
Training Linear Finite-State Machines

Arash Ardakani, Amir Ardakani, and Warren J. Gross
Department of Electrical and Computer Engineering, McGill University, Montreal, Canada

{arash.ardakani, amir.ardakani}@mail.mcgill.ca
warren.gross@mcgill.ca

Abstract

A finite-state machine (FSM) is a computation model to process binary strings
in sequential circuits. Hence, a single-input linear FSM is conventionally used
to implement complex single-input functions , such as tanh and exponentiation
functions, in stochastic computing (SC) domain where continuous values are
represented by sequences of random bits. In this paper, we introduce a method that
can train a multi-layer FSM-based network where FSMs are connected to every
FSM in the previous and the next layer. We show that the proposed FSM-based
network can synthesize multi-input complex functions such as 2D Gabor filters
and can perform non-sequential tasks such as image classifications on stochastic
streams with no multiplication since FSMs are implemented by look-up tables
only. Inspired by the capability of FSMs in processing binary streams, we then
propose an FSM-based model that can process time series data when performing
temporal tasks such as character-level language modeling. Unlike long short-
term memories (LSTMs) that unroll the network for each input time step and
perform back-propagation on the unrolled network, our FSM-based model requires
to backpropagate gradients only for the current input time step while it is still
capable of learning long-term dependencies. Therefore, our FSM-based model can
learn extremely long-term dependencies as it requires 1/l memory storage during
training compared to LSTMs, where l is the number of time steps. Moreover, our
FSM-based model reduces the power consumption of training on a GPU by 33%
compared to an LSTM model of the same size.

1 Introduction

In the paradigm of deep learning, deep neural networks (DNNs) and recurrent neural networks
(RNNs) deliver state-of-the-art accuracy across various non-sequential and temporal tasks, respec-
tively. However, they require considerable amount of storage and computational resources for their
efficient deployment on different hardware platforms during both training and inference. In recent
years, several techniques have been introduced in literature to address these limitations. To reduce the
computational complexity of deep learning models, replacing expensive multiplications with simple
operations is a common approach as multiplications dominate neural computations. In XNOR net-
works [1–6], weights and activations are constrained to only two possible values of−1 or 1, replacing
multiplications with XNOR operations. Similar to XNOR networks, stochastic computing (SC)-based
networks perform neural computations using bitwise operations by representing continuous values as
bit streams [6–11]. Even though the aforementioned approaches managed to significantly reduce the
complexity of DNNs and RNNs, they fail to completely remove multiplications.

On the other hand, model compression techniques [12–15] and designing compact networks [16–19]
are commonly used to reduce the memory requirement of deep learning models. However, even using
these techniques cannot solve the memory requirement issue imposed by the nature of RNNs that
unroll the network for each time step and store all the intermediate values for backpropagation. For

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

instance, a long short-term memory (LSTM) [20] of size 1000, which is a popular variant of RNNs,
cannot fit into the GeForce GTX 1080 Ti for the step sizes beyond 2000. Moreover, increasing their
step sizes severely decreases their convergence rate. Therefore, the current architecture of DNNs and
RNNs requires rethinking for their efficient deployment on various hardware platforms.

In this paper, we introduce a method to train finite-state machines (FSMs). An FSM is a mathematical
model of computation which is composed of a finite number of states and transitions between those
states. The main operation of an FSM involves traversing through a sequence of states in an orderly
fashion and performing a predetermined action upon each state transition. Since FSMs are designed
to process sequences of data, we use SC, that converts continuous values to bit streams, in order to
perform non-sequential tasks using FSMs. Such a network is referred to as FSM-based network.
The FSM-based network is composed of weighted linear FSMs (WLFSMs) only and is obtained
by stacking multiple layers of them where each WLFSM is connected to every WLFSM in the
previous and the next layer. In WLFSMs, each state is associated with a weight and an output is
generated by sampling from the weight associated to the present state. The FSM-based network
is multiplication-free and is designed to perform the inference computations on bit streams in SC
domain only. To train the FSM-based network, we derive a function from the steady state conditions
of linear FSMs that computes the occurrence probability for each state of an FSM. We mathematically
prove that this function is invertible. The inverse function is then used to derive the derivative of the
FSM’s computational function w.r.t. its input, allowing to train deep FSM-based networks. we then
employ the FSM-based network for two different tasks: synthesis of multi-input complex functions
and image classifications. Unlike conventional methods that use a single WLFSM to synthesize
single-input complex functions [6, 21, 22], we show that our FSM-based network can approximate
multi-input complex functions such as 2D Gabor filters using linear FSMs only. We also adopt our
FSM-based network to perform a classification task on the MNIST dataset [23]. We show that our
FSM-based network significantly outperforms its SC-based counterparts of the same size in terms of
accuracy performance while requiring 1/2 the number of operations.

