
A Additional related works

There is a rich literature on learning halfspaces in the presence of noise. For instance, [14, 33] studied
noise-tolerant learning of halfspaces under the random classification noise model, where each label is
flipped independently with probability exactly ⌘. Their algorithm proceeds as optimizing a sequence
of modified Perceptron updates, and the analysis implies that the desired halfspace can be learned in
polynomial time with respect to arbitrary unlabeled distribution. [49] considered learning halfspaces
with malicious noise, where with some probability the learner is given an adversarially-generated
pair of feature vector and label. Notably, their work showed that under such noise model, it is still
possible to learn a good halfspace for arbitrary data distribution in polynomial time, provided that the
noise rate is ⌦̃( ✏d ). In a series of recent work, this bound has been significantly improved by making
additional assumptions on the data distribution and more sophisticated algorithmic designs [51, 56, 5].
The bounded noise, also known as Massart noise [59], was initially studied in [74, 75, 65]. Very
recently, [29] presented an efficient learning algorithm that has distribution-free guarantee (albeit
with vanishing excess error guarantees only in the random classification noise setting), whereas most
of the prior works are built upon distributional assumptions [3, 4, 91, 86, 88]. It is worth noting that
other types of noise, such as malicious noise [80] and adversarial noise [50], have also been widely
studied [45, 51, 46, 24, 5, 30, 73].

There is a large body of theoretical works on active learning for general hypothesis classes; see e.g. [25,
6, 41] and the references therein. Despite their generality, many of the algorithms developed are
not guaranteed to be computationally efficient. For efficient noise-tolerant active halfspace learning,
aside from the aforementioned works in the main text, we also remark that the work of [8] provides
the first computationally efficient algorithm for halfspace learning under log-concave distribution
that tolerates random classification noise, with a label complexity of poly

⇣
d, ln 1

✏ ,
1

1�2⌘

⌘
. Prior to

our work, it is not known how to obtain an attribute-efficient active learning algorithm with label
complexity poly

⇣
s, ln d, ln 1

✏ ,
1

1�2⌘

⌘
, even under this weaker random classification noise setting.

Parallel to the development of attribute-efficient learning in learning theory, there have been a
large body of theoretical works developed in compressed sensing [32]. In this context, the goal is
twofold: 1) design an efficient data acquisition scheme to significantly compress a high-dimensional
but effectively sparse signal; and 2) implement an estimation algorithm that is capable of recon-
structing the underlying signal from the measurements. These two phases are bind together in
view of the need of low sample complexity (i.e. number of measurements), and a large volume of
theoretical results have been established to meet the goal. For instance, many of the early works
utilize linear measurements for the sake of its computational efficiency, and focus on the development
of effective recovery procedures [20, 77, 17, 84, 78, 15, 60, 37, 90, 71, 72]. In its 1-bit variant [16],
the linear measurements are further quantized to a binary code, and it bears the potential of savings
of physical storage as long as accurate estimation in the low-bit setting does not require significantly
more measurements. In order to account for the new data acquisition scheme, a large body of new
estimation paradigms are developed in recent years. For instance, [44] showed that exact recovery can
be achieved by seeking a global optimum of a sparsity-constrained nonconvex program. [63, 64, 89]
demonstrated that `1-norm based convex programs inherently behave as well as the nonconvex
counterpart in terms of estimation error. Generally speaking, the difference between 1-bit compressed
sensing and learning of halfspaces lies in the fact that in compress sensing one is able to control how
the data are collected. Interestingly, [53, 12] showed that if we manually inject Gaussian noise before
quantization and pass the variance parameter to the recovery algorithm, it is possible to estimate the
magnitude of the signal.

The idea of active learning is also broadly explored in the compressed sensing community under
the name of adaptive sensing [43, 58]. Though [2] showed that adaptive sensing strategy does not
lead to significant improvement on sample complexity, a lot of recent works illustrated that it does
when there are additional constraints on the sensing matrix [28], or when 1-bit quantization is applied
during data acquisition [12]. As a matter of fact, [12] showed that by adaptively generating the 1-bit
measurements, it is possible to design an efficient recovery algorithm that has exponential decay in
reconstruction error which essentially translates into O (s log(d) log(1/✏)) sample complexity.

Noisy models are also studied in compressed sensing. For instance, [61, 21, 76] considered the
situation where a fraction of the data are corrupted by outliers. [64] studied robustness of convex
programs when the 1-bit measurements are either corrupted by random noise or adversarial noise.
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B Proof of Theorem 2

In this section we present a detailed proof of Theorem 2, our main result.

