
Appendix A

In this section, we detail the training and the inference computations of FSM-based networks. In
FSM-based networks, the training computations are performed using single-precision floating-point
format whereas the inference computations are performed using stochastic bit streams. The forward
computations of training are detailed in Algorithm 1. In the forward computations of training, we
compute the occurrence probability of each state using Eq. (9). Although the occurrence probability
of each state can also be obtained by performing the forward computations of training on stochastic
bit streams, this approach is time consuming and makes the training procedure very slow. To make
sure that the value of weights lies within the bipolar interval of SC during inference, we restrict
weights to get values between −1 and 1 during the forward propagation of training. The backward
computations of training are detailed in Algorithm 2. In the backward computations of training, the
gradients of FSM-based layers are backpropagated using Eq. (10). The loss function C is chosen
based on the target task in FSM-based networks. It is worth mentioning that the number of states (i.e.,
N ) in FSM-based networks can take even natural numbers only (see Eq. (13)).

Algorithm 1: Pseudo code of the forward
computations of training in FSM-based net-
works. L is the number of layers including
the output layer. The training loss is denoted
as C. N denotes the number of states in
FSMs. The Clamp function replaces the val-
ues greater than 1 and less than −1 with 1
and −1, respectively.
Data: An input minibatch of

x0 ∈ [−1,+1]db×dx0 , a target
minibatch of y ∈ [−1,+1]db×dxL ,
the occurrence probability of the state
ψi as pkψi

∈ [0, 1]db×dxk , the
occurrence probability of all the state
as pkψ ∈ [0, 1]db×Ndxk and weights
Wk ∈ [−1,+1]dxk×dxk+1 for
k ∈ {0, . . . , L− 1} and
i ∈ {0, . . . , N − 1}.

1 for k = 0 : L− 1 do
2 for i = 0 : N − 1 do

3 pkψi
=

(
1 + xk

1− xk

)i
∑N−1
j=0

(
1 + xk

1− xk

)j
4 end
5 pkψ = [pkψ0

,pkψ1
, . . . ,pkψN−1

]

6 xk+1 =

(
pkψClamp(Wk,−1, 1)

)
dxk

7 end
8 Compute loss C given xL and y

Algorithm 2: Pseudo code of the backward
computations of training in FSM-based net-
works. L is the number of layers including
output layer. The training loss is denoted as
C. N and η denote the number of states in
FSMs and the learning rate, respectively. The
gradient of parameters w.r.t. C is denoted by
“ˆ” over their corresponding symbols.
Data: Gradients of activations as

x̂k ∈ Rdb×dxk , the occurrence
probability of the state ψi as
p̂kψi
∈ Rdb×dxk , the occurrence

probability of all the state as
p̂kψ ∈ Rdb×Ndxk and weights as

Ŵ
k
∈ Rdxk×dxk+1 for

k ∈ {0, . . . , L− 1} and
i ∈ {0, . . . , N − 1}.

1 Compute x̂L =
∂C
∂xL

given xL and y

2 Ŵ
L−1

= xL−1T x̂L
3 for k = L− 1 : 1 do

4 p̂kψ =
1

dxk

x̂k+1WkT

5 x̂k =
∑N−1
i=0

(−1)i+1

N
p̂kψi

6 Ŵ
k−1

= xk−1T x̂k

7 end
8 for k = 0 : L− 1 do
9 Wk ← Update(Wk, Ŵ

k
, η)

10 end

Unlike the training computations, the inference computations are performed on stochastic bit streams.
Algorithm 3 details the inference computations of FSM-based networks. Since the FSMs’ output
vector okt is one-hot encoded, its multiplication with a binary sample of weights Wk is in fact indexing
operations. More precisely, the main computations of inference involve indexing and add operations.
Therefore, FSM-based networks are multiplication-free. Moreover, no separate nonlinear activation
function is required when using FSM-based networks. In fact, FSMs can be viewed as nonlinear
activation functions that can approximate their required non-linearity during training. It is worth
mentioning that FSMs are conventionally used to approximate nonlinear functions such as tanh and
exponentiation functions in SC domain (see Section 2). Given the aforementioned points, FSM-based

12



networks are well-suited for applications requiring ultra-low cost implementations of the inference
computations.