We also introduce an FSM-based model to perform temporal tasks. This model is inspired by
sequential digital circuits where FSMs are used as a memory (i.e., register) to store the state of the
model [24]. In addition to WLFSM, the FSM-based model also consists of fully-connected networks
which serve as a transition function and an output decoder similar to combinational logic in sequential
circuits. The transition function controls the transition from one state to another whereas the output
function performs the decision-making process based on either the present state in Moore machine,
or both the present state and the present input in Mealy machine. Since the next state is determined
based on the current input and the present state, gradients are backpropagated for the current time
step only. In contrast, two widely-used variations of recurrent neural networks, i.e., LSTMs and gated
recurrent units (GRUs) [25], unroll the network for each time step and backpropagate gradients for
all the time steps on the unrolled network. As a result, our FSM-based model requires 1/l memory
elements to store the intermediate values and reduces the power consumption of training on a GPU
by 33% compared to an LSTM model of the same size, where l denotes the number of time steps.
We show that our FSM-based model can learn extremely long dependencies (e.g., sequence length of
2500) when performing the character-level language modeling (CLLM) task.

2 Preliminaries

In SC’s numerical system, continuous values are represented as the frequency of ones in random bit
streams [26]. In this way, arithmetic computations are performed using simple bit-wise operations
on bit streams. Since a single bit-flip in a stochastic stream results in a marginal change in the
continuous value represented by the bit stream, SC-based implementations can tolerate small errors.
As a result, SC-based systems offer ultra low-cost fault-tolerant hardware implementations for various
applications [27]. Given the continuous value x ∈ [0, 1], its stochastic stream vector x ∈ {0, 1}l of
length l in SC’s unipolar format is generated such that

E[x] = x, (1)
where the expected value of the vector x is denoted by E[x]. In SC’s bipolar format, the bipolar value
xb ∈ [−1, 1] is expressed as

E[xb] = (xb + 1)/2, (2)
where xb ∈ {0, 1}l. Given two independent stochastic streams of a and b, multiplications are
performed using the bit-wise AND and XNOR operations in unipolar and bipolar formats [27],

2

ψ0 ψ1 ψN/2−1 ψN/2 ψN−2 ψN−1

xt = 1

xt = 0

xt = 0

xt = 1

xt = 0

xt = 1

xt = 0

xt = 1

xt = 0

xt = 1

xt = 0

xt = 1

(a)

N -state FSM

Bernoulli Sampler

xt
st

w0 w1 w2
. . .

wN−1

yt

(b)

FSMInput 1

FSMInput 2

FSM
...

...

FSMInput n

FSM

FSM

FSM

FSM

FSM

FSM Output 1

FSM Output 2

FSM

FSM Output m

(c)

Figure 1: (a) A WLFSM with N states where xt denotes the tth entry of the input stream x ∈ {0, 1}l
for t ∈ {1, 2, . . . , l}. (b) An architecture implementing the WLFSM with N states. (c) A general
form of an FSM-based network.

respectively. Additions in SC are performed using the scaled adders that fit the result of additions
into the permitted intervals of [0, 1] in unipolar format and [−1, 1] in bipolar format. The scaled
adder uses a multiplexer to perform an addition between two stochastic streams of a and b. The
multiplexer’s output c is obtained by

c = a · s + b · (1− s), (3)

where “·” denotes the bit-wise AND operation. In this way, the expected value of c is equal to
(E[a] +E[b])/2 when the stochastic stream s represents the continuous value of 0.5 (i.e., E[c] = 0.5).

In SC, complex functions are conventionally implemented using linear FSMs [28]. A linear FSM
consists of a finite of states arranged in a linear form. A general form of a linear FSM with a set of N
states (i.e., {ψ0, ψ1, . . . , ψN−1}) is illustrated in Figure 1(a). In fact, a linear FSM can be viewed
as a saturating counter that cannot increment or decrement beyond its maximum or minimum state
value, respectively. The state transitions in linear FSMs are occurred according to the current entry
of the input stream. If the current entry (i.e., xt ∈ {0, 1} for t ∈ {0, 1, . . . , l}) of the input stream
x ∈ {0, 1}l is 0, the state value is decremented; it is incremented otherwise.

As the first attempt to implement complex functions, Brown and Card in [28] introduced two FSM-
based functions: tanh and exponentiation functions. They showed that if an N -state linear FSM
outputs 1 for the state values greater than or equal to N/2 and outputs 0 for other cases, the expected
value of the FSM’s output approximates tanh(Nx/2) for the input stochastic stream of x representing
the continuous value of x. Similarly, exp(−2Gx) can be approximated when the linear FSM outputs
1 for the state value less than N −G; it generates 0 otherwise. Li et al. introduced WLFSMs whose
states are associated with a weight [22]. In WLFSMs, a binary output is generated by sampling from
the weight associated to the current state as shown in Figure 1(b). To implement a given single-input
function using a WLFSM, Li et al. formulated the computations as a quadratic programming problem
and used numerical methods to obtain the weights. Ardakani et al. recently exploited linear regression
to obtain the FSM’s weights [6]. It was shown that using the regression-based method outperforms
the numerical synthesis method in terms of the mean-squared error (MSE). It is worth mentioning that
the aforementioned methods were used to synthesize a single WLFSM implementing a single-input
complex function.