Proof of Theorem 2. We define event E0 as the event that the guarantees of Theorem 3 holds with
failure probability �

0 = �
2 . In addition, we define event Ek as the event that the guarantees of

Theorem 4 holds for input ṽ = ṽk�1, angle upper bound ✓ = ⇡
32·2k�1 and output ṽ0 = ṽk with failure

probability �
0 = �

2k(k+1) . It can be easily seen that P(E0) � 1� �
2 , and P(Ek) � 1� �

2k(k+1) for
all k � 1.

Consider event E =
Tk0

k=0 Ek. Using union bound, we have that P(E) � 1� �
2 �

Pk0

k=1
�

2k(k+1) �
1� �. On event E, we now show inductively that ✓(ṽk, u)  ⇡

32·2k for all k 2 {0, 1, . . . , k0}.

Base case. By the definition of E0 and the fact that E ⇢ E0, we have ✓(ṽ0, u)  ⇡
32 .

Inductive case. Now suppose that on event E, we have ✓(ṽk�1, u)  ⇡
32·2k�1 . Now by the

definition of event Ek, we have that after Algorithm 2, we obtain a unit vector vk such that ✓(ṽk, u) 
⇡

32·2k .

This completes the induction. Specifically, on event E, after the last phase k0 = dlog 1
c1✏

e, we
obtain a vector ũ = ṽk0 , such that ✓(ũ, u)  ⇡

32·2k0
 c1✏. Now applying Lemma 1, we have that

P(sign (ũ · x) 6= sign (u · x))  1
c1
✓(ũ, u)  ✏. By triangle inequality, we conclude that

err(hũ, D)� err(hu, D)  P(sign (ũ · x) 6= sign (u · x))  ✏.

We now upper bound the label complexity of Algorithm 1. The initialization phase uses n0 =

O

✓
s

(1�2⌘)4

⇣
ln d

�(1�2⌘)

⌘3
◆

labeled queries. Meanwhile, for every k 2 [k0], Algorithm 2 at phase k

uses nk = O

✓
s

(1�2⌘)2

⇣
ln d·k22k

�(1�2⌘)

⌘3
◆

label queries. Therefore, the total number of label queries

by Algorithm 1 is:

n = n0 +
k0X

k=1

nk = O

 
s

(1� 2⌘)2

✓
1

(1� 2⌘)2
ln

d

�(1� 2⌘)

◆3

+ ln
1

✏
·
✓
ln

d

�✏(1� 2⌘)

◆3
!

= O

 
s

(1� 2⌘)4

✓
ln

d

�✏(1� 2⌘)

◆4
!

= Õ

✓
s

(1� 2⌘)4
polylog

✓
d,

1

✏
,
1

�

◆◆
.

The proof is complete.

C Proof of Theorem 5

Proof. We first observe that if REFINE is run for T iterations with bandwidth b, then with high
probability, it will encounter O

�
T
b

�
unlabeled examples. This is because, O

�
1
b

�
calls of EX suffices

to obtain an example that lies in Bŵt,b, since it has probability mass ⌦(b) (see Lemma 38).

For the initialization step (line 2), Algorithm 1 first draws O
⇣

s ln d
(1�2⌘)2

⌘
unlabeled examples from DX ;

then it runs REFINE with Õ

⇣
s

(1�2⌘)4 · polylog (d)
⌘

iterations with bandwidth b = ⇥
�
(1� 2⌘)2

�
.

Therefore, this step queries Õ
⇣

s
(1�2⌘)6 · polylog (d)

⌘
times to EX.

Now we discuss the number of unlabeled examples in phases 1 through k0. For the k-th phase,
Algorithm 1 runs REFINE with Õ

⇣
s

(1�2⌘)2 · polylog (d)
⌘

iterations with bandwidth b = ⇥((1 �

2⌘)2�k), which encounters Õ

⇣
s·2k

(1�2⌘)3 · polylog (d)
⌘

examples. Therefore, summing over k =
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1, 2, . . . , k0, the total number of unlabeled examples queried to EX is Õ
⇣

s·2k0

(1�2⌘)3 · polylog (d)
⌘
=

Õ

⇣
s

(1�2⌘)3✏ · polylog (d)
⌘

.