Algorithm 3: Pseudo code of the inference computations of FSM-based networks. L is the
number of layers including the output layer whereas l denotes the length of stochastic streams. N
denotes the number of states in FSMs. The Clamp function replaces the values greater than N − 1
and less than 0 with N − 1 and 0, respectively. The One_Hot_Encoder function converts each
entry of the vector st to a one-hot encoded vector of size N and concatenates the one-hot encoded
vectors to form the sparse vector of ok ∈ {0, 1}db×Ndxk such that

∑(j+1)×N
i=j×N oki = 1, where oki

denotes the ith entry of the second dimension of the vector ok for j ∈ {0, 1, . . . , dxk − 1}.
Data: An input minibatch of x0 ∈ [−1,+1]db×dx0 , an output minibatch of y ∈ [−1,+1]db×dxL ,

the state vector of skt ∈ {0, . . . , N − 1}db×dxk , FSMs’ output of okt ∈ {0, 1}db×Ndxk ,
activations of xk+1

t ∈ {0, 1}db×dxk and weights of Wk ∈ [−1,+1]dxk×dxk+1 for
k ∈ {0, . . . , L− 1} and i ∈ {0, . . . , N − 1}.

1 s0 =
N

2
2 y = 0
3 for t = 1 : l do

4 x0
t = Bernoulli

(
x0 + 1

2

)
5 for k = 0 : L− 1 do
6 skt = Clamp

(
skt−1 + 2× xkt − 1, 0, N − 1

)
7 okt = One_Hot_Encoder(skt )

8 xk+1
t = Bernoulli


oktBernoulli

(
Wk + 1

2

)
dxk


9 end

10 y = y +
2× xLt − 1

l
11 end

Appendix B

In this section, we provide more details on model architectures and training settings used to synthesize
2D Gabor filters and perform image classification in Section 3.2.

Synthesis of 2D Gabor Filters: To implement 2D Gabor filters, we used a three-layer FSM-based
network of size 4 where each hidden layer contains 4 WLFSMs (i.e., the network configuration of
2− 4− 4− 1). In our FSM-based network, we adopted 4-state WLFSMs. Therefore, the total of 10
4-state WLFSMs with 112 weights are required to form our FSM-based network. Since the main
goal of this task is to approximate 2D Gabor filters, we used the MSE as our loss function C. To train
our FSM-based network, we used the total of 220 points evenly distributed in the 2D plane of inputs
(i.e., x and y in Eq. (16)). We also used Adam as the optimizer, the learning rate (LR) of 0.1 and the
batch size (BS) of 210 during training. Once the FSM-based network was trained, we performed the
inference computations on the same points that were used for training to obtain the simulation results

Table 3: The training and the inference settings used in our simulations of 2D Gabor filters.

Simulation FSM-Based Network Training Parameters Inference Parameters
Configuration # States (N ) Loss (C) Optimizer LR (η) BS # Epochs Stream Length (l)

Figure 2(a-f) 2− 4− 4− 1 4 MSE Adam 0.1 210 1000 215

Figure 2(g) 2− 4− 4− 1 2,4,8,10 MSE Adam 0.1 210 1000 ∞
Figure 2(h) 2− 4− 4− 1 4 MSE Adam 0.1 210 1000 21, 22, . . . , 215

13



Table 4: The training and the inference settings used in our simulations to perform the image
classification task on the MNIST dataset.

Simulation FSM-Based Network Training Parameters Inference Parameters
Configuration # States (N ) Loss (C) Optimizer LR (η) BS # Epochs Dropout Stream Length (l)

Table 1 784-250-250-10 2 Cross-Entropy Adam 0.05 100 500 0.15 128
Table 1 784-70-70-10 2 Cross-Entropy Adam 0.05 100 500 0.15 128

Figure 3 (left subfigure) 784-250-250-10 2, 4, 6, 8, 10 Cross-Entropy Adam 0.05 100 500 0.15 ∞
Figure 3 (left subfigure) 784-70-70-10 2, 4, 6, 8, 10 Cross-Entropy Adam 0.05 100 500 0.15 ∞

Figure 3 (right subfigure) 784-250-250-10 2 Cross-Entropy Adam 0.05 100 500 0.15 21, 22, . . . , 210

Figure 3 (right subfigure) 784-70-70-10 2 Cross-Entropy Adam 0.05 100 500 0.15 21, 22, . . . , 210

in Figure 2. It is worth mentioning that we used the stream length of 215 (i.e., l = 215) to perform the
inference computations of our FSM-based network in Figure 2(a-f). Table 3 summarizes the training
and the inference settings used in our simulations.

Image Classification: As the second application of FSM-based networks, we performed an image
classification task on the MNIST dataset. The MNIST dataset of handwritten digits contains 60,000
gray-scale 28× 28 images as a training set and 10,000 as a test set. For our simulations, we used the
last 10,000 images of the training set as a validation set. To obtain the simulation results reported
in Table 1 and Figure 3, we adopted two three-layer FSM-based networks of size 250 and 70 (i.e.,
the network configurations of 784 − 70 − 70 − 10 and 784 − 250 − 250 − 10). We trained our
FSM-based networks using Adam optimizer, the batch size of 100 and the learning rate of 0.1. We
also applied the dropout rate of 0.15 to the hidden layers (i.e., dropping 15% of hidden layers’ nodes)
of our FSM-based networks during training. Since the main goal of this task is to predict a label
for a given image, we use the cross-entropy loss function (i.e., the cross-entropy function on top
of the softmax output as the loss function). It is worth mentioning that we reported the test error
rates as the results of our FSM-based networks in Table 1 and Figure 3. The detailed training and
inference settings of our FSM-based networks for the image classification task on the MNIST dataset
is provided in Table 4.