3 FSM-Based Networks

In this section, we introduce a method that allows to backpropagate gradients in FSM-based networks.
The FSM-based network is organized into layers of WLFSMs where each WLFSM is connected to
every WLFSM in the previous and the next layer with an exception of the first layer. In the first layer
of FSM-based networks, each input is solely connected to a single WLFSM as illustrated in Figure
1(c). The inputs of each WLFSM unit are first added and scaled to fit into the permitted SC’s range
using the scaled adder. The output of the scaled adder is then passed to a WLFSM. In this way, the
core computations of FSM-based networks are additions and weight indexing operations. The weight

3

indexing operations of WLFSMs are implemented using look-up tables (LUTs), bringing a significant
benefit for hardware implementations on LUT-based devices such as GPUs and field-programmable
gate arrays (FPGAs).

3.1 Backpropagation Method

To backpropagate gradients through FSM-based networks, let us first formulate the forward computa-
tions of a WLFSM with N states as

yt = Bernoulli
(
wst + 1

2

)
, (4)

where st ∈ {0, 1, . . . , N −1} and yt ∈ {0, 1} are the state value and the output value that correspond
to the input xt ∈ {0, 1} at time t for t ∈ {1, 2, . . . , l}. The FSM is also associated with a set of
weights (i.e., {w0, w1, . . . , wN−1}). Performing the computations for every single input entry of
the input stochastic vector x ∈ {0, 1}l yields a stochastic output vector y ∈ {0, 1}l representing the
continuous value y ∈ R in bipolar format such that y = 2× E(y)− 1. However, training FSM-based
networks on stochastic streams is l× slower than the conventional full-precision training methods.
Therefore, we train FSM-based networks on the continuous values of stochastic streams while the
inference computations are still performed on stochastic bit streams.

Given the occurrence probability (i.e., the selection frequency) of the state ψi as pψi
for i ∈

{0, 1, . . . , N − 1}, we can also obtain the continuous value of WLFSM’s output (i.e., y ∈ [−1, 1]) by

y =

N−1∑
i=0

pψi × wψi , (5)

when the length of stochastic streams goes to infinity (i.e., l→∞). In the steady state, the probability
of the state transition from ψi−1 to ψi must be equal to the probability of the state transition from ψi
to ψi−1, that is

pψi × (1− px) = pψi−1 × px, (6)
where px is (x+ 1)/2. In other words, the weight associated to ψi is selected with the probability of
px during the forward state transition (i.e., the state transition from ψi−1 to ψi) whereas the weight
associated to ψi−1 is selected with the probability of 1 − px during the backward state transition
(i.e., the state transition from ψi to ψi−1). Therefore, the derivative of the probability of the forward
transition w.r.t. x is 1 while the derivative of the probability of the backward transition w.r.t. x is −1
in the steady state. In other words, we have

∂pψi

∂x
= −

∂pψi−1

∂x
. (7)

Moreover, the occurrence probability of all the states must sum up to unity, i.e.,
N−1∑
i=0

pψi = 1. (8)

Based on Eq. (6) and Eq. (8), the general form of the occurrence probability is expressed by

pψi
=

(
px

1− px

)i
∑N−1
j=0

(
px

1− px

)j . (9)

Given Eq. (5) and Eq. (9), we can learn the WLFSM’s weights to implement a single-input complex
function using linear regression. To employ WLFSMs in a multi-layer network, we also need to find
the derivative of pψi

w.r.t. the input x. To this end, we first compute the inverse function for pψi
,

which is then used to obtain the derivative of pψi
w.r.t. the continuous value of the input stream x. To

find the inverse function for pψi
, we trained a single WLFSM to implement a linear function whose

outputs are its inputs. We observed that the weights of the WLFSM with N states are alternately −1
and 1, that is

x =

N−1∑
i=0

(−1)i+1pψi
, (10)

4

for i ∈ {0, 1, . . . , N − 1}. To prove the validity of Eq. (10), we use the geometric series [29] defined
as follows:

N−1∑
i=0

ri =
1− rN

1− r
, (11)

N−1∑
i=0

(−1)i+1ri =
(−1)NrN − 1

1 + r
, (12)

where r is the common ratio. Using Eq. (11) and Eq. (12), we can rewrite the right side of Eq. (10) as

N−1∑
i=0

(−1)i+1pψi
=

N−1∑
i=0

(−1)i+1

(
px

1− px

)i
∑N−1
j=0

(
px

1− px

)j =
1∑N−1

j=0

(
px

1− px

)j N−1∑
i=0

(−1)i+1

(
px

1− px

)i

=

1− px
1− px

1−
(

px
1− px

)N × (−1)N
(

px
1− px

)N
− 1

1 +
px

1− px

=

1− (−1)N
(

px
1− px

)N
1−

(
px

1− px

)N × (2px − 1)
for evenN

= (2px − 1) = x. (13)

So far, we have provided a mathematical proof for a hypothesis (i.e., Eq. (10)) obtained by synthesiz-
ing a linear function using a WLFSM. By taking a derivative w.r.t. x from Eq. (8) and Eq. (10), we
obtain the following set of differential equations:

∂pψi

∂x
= −

∂pψi−1

∂x
,

N−1∑
i=0

∂pψi

∂x
= 0,

N−1∑
i=0

(−1)i+1 ∂pψi

∂x
= 1, (14)

for i ∈ {0, 1, . . . , N − 1}. By solving the above set of equations, we obtain the derivative of pψi

w.r.t. x as
∂pψi

∂x
=

(−1)i+1

N
, (15)

which is used to backpropagate gradients in FSM-based networks. The details of training algorithm
are provided in Appendix A.