Summing over the two parts, the total number of queries to the unlabeled example oracle EX is
Õ

⇣
s

(1�2⌘)3 ·
⇣

1
(1�2⌘)3 + 1

✏

⌘
· polylog (d)

⌘
.

D Analysis of local convergence: Proof of Theorem 4

Before delving into the proof of Theorem 4, we first introduce an useful definition. Recall that ŵ is
the `2-normalized vector of w. Define function

fu,b(w)
def
= E(x,y)⇠Dŵ,b

⇥
|u · x| · 1(sign (w · x) 6= sign (u · x))

⇤
. (1)

Note that for any l > 0 and w in Rd, fu,b(w) = fu,b(lw); specifically, fu,b(w) = fu,b(ŵ). We will
discuss the structure of fu,b in detail in Appendix F; roughly speaking, fu,b(w) provides a “distance
measure” between w and u.

The lemma below motivates the above definition of fu,b.
Lemma 6. Given a vector wt and an example (xt, yt) sampled randomly from Dŵt,b, define ŷt =
sign (wt · xt). Define the gradient vector induced by this example as gt = (� 1

2yt + ( 12 � ⌘)ŷt)xt.
Then,

Ext,yt⇠Dŵt,b
[hu,�gti] � (1� 2⌘)fu,b(wt). (2)

Proof. Throughout this proof, we will abbreviate Ext,yt⇠Dŵt,b
as E. By the definition of gt, we have

E [hu,�gti] = E

1

2
yt hu, xti �

✓
1

2
� ⌘

◆
ŷt hu, xti

�
.

We first look at E
⇥
1
2yt hu, xti

⇤
. Observe that

E

1

2
yt hu, xti

�
= E


1

2
E[yt | xt] hu, xti

�
� E


1

2
|hu, xti| (1� 2⌘)

�

where the equality uses the tower property of conditional expectation, and the inequality uses Lemma 7
below.

Therefore, by linearity of expectation, along with the above inequality, we have:

E

1

2
yt hu, xti �

✓
1

2
� ⌘

◆
ŷt hu, xti

�

�
✓
1

2
� ⌘

◆
E
⇥
|hu, xti| (1� sign (hu, xti) sign (hw, xti))

⇤

= (1� 2⌘)E
⇥
|hu, xi|1(sign (hw, xi) 6= sign (hu, xi))

⇤
= (1� 2⌘)fu,b(w).

The lemma follows.

Lemma 7. Fix any x 2 X . Suppose y is drawn from DY |X=x that satisfies the ⌘-bounded noise
assumption with respect to u. Then,

hu, xiE [y | x] � (1� 2⌘) |hu, xi| .

Proof. We do a case analysis. If hu, xi � 0, by Assumption 1, P(Y = 1|X = x) � 1� ⌘, making
E [y | x] = P(Y = 1|X = x) � P(Y = �1|X = x) � (1 � 2⌘); symmetrically, if hu, xi < 0,
E [y | x]  �(1� 2⌘). In summary, hu, xiE [y | x] � (1� 2⌘) |hu, xi|.

We have the following general lemma that provides a characterization of the iterates {wt}Tt=1 produced
by Algorithm 2.
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Lemma 8. There exists an absolute constant c > 0 such that the following holds. Suppose we are
given a vector w1 in Rd, convex set K, and scalars r1, r2 > 0 such that:

1. kw1 � uk1  r1;

2. Both w1 and u are in K;

3. For all w in K, kw � uk2  r2; in addition, for all w in K, kwk2  1.

If Algorithm 2 is run with initialization w1, step size ↵ > 0, bandwidth b 2 [0, ⇡
72 ], constraint set K,

regularizer R(w) = �w1(w), number of iterations T , then, with probability 1� �,

1

T

TX

t=1

fu,b(wt)  c ·

0

@↵
�
ln Td

�b

�2

(1� 2⌘)
+

r
2
1 ln d

↵(1� 2⌘)T
+

b

(1� 2⌘)
+

(b+ r2)

(1� 2⌘)

0

@

s
ln 1

�

T
+

ln 1
�

T

1

A

1

A .

The proof of this lemma is rather technical; we defer it to the end of this section.

