorem 1 we see that KLα̂ is close to KLα∗ as long as γ2 is small. One may85

notice that γ2 cannot be arbitrarily small because from (A22) we have86

C5

γ2
≤ C2e

−KLα̂ ≤ C2, (A29)

which means87

γ2 ≥
C5

C2
= C4e

C1 . (A30)

However, we can safely assume that88

C1 = log
pm(θ∗)

p∗(θ∗)
� 0 (A31)

since p∗ is much more informative than pm, especially when labeled data for the main task is scarce.89

This means γ2 can be extremely small as long as C1 is small, which makes KLα̂ close to KLα∗ .90

Similarly, Assumption 2 can easily hold as long as C1 is small.91

1.2 Sampling through Langevin Dynamics (P2)92

In Samples (P2) we use Langevin dynamics [16, 22] to sample from the distribution pJ . Concretely,93

at each iteration, we update θ by94

θt+1 = θt − εt∇L(θt) + ηt, (A32)
where L(θ) ∝ − log pJ(θ) is the joint loss, and ηt ∼ N(0, 2εt) is a Gaussian noise. In this way, θt95

converges to samples from pJ , which can be used to estimate our optimization objective. However,96

since we normally use a mini-batch estimator L̂(θ) to approximateL(θ), this may introduce additional97

noise other than ηt, which may make the sampling procedure inaccurate. In [22] it is proposed to98

anneal the learning rate to zero so that the gradient stochasticity is dominated by the injected noise,99

thus alleviating the impact of mini-batch estimator. However we find in practice that the gradient100

noise is negligible compared to the injected noise (Table 1). Therefore, we ignore the gradient noise101

and directly inject the noise ηt into the updating step.102

Table 1: Standard deviation of different types of noise. We find that the gradient noise is negligible
compared to the injected noise.

Standard deviation

Gradient Noise ∼ 10−6

Injected Noise ∼ 10−3

1.3 Score Function and Fisher Divergence (P3)103

In Partition Function (P3) we propose to minimize104

min
α
Eθ∼pJ ‖∇ log p(Tm|θ)−∇ log pα(θ)‖22 (A33)

as our final objective. Notice that105

min
α
Eθ∼pJ ‖∇ log p(Tm|θ)−∇ log pα(θ)‖22

⇔ min
α
Eθ∼pJ ‖∇ log pm(θ)−∇ log pα(θ)‖22

⇔ min
α
Eθ∼pJ ‖∇ log(pm(θ) · pα(θ))− 2 · ∇ log pα(θ)‖22

⇔ min
α
Eθ∼pJ ‖∇ log pJ(θ)−∇ log p2

α(θ)‖22

⇔ min
α
F (pJ(θ) ‖ 1

Z′(α)
p2
α(θ)),

(A34)

5

where F (p(θ) ‖ q(θ)) = Eθ∼p‖∇ log p(θ) −∇ log q(θ)‖22 is the Fisher divergence, and Z ′(α) =106 ∫
p2
α(θ)dθ is the normalization term. This means, by optimizing (A33), we are actually minimizing107

the Fisher divergence between pJ(θ) and 1
Z′(α)p

2
α(θ). As pointed by [8, 13], Fisher divergence108

is stronger than KL divergence, which means by minimizing F (pJ(θ) ‖ 1
Z′(α)p

2
α(θ)), the KL109

divergence DKL(pJ(θ) ‖ 1
Z′(α)p

2
α(θ)) is also bounded near the optimum up to a small error.110

Therefore, optimizing (A33) is equivalent to minimizing DKL(pJ(θ) ‖ 1
Z′(α)p

2
α(θ)). Notice that111

min
α
DKL(pJ(θ) ‖ 1

Z′(α)
p2
α(θ))

⇔ min
α

∫
pJ(θ) log

pJ(θ)
1

Z′(α)
p2
α(θ)

dθ

⇔ min
α

∫
pJ(θ) log

1
Z(α)

pm(θ)pα(θ)
1

Z′(α)
p2
α(θ)

dθ

⇔ min
α

∫
pJ(θ) log

pm(θ)

pα(θ)
dθ + log

Z′(α)