3.2 Applications of FSM-Based Networks

As the first application of FSM-based networks, we synthesize 2D Gabor filters. During training, we
perform the forward computations using Eq. (9) while the backward computations are performed
using Eq. (15). On the other hand, the inference computations of FSM-based networks are performed
on stochastic streams. The imaginary part of a 2D Gabor filter is defined as

gσ,γ,θ,ω(x, y) = exp

(
−x

2 + γ2y2

2σ2

)
sin(2ωx), (16)

where x = x cos θ + y sin θ and y = −x sin θ + y cos θ. The parameters σ, γ, θ and ω respectively
denote the standard deviation of the Gaussian envelope, the spatial aspect ratio, the orientation of the
normal to the parallel stripes of the Gabor filter and the spatial angular frequency of the sinusoidal
factor. Figure 2(a-f) shows the simulation results of FSM-based networks implementing a set of 2D
Gabor filters used in HMAX model [30]. To obtain the simulation results of Figure 2(a-f), we trained
a three-layer FSM-based network of size 4 (i.e., the network configuration of 2− 4− 4− 1) where
each WLFSM contains four states (i.e., N = 4). Such a network contains 10 4-state WLFSMs and
112 weights. We used the MSE as our loss function and Adam as the optimizer with the learning rate
of 0.1. We also used the total of 220 points evenly distributed among inputs for our simulations. It

5

x

−1.00−0.75−0.50−0.250.00 0.25 0.50 0.75 1.00

y

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00

g(
x,
y)

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

(a) ω =
π

2
, θ = 0◦

x

−1.00−0.75−0.50−0.250.00 0.25 0.50 0.75 1.00

y

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00

g(
x,
y)

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

(b) ω =
π

2
, θ = 60◦

x

−1.00−0.75−0.50−0.250.00 0.25 0.50 0.75 1.00

y

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00

g(
x,
y)

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

(c) ω =
π

2
, θ = −60◦

x

−1.00−0.75−0.50−0.250.00 0.25 0.50 0.75 1.00

y

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00

g(
x,
y)

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

(d) ω =
π

2
, θ = −90◦

x

−1.00−0.75−0.50−0.250.00 0.25 0.50 0.75 1.00

y

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00

g(
x,
y)

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

(e) ω =
π

2
, θ = 117◦

x

−1.00−0.75−0.50−0.250.00 0.25 0.50 0.75 1.00

y

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00

g(
x,
y)

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

(f) ω = π, θ = 0◦

2 4 6 8 10
0

100

200

300

400

States (N)

M
SE

(×
10
−
6
)

(g) ω =
π

2
, θ = 0◦, l =∞

21 28 215
102

103

104

105

Length (l)

M
SE

(×
10
−
6
)

(h) ω =
π

2
, θ = 0◦,N = 4

Figure 2: (a-f) The simulation results of 2D Gabor filters with different configurations for σ2 = 0.125
and γ = 1. (g-h) The effect of the stream length and the number of states on the performance of the
2D Gabor filters with the parameters of σ2 = 0.125, γ = 1, ω =

π

2
and θ = 0◦.

is worth mentioning that our three-layer FSM-based network implementing the 2D Gabor filters in
Figure 2(a-f) approximately yields the MSE of 1× 10−4 when performing the computations with
l = 215. To show the effect of stream length and the number of states, we examined our three-layer
FSM-based network implementing the 2D Gabor with the parameters of σ2 = 0.125, γ = 1, ω = π/2
and θ = 0◦ as shown in Figure 2(g-h). The simulation results show that the MSE decreases as the
stream length and the number of state increase. Please see Appendix B for more details on model
architectures and training settings. In [31], an SC-based implementation of 2D Gabor filters was
introduced by approximating the sinusoidal part in Eq. (16) with several tanh functions. In this way,
the sine function can be implemented using linear FSMs as discussed in Section 2. It was shown
that such an approach requires a 256-state FSM for the exponential part and 9 56-state FSMs for the
sinusoidal part with the stream length of 218 to obtain a similar MSE to ours. However, this approach
is limited to the functions that can be approximated by either tanh or exponentiation function only,
whereas our FSM-based network is a general solution to implement any arbitrary target function.

As the second application of FSM-based networks, we perform an image classification task on
the MNIST dataset. The details of model architectures and training settings for the classification
task are provided in Appendix B. Table 1 summarizes the misclassification rate of two FSM-based
networks with different configurations when performing the inference computations on stochastic
streams of length 128 (i.e., l = 128). According to Table 1, our FSM-based networks significantly
outperform the existing SC-based counterparts in terms of the misclassification rate and the required
stream length. Moreover, our FSM-based networks require 1/2 the number of operations than the
conventional SC-based implementations of the same size. The choice of using two states and the
stream length of 128 for our FSM-based networks was made based on Figure 3 that illustrates their
misclassification rate for different number of states and stream lengths. As expected by the nature of
stochastic computing, the misclassification error decreases as the stream length increases. For stream
lengths greater than 64, the error rate roughly stays the same, making the stream length of 128 as the
sweet spot. The simulation results also show that the two-state FSM-based networks perform better
than the ones with larger number of states. This observation suggests that using a smaller number of
states better regularizes the parameters of the network for this particular task.