We now give an application of this lemma towards our proof of Theorem 4.
Corollary 9. Suppose we are given an s-sparse unit vector v such that kv � uk2  2✓, where
✓  ⇡

32 . If Algorithm 2 is run with initializer v, bandwidth b = ⇥ ((1� 2⌘)✓), step size ↵ =

⇥
⇣
(1� 2⌘)✓/ ln2( d

�0✓(1�2⌘) )
⌘

, constraint set K = {w : kwk2  1, kw � vk2  2✓}, regularizer

R(w) = �v(w), number of iterations T = O

⇣
s

(1�2⌘)2 (ln
d

�0✓(1�2⌘) )
3
⌘

, then, with probability 1��
0,

1

T

TX

t=1

fu,b(wt) 
✓

50 · 34 · 233 .

Proof. We first check that the premises of Lemma 8 are satisfied with w1 = v, r1 =
p
8s✓ and

r2 = 4✓. To see this, observe that:

1. As both v and u are s-sparse, their difference v � u is 2s-sparse. Therefore, kv � uk1 p
2skv � uk2 

p
8s✓;

2. Both u and w are unit vectors, and have `2 distance at most 2✓ to v, therefore they are both
in K;

3. For all w in K, kw � uk2  kw � vk+ kv � uk2  4✓. Moreover, every w in K satisfies
the constraint kwk2  1 by the definition of K.

Therefore, applying Lemma 8 with our choice of r1, r2, ↵, b, and T , we have that, the following
four terms: ↵(ln Td

�0b )
2
/(1�2⌘), r21 ln d/↵(1�2⌘)T , b/(1�2⌘), (b+r2)/(1�2⌘)

⇣p
ln 1

�0/T + ln 1
�0/T

⌘
, are all at

most ✓
c·50·34·235 . Consequently,

1

T

TX

t=1

fu,b(wt)  c · 4 · ✓

c · 50 · 34 · 235  ✓

50 · 34 · 233 .

The proof is complete.

We also need the following useful claim.

Claim 10. If ✓(w, u)  ⇡
2 , and fu,b(w)  ✓

5·34·221 , then ✓(w, u)  ✓
5 .

Proof. We conduct a case analysis:

1. If ✓(w, u)  36b, we are done, because from our choice of b, 36b  ✓
5 .
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2. Otherwise, ✓(w, u) 2 [36b, ⇡
2 ]. In this case, by item 1 of Lemma 22 in Appendix F, we have

that fu,b(w) � ✓(w,u)
34·221 . In conjunction with the premise that fu,b(w)  ✓

5·34·221 , we get that
✓(w, u)  ✓

5 .

In summary, in both cases, we have ✓(w, u)  ✓
5 .

Proof of Theorem 4. First, given a unit vector ṽ such that ✓(ṽ, u)  ✓, we have that kṽ � uk2 =

2 sin ✓(ṽ,u)
2  ✓. As u is s-sparse, and v = Hs(ṽ), by Lemma 26, we have that kv � uk  2✓.

Next, by the definition of K, for all t, kwt � uk  r2 = 4✓. By Lemma 28, this implies that
✓(wt, u)  ⇡ · 4✓  16✓. Moreover, by the fact that ✓  ⇡

32 , for all t, ✓(wt, u)  ⇡
2 .

Now, applying Corollary 9, we have that with probability 1��
0, the {wt}Tt=1 generated by Algorithm 2

are such that
1

T

TX

t=1

fu,b(wt) 
✓

50 · 34 · 233 .

Define A =
�
t 2 [T ] : fu,b(wt) � ✓

5·34·221

 
. As 1

T

PT
t=1 fu,b(wt) � ✓

5·34·221 ·
1
T

PT
t=1 1(t 2 A) =

✓
5·34·221

|A|

T , we have |A|

T  5·34·221

50·34·233 = 1
10·212 . Therefore, |Ā|T � 1 � 1

10·212 , and for all t 2 Ā we
have fu,b(wt)  ✓

50·34·221 ; by Claim 10 above, we have ✓(wt, u)  ✓
5 for these t.

Using the fact that for all t in A, ✓(wt, u)  16✓, and the fact that for all t in Ā, ✓(wt, u)  ✓
5 , we

have:
1

T

TX

t=1

cos ✓(wt, u) � cos
✓

5
·
✓
1� 1

20 · 212

◆
+ cos(16✓) · 1

20 · 212

�
✓
1� ✓

2

40

◆✓
1� 1

20 · 212

◆
+

✓
1� (16✓)2

2

◆
1

20 · 212

� 1� ✓
2

40
� ✓

2

40
= 1� ✓

2

20
� cos

✓

2
.

where the second inequality uses item 2 of Lemma 23, the third inequality is by algebra, and the last
inequality uses item 1 of Lemma 23.