Z(α)

⇔ min
α

∫
pJ(θ) log

pm(θ)

pα(θ)
dθ + log

∫
p2
α(θ)dθ∫

pm(θ)pα(θ)dθ

(A35)

is different from (A1) only on the log
∫
p2α(θ)dθ∫

pm(θ)pα(θ)dθ
term. To analyze the impact of this additional112

term, we assume that the likelihood function of each auxiliary task is a Gaussian, i.e., p(Tak |θ) ∝113

N(θ|θk,Σ), with mean θk and covariance Σ. Then we have pα(θ) = N(θ|
∑
k αkθk/K,Σ/K)114

(note that
∑
k αk = K). In this case

∫
p2
α(θ)dθ only depends on Σ and is invariant to α. Thus115

optimizing (A33) is equivalent to116

min
α
DKL(pJ(θ) ‖ 1

Z′(α)
p2
α(θ))

⇔ min
α

∫
pJ(θ) log

pm(θ)

pα(θ)
dθ + log

∫
p2
α(θ)dθ∫

pm(θ)pα(θ)dθ

⇔ min
α

∫
pJ(θ) log

pm(θ)

pα(θ)
dθ − log

∫
pm(θ)pα(θ)dθ.

(A36)

Denote the optimal solution for (A36) by α†. Then we can build the connection between α† and α̂117

by118 ∫
pJ(θ) log

pm(θ)

pα†(θ)
dθ− log

∫
pm(θ)pα†(θ)dθ ≤

∫
pJ(θ) log

pm(θ)

pα̂(θ)
dθ− log

∫
pm(θ)pα̂(θ)dθ. (A37)

Since α̂ minimizes
∫
pJ(θ) log pm(θ)

pα(θ) dθ, which means
∫
pJ(θ) log pm(θ)

pα̂(θ) dθ ≤
∫
pJ(θ) log pm(θ)

p
α† (θ)

dθ,119

we can get120

− log

∫
pm(θ)pα†(θ)dθ ≤ − log

∫
pm(θ)pα̂(θ)dθ, (A38)

or121 ∫
pm(θ)pα†(θ)dθ ≥

∫
pm(θ)pα̂(θ)dθ, (A39)

which gives122 ∫
θ∈S

pm(θ)pα†(θ)dθ +

∫
θ∈S̄

pm(θ)pα†(θ)dθ ≥
∫
θ∈S

pm(θ)pα̂(θ)dθ +

∫
θ∈S̄

pm(θ)pα̂(θ)dθ. (A40)

Then we have123 ∫
θ∈S

pm(θ)pα†(θ)dθ ≥
∫
θ∈S

pm(θ)pα̂(θ)dθ +

∫
θ∈S̄

pm(θ)pα̂(θ)dθ −
∫
θ∈S̄

pm(θ)pα†(θ)dθ

≥
∫
θ∈S

pm(θ)pα̂(θ)dθ − (γ2 − γ1).

(A41)

From Assumption 1 we have124

pm(θ∗)pα†(θ
∗)

p∗(θ∗)
≥ pm(θ∗)pα̂(θ∗)

p∗(θ∗)
− (γ2 − γ1), (A42)

6

which gives125

KLα† = − log
pα†(θ

∗)

p∗(θ∗)
≤ − log(

pα̂(θ∗)

p∗(θ∗)
− γ2 − γ1

pm(θ∗)
) ≤ − log

pα̂(θ∗)

p∗(θ∗)
+
γ2 − γ1

pm(θ∗)
, (A43)

or126

KLα† ≤ KLα̂ +
γ2

C2
. (A44)

After combining with Theorem 1, we have127

KLα† ≤ KLα∗ +
2γ2

2

C5
log

C6

γ2
+
γ2

C2
. (A45)