4 An FSM-Based Model for Temporal Tasks

A state machine consists of three essential elements: a transition function, an output decoder and a
memory unit [24]. The memory unit is used to store the state of the machine. The output decoder
generates a sequence of outputs based on the present state in Moore machines. The transition function

6

2 4 6 8 10
1

1.5

2

2.5

States (N)

E
rr

or
R

at
e

(%
)

784-250-250-10 (l =∞)
784-70-70-10 (l =∞)

21 23 25 27 29
1

1.5

2

2.5

3

Length (l)

E
rr

or
R

at
e

(%
) 784-250-250-10 (N = 2)

784-70-70-10 (N = 2)

Figure 3: The effect of using different number of states and different stream lengths on the misclassi-
fication rate of FSM-based networks on the test set.

determines the next state of the machine based on the present state and the present input. In digital
systems, the memory unit is implemented using registers whereas both the transition function and
the output decoder are realized using combinational logic. Inspired by the state machine used in
sequential circuits, we introduce an FSM-based model that is capable of processing sequences of data.
In our FSM-based model, we implement the transition function and the output decoder using a single
fully-connected layer. We also use an FSM-based layer as the memory unit. In fact, fully-connected
layers and WLFSMs can be viewed as combinational logic and registers, respectively.

4.1 Feed-Forward Computations

In our FSM-based model, we use a Moore machine that performs the decision-making process based
on the present state only. An N -state FSM-based model performs its feed-forward as follows:

z = xtWx + bx, (17)

st = Clamp
(

st−1 + 2× Bernoulli
(

z + 1

2

)
− 1, 0, N − 1

)
, (18)

o = One_Hot_Encoder(st), (19)

q = Sigmoid(αoWo + bo), (20)

y = qWy + by, (21)

where Wx ∈ Rdx×dh , Wo ∈ RNdh×dh and Wy ∈ Rdh×dy are the weights. The parameters of
bx ∈ Rdh , bo ∈ Rdh and by ∈ Rdy denote the biases. The input, containing temporal features at
time t, is denoted by xt. The vectors z ∈ Rdh and y ∈ Rdy are the output of the transition function
and the output decoder, respectively. The vector q ∈ Rdh is the FSM-based layer’s output. Each
entry of the vector st ∈ {0, 1, . . . , N − 1}dh holds the state value of each WLFSM in the FSM-based
layer at the time step t. The Clamp function replaces the values greater than N − 1 and the values
less than 0 with N − 1 and 0, respectively. The One_Hot_Encoder function converts each entry of
the vector st to a one-hot encoded vector of size N and concatenates the one-hot encoded vectors to
form the sparse vector of o ∈ RNdh such that

∑(j+1)×N
i=j×N oi = 1, where oi denotes the ith entry of

the vector o for j ∈ {0, 1, . . . , dh− 1}. The parameter α is a fixed coefficient that prevents the values
of the weight matrix Wo to become very small. We set α to d−1h for our simulations in this paper.

Table 1: Performance of our FSM-based network compared to SC-based implementations on the test
set of the MNIST dataset.

Model Configuration (N , l) (# Op., # Weights) Error Rate (%)
FSM-based Network 784-250-250-10 (2, 128) (0.52M, 0.52M) 1.28
FSM-based Network 784-70-70-10 (2, 128) (0.12M, 0.12M) 1.66

TCAD’18 [10] 784-128-128-10 (NA,∞) (0.24M, 0.12M) 3
TCOMP’18 [11] 784-200-100-10 (NA, 256) (0.36M, 0.18M) 2.05

TVLSI’17 [8] 784-300-600-10 (NA, 256) (0.84M, 0.42M) 2.01

7

4.2 Backpropagation

The challenging step during the training process of the FSM-based model is to derive the derivative of
the vector o w.r.t. z. The gradient of the rest of computations (i.e., the matrix-vector multiplications in
Eq. (17), Eq. (20) and Eq. (21)) can be easily obtained using the chain rule. In the FSM-based layer,
using one-hot encoded vectors (i.e., Eq. (19)) is to ensure that only the weights associated to the
present state of WLFSMs are selected. Each selected weight is a result of either the forward transition
(i.e., the transition from ψi−1 to ψi) when the Bernoulli function outputs 1 or the backward transition
(i.e., the transition from ψi to ψi−1) when the Bernoulli function outputs -1. It is worth mentioning
that ψi denotes the ith state of a WLFSM with N states for i ∈ {0, 1, . . . , N − 1}. Therefore, the
weights associated to the state ψi are selected with the probability of pz during the forward transition
and with the probability of 1− pz during the backward transition, where pz is the probability of the
WLFSM’s input z ∈ [−1, 1] to be 1 (i.e., pz = (1 + z)/2). Given the aforementioned information,
we have