Appendix C

In this section, we detail the training method of our FSM-based models. Before training the FSM-
based model for the given number of time steps (i.e., l), we initialize the state values of FSMs with
bN/2c. Unlike the FSM-based networks, the number of states (i.e., N ) in FSM-based models can
take any natural number. The transition function and the output decoder perform fully-connected
computations according to Eq. (17) and Eq. (21), respectively. In the memory unit (i.e., the FSM-
based layer), the state values are either incremented or decremented by stochastically sampling from
inputs to this layer according to Eq. (18). In the training procedure of FSM-based models, the
Bernoulli function with a fixed seed must be used during both the forward propagation (i.e., Eq. (18))
and the backward propagation (i.e., Eq. (22)) of training. The reason of using a fixed seed is to
obtain the same transition direction of the forward propagation during the backward propagation of
training. Algorithm 4 provides the detailed training method of our FSM-based models. As discussed
in Section 4, gradients are backpropagated and parameters are updated at the end of each time step
in FSM-based models (see Algorithm 4). It is worth mentioning that the state values can also be
updated deterministically. More precisely, the Sign function can be used instead of the Bernoulli
function in the deterministic approach. Both the stochastic and the deterministic approaches result in
a same accuracy performance. However, using the Sign function results in a faster training as it is
less computationally intensive than the Bernoulli function.

Appendix D

In this section, we provide details on training settings and model architectures used to obtain the
results reported in Table 2 and Figure 4. We performed the CLLM task using our FSM-based model
on three different corpora: Penn Treebank (PT), War & Peace (WP), and Linux Kernel (LK).

Penn Treebank: We split the Penn Treebank corpus into 5017k, 393k and 442k training, validation
and test sets, respectively. The Penn Treebank corpus has the character size of 50. For this task, we
used an FSM-based model of size 1000 (i.e., dh = 1000). The cross entropy loss was minimized on
minibatches of size 100 while using ADAM learning rule. We used a learning rate of 0.05.

14



Algorithm 4: Pseudo code of the training algorithm for FSM-based models. l is the number of
time steps. The training loss is denoted as C. N and η denote the number of states in FSMs
and the learning rate, respectively. The gradient of parameters w.r.t. C is denoted by “ˆ” over
their corresponding symbols. The Clamp function replaces the values greater than N − 1/1 and
less than 0/−1 with N − 1/1 and 0/−1, respectively. σ̂ denotes the derivative of the Sigmoid
function. The One_Hot_Encoder function converts each entry of the vector st to a one-hot
encoded vector of size N and concatenates the one-hot encoded vectors to form the sparse vector
of o ∈ {0, 1}db×Ndh such that

∑(j+1)×N
i=j×N oi = 1, where oi denotes the ith entry of the second

dimension of the vector o for j ∈ {0, 1, . . . , dh− 1}. The parameter α is set to d−1h . “×” denotes
element-wise multiplications. Note that dx is equal to dy in the CLLM task.

Data: An input minibatch of X ∈ Ndb×dx×l, an input minibatch of xt ∈ Ndb×dx at the time step t, a target
minibatch of Y ∈ Ndb×dx×l, a target minibatch of yt ∈ Ndb×dx at the time step t, the transition
function’s output z ∈ [−1, 1]db×dh , the transition function’s weights Wx ∈ Rdx×dh , the transition
function’s biases bx ∈ Rdh , the state vector of st ∈ {0, . . . , N − 1}db×dh , the FSMs’ output of
o ∈ {0, 1}db×Ndh , the FSM-based layer’s output of q ∈ Rdb×dh , the FSM-based layer’s weights
Wo ∈ RNdh×dh , the FSM-based layer’s biases bo ∈ Rdh , the output decoder’s output y ∈ Rdb×dy ,
the output decoder’s weights Wy ∈ Rdh×dy , the output decoder’s biases by ∈ Rdy , the gradient of
the transition function’s output ẑ ∈ Rdb×dh , the gradient of the transition function’s weights
Ŵx ∈ Rdx×dh , the gradient of the transition function’s biases b̂x ∈ Rdh , the gradient of the state
vector ŝt ∈ {0, . . . , N − 1}db×dh , the gradient of the FSMs’ output ô ∈ {0, 1}db×Ndh , the gradient
of the FSM-based layer’s output q̂ ∈ Rdb×dh , the gradient of the FSM-based layer’s weights
Ŵo ∈ RNdh×dh , the gradient of the FSM-based layer’s biases b̂o ∈ Rdh , the gradient of the output
decoder’s output ŷ ∈ Rdb×dy , the gradient of the output decoder’s weights Ŵy ∈ Rdh×dy and the
gradient of the output decoder’s biases b̂y ∈ Rdy for t ∈ {1, . . . , l}.