This means by optimizing our final objective (A33), the KL divergence KLα† is also bounded near128

the optimal value, which provides a theoretical justification of our algorithm.129

1.4 Tips for Practitioners130

In Section 2.4, we propose a two-stage algorithm, where we update the task weights with Langevin131

dynamics in the first stage, and then udpate the model with fixed task weights in the second stage.132

However, we find in practice that we can also find the similar task weights if we turn off the Langevin133

dynamics and directly sample from regular SGD. Therefore, we can further simplify the algorithm134

by removing the Langevin dynamics and merge the two stage, i.e., update task weights and model135

parameters at the same time until convergence. This simplified version is summarized in Algorithm 1.136

Algorithm 1 ARML (simplified version)

Input: main task data Tm, auxiliary task data Tak , initial parameter θ0, initial task weights α
Parameters: learning rate of t-th iteration εt, learning rate for task weights β

for iteration t = 1 to T do
θt ← θt−1 − εt(−∇ log p(Tm|θt−1)−

∑K
k=1 αk∇ log p(Tak |θt−1)) + ηt

α← α− β∇α‖∇ log p(Tm|θt)−
∑K
k=1 αk∇ log p(Tak |θt)‖22

Project α back into A
end for

2 Experimental Settings137

For all results, we repeat experiments for three times and report the average performance. Error bars138

are reported with CI=95%. In our algorithm, the only hyperparameter is the learning rate β of task139

weights. Specifically, we find the results insensitive to the choice of β. Therefore, we randomly140

choose β ∈ [0.0005, 0.05], for a trade-off between steady training and fast convergence. We use141

PyTorch [19] for implementation.142

2.1 Semi-supervised Learning143

For semi-supervised learning, we use two datasets, CIFAR10 [11] and SVHN [17]. For CIFAR10,144

we follow the standard train/validation split, with 45000 images for training and 5000 for validation.145

Only 4000 out of 45000 training images are labeled. For SVHN, we use the standard train/validation146

split with 65932 images for training and 7325 for validation. Only 1000 out of 65392 images are147

labeled. Both datasets can be downloaded from the official PyTorch torchvision library (https:148

//pytorch.org/docs/stable/torchvision/index.html). Following [18], we use WRN-28-2149

as our backbone, i.e., ResNet [7] with depth 28 and width 2, including batch normalization [9] and150

leaky ReLU [15]. We train our model for 200000 iterations, using Adam [10] optimizer with batch151

size of 256 and learning rate of 0.005 in first 160000 iterations and 0.001 for the rest iterations.152

For implementation of self-supervised semi-supervised learning (S4L), we follow the settings in153

the original paper [23]. Note that we make two differences from [23]: (i) for steadier training, we154

use the model with time-averaged parameters [21] to extract feature of the original image, (ii) To155

avoid over-sampling of negative samples in triplet-loss [1], we only put a loss on the cosine similarity156

between original feature and augmented feature.157

7

https://pytorch.org/docs/stable/torchvision/index.html
https://pytorch.org/docs/stable/torchvision/index.html
https://pytorch.org/docs/stable/torchvision/index.html

2.2 Multi-label Classification158

For multi-label classification, we use CelebA [14] as our dataset. It contains 200K face images,159

each labeled with 40 binary attributes. We cast this into a multi-label classification problem, where160

we randomly choose one attribute as the main classification task, and other 39 as auxiliary tasks.161

We randomly choose 1% images as labeled images for main task. The dataset is available at http:162

//mmlab.ie.cuhk.edu.hk/projects/CelebA.html. We use ResNet18 [7] as our backbone. We163

train the model for 90 epochs using SGD solver with batch size of 256 and scheduled learning rate of164