∂st
∂z

=

1 when Bernoulli
(

z + 1

2

)
== 1

−1 otherwise
. (22)

During the backpropagation through the One_Hot_Encoder function, only the gradients associated to
the present state of WLFSMs are backpropagated, that is

ŝtj =

(j+1)×N∑
i=j×N

(oi × ôi), (23)

where ŝtj is the jth entry of the gradient vector ŝt ∈ Rdh at the input of the One_Hot_Encoder
function for j ∈ {0, 1, . . . , dh− 1} and ôi the ith entry of the gradient vector ô ∈ RNdh at the output
of the One_Hot_Encoder function for j ∈ {0, 1, . . . , Ndh− 1}. The details of the training algorithm
are provided in Appendix C.

4.3 Simulation Results

As discussed earlier, states of our FSM-based model are updated based on the present input only.
More precisely, the transition function either increments or decrements the state of each WLFSM
based on the input features at time t. In fact, FSM-based model can be viewed as a time-homogeneous
process where the probability of transitions are independent of t. As a result, given a temporal task
that makes a decision at each time step (e.g., the CLLM task), the backpropagation of the FSM-based
model is performed at the end of each time step. In this way, the storage required to store the
intermediate values during the training stage is significantly reduced by a factor of l×, allowing to
process extremely long data sequences using the FSM-based model. This is in striking contrast to
LSTMs where their network is unrolled for each time step and the backpropagation is applied to the
unrolled network. The sequence length of LSTMs is thus limited to a few hundreds during the training
process since the storage required to store the intermediate values of the unrolled network can easily
go beyond the available memory of today’s GPUs. For instance, Figure 4 shows the memory usage of
the LSTM model versus the FSM-based model and their corresponding test accuracy performance
on the GeForce GTX 1080 Ti for different numbers of time steps when both models have the same
number of weights and use the batch size of 100 for the CLLM on the Penn Treebank dataset [32].
The simulation results show that the memory usage of our FSM-based model is independent of the
number of time steps, making our model suitable for on-chip learning on mobile devices with limited
storage. On the other hand, despite a slight performance improvement of the LSTM model, it cannot
fit into the GPU for the step sizes beyond 2000. In addition to the less memory requirement of
our FSM-based models, they are less computationally intensive as the backward process of each
time step in our FSM-based models obviously requires less number of computations than that of all
the time steps in the LSTM models. The immediate outcome of the less memory and computation
requirements is less power consumption of the GPU. More precisely, training FSM-based models
of size 1000 with batch size of 100 roughly draws 160W for all the time steps ranging from 100 to
2500, whereas training the LSTM models of the same size consumes power ranging from 205W to
245W based on our measurements obtained from the NVIDIA system management interface. As the
final point, increasing the number of times steps severely impacts the convergence rate of the LSTM
model whereas the convergence rate of the FSM-based model remains unchanged (see Figure 4).

8

0 500 1,000 1,500 2,000 2,500

2

4

6

8

10

Time Steps (l)

M
em

or
y

U
sa

ge
(G

B
yt

e)

LSTM
FSM-based model

500 1,000 1,500 2,000 2,500
1.4

1.45

1.5

1.55

1.6

Time Steps (l)

Te
st

A
cc

ur
ac

y
(B

PC
)

LSTM
FSM-based model

0 10 20 30 40 50

2

3

4

Epochs

Te
st

A
cc

ur
ac

y
(B

PC
)

LSTM (l = 100)
LSTM (l = 2000)

FSM-based model (l = 100)
FSM-based model (l = 2000)

Figure 4: The memory usage and the test accuracy performance of an LSTM model with 1000 hidden
states versus a 4-state FSM-based mode of size 1000 (i.e., dh = 1000) for different numbers of time
steps and training epochs when performing the CLLM task on the Penn Treebank corpus.

To demonstrate the capability of our FSM-based model in processing temporal data, we perform
the CLLM task on Penn Treebank [32], War & Peace [33] and Linux kernel [33] corpora where
the performance is measured in terms of bit per character (BPC). The simulation results of our
FSM-based model are summarized in Table 2. According to the experimental results, our FSM-based
model with 4-state FSMs achieves a comparable accuracy in terms of BPC compared to the LSTM
model when both models have the same number of parameters. It is worth mentioning that we set the
number of hidden nodes of all the models to 1000 (i.e., dh = 1000) for the Penn Treebank corpus
and 500 (i.e., dh = 500) for the War & Peace and the Linux Kernel corpora to obtain the simulation
results reported in Table 2. Moreover, our FSM-based network requires 1/7 the number of operations
compared to the LSTM model of the same size as the computational core of the WLFSM’s layer
involves indexing and accumulate operations only. The model architectures and training settings for
all the simulations of the CLLM task are detailed in Appendix D.