1 s0 = bN
2
c

2 for t = 1 : l do
3 xt = X[:, :, t]

4 y = Y[:, :, t]
5 z = Clamp (xtWx + bx,−1, 1)

6 st = Clamp
(

st−1 + 2× Bernoulli
(

z + 1

2

)
− 1, 0, N − 1

)
7 o = One_Hot_Encoder(st)
8 q = Sigmoid(αoWo + bo)
9 y = qWy + by

10 h = Softmax(y)
11 C = Cross_Entropy(h, yt)

12 ŷ =
∂C
∂y

= yt − h

13 q̂ = ŷWT
y

14 Ŵy = qT ŷ
15 ô = α(σ̂(αoWo + bo)× q̂)WT

o

16 Ŵo = αoT (σ̂(αoWo + bo)× q̂)
17 ŝtj =

∑(j+1)×N
i=j×N (oi × ôi)

18 ẑ = ŝt ×
(
2× Bernoulli

(
z + 1

2

)
− 1

)
19 Ŵx = xT

t ẑ
20 Wy ← Update(Wy, Ŵy, η)
21 by ← Update(by, ŷ, η)
22 Wo ← Update(Wo, Ŵo, η)
23 bo ← Update(bo, σ̂(αoWo + bo)× q̂, η)
24 Wx ← Update(Wx, Ŵx, η)
25 bx ← Update(bx, ẑ, η)
26 end

15



Table 5: The training settings used in our simulations to perform the CLLM task on the Penn Treebank,
War & Peace and Linux Kernel datasets.

Simulation/Dataset Network Configuration Training Parameters
Model # States (N ) Size (dh) Loss (C) Optimizer LR (η) BS # Epochs Dropout Time Step (l)

Figure 4 (left subfigure)/PT FSM-based 4 1000 Cross-Entropy Adam 0.05 100 500 0.15 100− 2500
Figure 4 (left subfigure)/PT LSTM NA 1000 Cross-Entropy Adam 0.001 100 500 0 100− 2000

Figure 4 (middle subfigure)/PT FSM-based 4 1000 Cross-Entropy Adam 0.05 100 500 0.15 100− 2500
Figure 4 (middle subfigure)/PT LSTM NA 1000 Cross-Entropy Adam 0.001 100 500 0 100− 2000
Figure 4 (right subfigure)/PT FSM-based 4 1000 Cross-Entropy Adam 0.05 100 29 0.15 100
Figure 4 (right subfigure)/PT FSM-based 4 1000 Cross-Entropy Adam 0.05 100 25 0.15 2000
Figure 4 (right subfigure)/PT LSTM NA 1000 Cross-Entropy Adam 0.001 100 21 0 100
Figure 4 (right subfigure)/PT LSTM NA 1000 Cross-Entropy Adam 0.001 100 50 0 2000

Table 2/PT FSM-based 4 1000 Cross-Entropy Adam 0.05 100 500 0.15 2500
Table 2/PT LSTM NA 1000 Cross-Entropy Adam 0.001 100 500 0 100
Table 2/WP FSM-based 4 500 Cross-Entropy Adam 0.05 100 500 0.15 2000
Table 2/WP LSTM NA 500 Cross-Entropy Adam 0.001 100 500 0 100
Table 2/LK FSM-based 4 500 Cross-Entropy Adam 0.05 100 500 0.15 2000
Table 2/LK LSTM NA 500 Cross-Entropy Adam 0.001 100 500 0 100

Linux Kernel and War & Peace: Linux Kernel and Leo Tolstoy’s War & Peace corpora consist of
6,206,996 and 3,258,246 characters and have the character size of 101 and 87, respectively. We split
Linux Kernel corpus into 4566k, 621k and 621k and War & Peace corpus into 2932k, 163k and 163k
training, validation and test sets, respectively. We used an FSM-based model of size 500. ADAM
learning rule was used as the update rule with the learning rate of 0.05. The cross entropy loss was
minimized on minibatches of size 100 for the CLLM task on these two datasets.

To train our FSM-based models, we followed the training method detailed in Algorithm 4. Table 5
shows the training settings used to report the results in Table 2 and Figure 4. It is worth mentioning
that we applied the dropout rate of 0.15 to the last layer (i.e., dropping 15% of output decoder’s
nodes) of our FSM-based networks during training. Moreover, we used the number of time steps (i.e.,
the sequence length of l) that results in the best BPC for both the LSTM and the FSM-based models
in Table 2.

16