0.1 initially and 0.1× shrinked every 30 epochs.165

2.3 Domain Generalization166

Following the literature [2, 4], we use PACS [12] as our dataset for domain generalization. PACS167

consists of four domains (photo, art painting, cartoon and sketch), each containing 7 categories (dog,168

elephant, giraffe, guitar, horse, house and person). The dataset is created by intersecting classes169

in Caltech-256 [6], Sketchy [20], TU-Berlin [5] and Google Images. Dataset can be downloaded170

from http://sketchx.eecs.qmul.ac.uk/. Following protocol in [12], we split the images from171

training domains to 9 (train) : 1 (val) and test on the whole target domain. We use a simple data172

augmentation protocol by randomly cropping the images to 80-100% of original sizes and randomly173

apply horizontal flipping. We use ResNet18 [7] as our backbone. Models are trained with SGD174

solver, 100 epochs, batch size 128. Learning rate is set to 0.001 and shrinked down to 0.0001 after 80175

epochs.176

References177

[1] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saunshi. A178

theoretical analysis of contrastive unsupervised representation learning. arXiv preprint arXiv:1902.09229,179

2019.180

[2] Nader Asadi, Mehrdad Hosseinzadeh, and Mahdi Eftekhari. Towards shape biased unsupervised represen-181

tation learning for domain generalization. arXiv preprint arXiv:1909.08245, 2019.182

[3] Jonathan Baxter. A bayesian/information theoretic model of learning to learn via multiple task sampling.183

Machine learning, 28(1):7–39, 1997.184

[4] Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana Tommasi. Domain185

generalization by solving jigsaw puzzles. In Proceedings of the IEEE Conference on Computer Vision and186

Pattern Recognition, pages 2229–2238, 2019.187

[5] Mathias Eitz, James Hays, and Marc Alexa. How do humans sketch objects? ACM Transactions on188

graphics (TOG), 31(4):1–10, 2012.189

[6] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.190

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.191

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.192

[8] Tianyang Hu, Zixiang Chen, Hanxi Sun, Jincheng Bai, Mao Ye, and Guang Cheng. Stein neural sampler.193

arXiv preprint arXiv:1810.03545, 2018.194

[9] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing195

internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.196

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint197

arXiv:1412.6980, 2014.198

[11] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.199

[12] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain200

generalization. In Proceedings of the IEEE international conference on computer vision, pages 5542–5550,201

2017.202

[13] Qiang Liu, Jason Lee, and Michael Jordan. A kernelized stein discrepancy for goodness-of-fit tests. In203

International conference on machine learning, pages 276–284, 2016.204

8

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://sketchx.eecs.qmul.ac.uk/

[14] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In205

Proceedings of the IEEE international conference on computer vision, pages 3730–3738, 2015.206

[15] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network207

acoustic models. In Proc. icml, volume 30, page 3, 2013.208

[16] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,209

2(11):2, 2011.210

[17] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits211

in natural images with unsupervised feature learning. 2011.212

[18] Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus Cubuk, and Ian Goodfellow. Realistic213

evaluation of deep semi-supervised learning algorithms. In Advances in Neural Information Processing214

Systems, pages 3235–3246, 2018.215

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,216

Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep217

learning library. In Advances in Neural Information Processing Systems, pages 8024–8035, 2019.218

[20] Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. The sketchy database: learning to retrieve219

badly drawn bunnies. ACM Transactions on Graphics (TOG), 35(4):1–12, 2016.220

[21] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency221

targets improve semi-supervised deep learning results. In Advances in neural information processing222

systems, pages 1195–1204, 2017.223

[22] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings224

of the 28th international conference on machine learning (ICML-11), pages 681–688, 2011.225

[23] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4l: Self-supervised semi-supervised226

learning. In Proceedings of the IEEE international conference on computer vision, pages 1476–1485,227

2019.228

9

	Additional Discussion on ARML
	Full Version and Proof of Theorem 1 (P1)
	Sampling through Langevin Dynamics (P2)
	Score Function and Fisher Divergence (P3)
	Tips for Practitioners

	Experimental Settings
	Semi-supervised Learning
	Multi-label Classification
	Domain Generalization