5 Conclusion

In this paper, we introduced a method to train WLFSMs. WLFSMs are computation models that
can process sequences of data. To perform non-sequential tasks using WLFSMs, we used SC that
coverts continuous values to bit streams. The networks containing WLFSMs only and performing
their computations on stochastic bit streams are call FSM-based networks. As the first application of
FSM-based networks, we implemented 2D Gabor filters using FSMs only. As the second application
of FSM-based networks, we performed a classification task on the MNIST dataset and we showed
that our FSM-based networks significantly outperforms their conventional SC-based implementations
in terms of both the misclassification error and the number of operations. As the final contribution of
this paper, we introduced an FSM-based model that can perform temporal tasks. We showed that
the required storage for training our FSM-based models is independent of the time steps as opposed
to LSTMs. As a result, our FSM-based model can learn extremely long data dependencies while
reducing the required storage for the intermediate values of training by a factor of l×, the power
consumption of training by 33% and the number of operations of inference by a factor 7×.

Broader Impact

Training deep learning models is both financially and environmentally an expensive process. From the
environmental point view, it is estimated that the carbon footprint required for developing and training
a single deep learning model (e.g., stacked LSTMs) can create 284 tonnes of carbon dioxide, which
is equivalent to the lifetime CO2 emissions of five average cars [34]. The environmental impact of
training deep learning models is calculated by the total power required to train each model multiplied
by the training time spent for its development. On the other hand, the financial impact of training
deep learning models is associated to the cost of hardware (e.g., cloud-based platforms, GPUs) and
electricity. As a result, using computationally efficient algorithms as well as energy efficient hardware

Table 2: Performance of our FSM-based model when performing the CLLM task on the test set.

Model Penn Treebank War & Peace Linux Kernel
Weights # Op. BPC # Weights # Op. BPC # Weights # Op. BPC

4-State FSM-based Model 4.1M 1.1M 1.52 1.1M 0.3M 1.89 1.1M 0.3M 1.93
LSTM (Our implementation) 4.1M 8.1M 1.45 1.1M 2.1M 1.83 1.1M 2.1M 1.85

9

is of paramount importance to reduce both environmental and financial impacts of deep learning [34].
The first part of this paper focuses on complexity reduction of the inference computations where FSM-
based networks are presented. FSM-based networks use SC to perform the inference computations
on bit streams. As discussed in Section 2, SC offers ultra-low power implementations that can
significantly reduce the cost of specialized hardware for the inference computations. As a result,
our FSM-based networks have positive environmental and financial impacts by saving electricity
and CO2 emissions. In the last part of the paper, we introduced FSM-based models that can learn
extremely long data dependencies while significantly reducing the number of operations and the
storage required for training. It is worth mentioning that power consumption of deep learning models
are dominated by their memory accesses to the main memory of hardware platforms such as GPUs.
To show the impact of our FSM-based model during training, we measured its power consumption
when performing the CLLM task on the Penn Treebank corpus. An FSM-based model of size 1000
(dh = 1000) draws 160 W for the step size of 2000 on the GeForce GTX 1080 Ti whereas an LSTM
model of the same size requires 245 W on average. Moreover, our FSM-based model converges faster
than the LSTM model by at least a factor of 2× (see Figure 4), significantly reducing the training
time. Given the power and the training time reductions that our FSM-based model offers, CO2
emissions are reduced by at least a factor of 3× for the given example. Therefore, our FSM-based
models contribute remarkably in reduction of carbon dioxide emissions and have positive impacts on
the climate change.

References
[1] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classification using binary

convolutional neural networks,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham: Springer International Publishing, 2016.

[2] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized Neural Networks,” in
Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, Eds. Curran Associates, Inc., 2016, pp. 4107–4115. [Online]. Available:
http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf

[3] C. Xu, J. Yao, Z. Lin, W. Ou, Y. Cao, Z. Wang, and H. Zha, “Alternating Multi-bit Quantization for
Recurrent Neural Networks,” in International Conference on Learning Representations, 2018. [Online].
Available: https://openreview.net/forum?id=S19dR9x0b

[4] L. Hou, Q. Yao, and J. T. Kwok, “Loss-aware Binarization of Deep Networks,” CoRR, vol. abs/1611.01600,
2016. [Online]. Available: http://arxiv.org/abs/1611.01600

[5] P. Wang, X. Xie, L. Deng, G. Li, D. Wang, and Y. Xie, “HitNet: Hybrid Ternary Recurrent Neural Network,”
in Advances in Neural Information Processing Systems 31. Curran Associates, Inc., 2018, pp. 604–614.
[Online]. Available: http://papers.nips.cc/paper/7341-hitnet-hybrid-ternary-recurrent-neural-network.pdf

[6] A. Ardakani, Z. Ji, A. Ardakani, and W. Gross, “The Synthesis of XNOR Recurrent Neural Networks with
Stochastic Logic,” in Thirty-third Conference on Neural Information Processing Systems, 2019.

[7] Y. Wang, Z. Zhan, J. Li, J. Tang, B. Yuan, L. Zhao, W. Wen, S. Wang, and X. Lin, “Universal approximation
property and equivalence of stochastic computing-based neural networks and binary neural networks,”
vol. 33, 2019.

[8] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross, “VLSI Implementation of Deep
Neural Network Using Integral Stochastic Computing,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 25, Oct 2017.

[9] S. R. Faraji, M. Hassan Najafi, B. Li, D. J. Lilja, and K. Bazargan, “Energy-efficient convolutional neural
networks with deterministic bit-stream processing,” in 2019 Design, Automation Test in Europe Conference
Exhibition (DATE), 2019.

[10] S. Liu, H. Jiang, L. Liu, and J. Han, “Gradient descent using stochastic circuits for efficient training of
learning machines,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, 2018.

[11] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A stochastic computational multi-layer perceptron with
backward propagation,” IEEE Transactions on Computers, vol. 67, 2018.

[12] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for efficient neural
network,” in Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc., 2015, pp. 1135–1143.

[13] S. Han, H. Mao, and W. J. Dally, “Deep Compression: compressing Deep Neural Network with Pruning,
Trained Quantization and Huffman Coding,” CoRR, vol. abs/1510.00149, 2015.

[14] A. Ardakani, C. Condo, and W. J. Gross, “Sparsely-Connected Neural Networks: Towards Efficient VLSI
Implementation of Deep Neural Networks,” Proc. 5th Int. Conf. Learn. Represent. (ICLR), Nov. 2016.

10

http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf
https://openreview.net/forum?id=S19dR9x0b
http://arxiv.org/abs/1611.01600
http://papers.nips.cc/paper/7341-hitnet-hybrid-ternary-recurrent-neural-network.pdf

[15] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for model
compression and acceleration on mobile devices,” in ECCV (7), 2018. [Online]. Available:
https://doi.org/10.1007/978-3-030-01234-2_48

[16] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer, “Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.

[17] A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao, and K. Keutzer, “Squeezenext: Hardware-
aware neural network design,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 2018.

[18] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” 2017, cite
arxiv:1704.04861.

[19] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Mobilenetv2: Inverted residuals and linear
bottlenecks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.

[20] “Long Short-Term Memory,” Neural computation, vol. 9, 1997.

[21] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. Riedel, “The synthesis of complex arithmetic computation
on stochastic bit streams using sequential logic,” in 2012 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), Nov 2012.

[22] P. Li, D. J. Lilja, W. Qian, M. D. Riedel, and K. Bazargan, “Logical computation on stochastic bit streams
with linear finite-state machines,” IEEE Transactions on Computers, vol. 63, 2014.

[23] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.

[24] S. Brown and Z. Vranesic, Fundamentals of Digital Logic with VHDL Design with CD-ROM, 2nd ed.
USA: McGraw-Hill, Inc., 2004.

[25] K. Cho, B. van Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation,”
in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar: Association for Computational Linguistics, Oct. 2014. [Online]. Available:
http://www.aclweb.org/anthology/D14-1179

[26] B. R. Gaines, Stochastic Computing Systems. Boston, MA: Springer US, 1969, pp. 37–172.

[27] A. Alaghi and J. P. Hayes, “Survey of Stochastic Computing,” ACM Trans. Embed. Comput. Syst., vol. 12,
May 2013. [Online]. Available: http://doi.acm.org/10.1145/2465787.2465794

[28] B. D. Brown and H. C. Card, “Stochastic neural computation i: Computational elements,” IEEE Trans.
Comput., vol. 50, Sep. 2001. [Online]. Available: http://dx.doi.org/10.1109/12.954505

[29] G. Arfken, m. Hans-Jürgen Weber, H. Weber, and F. Harris, Mathematical Methods for Physicists.
Elsevier, 2005. [Online]. Available: https://books.google.ca/books?id=f3aCnXWV1CcC

[30] J. Mutch and D. G. Lowe, “Object class recognition and localization using sparse features
with limited receptive fields,” Int. J. Comput. Vision, vol. 80, Oct. 2008. [Online]. Available:
https://doi.org/10.1007/s11263-007-0118-0

[31] N. Onizawa, D. Katagiri, K. Matsumiya, W. J. Gross, and T. Hanyu, “An accuracy/energy-flexible
configurable gabor-filter chip based on stochastic computation with dynamic voltage–frequency–length
scaling,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8, 2018.

[32] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, “Building a Large Annotated Corpus
of English: The Penn Treebank,” Comput. Linguist., vol. 19, Jun. 1993. [Online]. Available:
http://dl.acm.org/citation.cfm?id=972470.972475

[33] A. Karpathy, J. Johnson, and F.-F. Li, “Visualizing and Understanding Recurrent Networks,” CoRR,
vol. abs/1506.02078, 2015. [Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr1506.html#
KarpathyJL15

[34] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations for deep learning in NLP,”
the Annual Meeting of the Association for Computer Linguistics, 2019.

11

https://doi.org/10.1007/978-3-030-01234-2_48
http://www.aclweb.org/anthology/D14-1179
http://doi.acm.org/10.1145/2465787.2465794
http://dx.doi.org/10.1109/12.954505
https://books.google.ca/books?id=f3aCnXWV1CcC
https://doi.org/10.1007/s11263-007-0118-0
http://dl.acm.org/citation.cfm?id=972470.972475
http://dblp.uni-trier.de/db/journals/corr/corr1506.html#KarpathyJL15
http://dblp.uni-trier.de/db/journals/corr/corr1506.html#KarpathyJL15