The above inequality, in combination with Lemma 24 yields the following guarantee for w̃:

cos ✓(w̃, u) � 1

T

TX

t=1

cos ✓(wt, u) � cos
✓

2
.

This implies that ✓(ṽ0, u)  ✓
2 since we set ṽ0 = w̃.

D.1 Proof of Lemma 8

Throughout this section, we define a filtration {Ft}Tt=0 as follows: F0 = �(w1),
Ft = �(w1, x1, y1, . . . , wt, xt, yt, wt+1),

for all t 2 [T ]. As a shorthand, we write Et�1[·] for E [· | Ft�1].

Proof of Lemma 8. From standard analysis of online mirror descent [see e.g. 62, Theorem 6.8] with
step size ↵, constraint set K and regularizer �(w) = 1

2(p�1)kw � w1k2p, we have that for every u
0 in

K,

↵ ·
"

TX

t=1

hwt, gti+
TX

t=1

h�u
0
, gti

#
 D�(u

0
, w1)�D�(u,wT+1) +

TX

t=1

↵
2kgtk2q.

Let u0 = u in the above inequality, drop the negative term on the right hand side, and observe that
kgtkq  2kgtk1  2kxtk1 (see Lemma 25), we have

↵ ·
"

TX

t=1

hwt, gti+
TX

t=1

h�u, gti
#
 D�(u,w1) +

TX

t=1

4↵2kxtk21.
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Moving the first term to the right hand side, and divide both sides by ↵, we get:

TX

t=1

h�u, gti 
D�(u,w1)

↵
+

TX

t=1

h�wt, gti+ 4↵
TX

t=1

kxtk21. (3)

Let us look at each of the terms closely. First, we can easily upper bound D�(u,w1) by assumption:

D�(u,w1) =
ku� w1k2p
2(p� 1)

 ln(8d)� 1

2
r
2
1  r

2
1 ln(8d)

2
. (4)

where the first inequality uses the observation that as p � 1, ku� w1k2p  ku� w1k21  r
2
1 .

Let Wt
def
= h�wt, gti. First, example xt is sampled from region Bŵt,b, |hŵt, xti|  b. Moreover,

by the assumption that K ⇢ {w : kwk2  1}, we have kwtk2  1, implying that |hwt, xti|  b.
Therefore, |Wt| =

�� 1
2yt � ( 12 � ⌘)ŷt

�� |hwt, xti|  b. Consequently,
TX

t=1

Wt  T · b. (5)

Define Ut
def
= h�u, gti. By Lemma 6, Et�1Ut � (1 � 2⌘)fu,b(wt). Moreover, Lemma 11 implies

that there is a numerical constant c1 > 0, such that with probability 1� �/3:
���
PT

t=1 Ut � Et�1Ut

��� 

c1(b+ r2)
⇣q

T ln 1
� + ln 1

�

⌘
. Consequently,

TX

t=1

(1� 2⌘)fu,b(wt) 
TX

t=1

Et�1Ut 
TX

t=1

Ut + c1(b+ r2)

 r
T ln

1

�
+ ln

1

�

!
. (6)

Moreover, by Lemma 13, there exists a constant c2 > 0, such that with probability 1� �/3,
TX

t=1

kxtk21  c2T ·
✓
ln

Td

�b

◆2

. (7)

Combining Equations (3), (4), (5), (6) and (7), along with union bound, we get that there exists a
constant c3 > 0, such that with probability 1� �:

(1� 2⌘)
TX

t=1

fu,b(wt)  c3

 
↵T

✓
ln

Td

�b

◆2

+
r
2
1 ln d

↵
+ bT + (b+ r2)

 r
T ln

1

�
+ ln

1

�

!!
.

The theorem follows by dividing both sides by (1� 2⌘)T .

Lemma 11. Recall that Ut = hu,�gti. There is a numerical constant c such that the following
holds. We have that with probability 1� �,

�����

TX

t=1

(Ut � Et�1Ut)

�����  c(b+ r2)

 r
T ln

1

�
+ ln

1

�

!
. (8)

Proof. By item 3 of the premise of Lemma 8, along with the fact that wt 2 K, ku � wtk  r2,
we hence have ku � ŵtk  2r2 using Lemma 27. Therefore, Lemma 12 implies the existence of
constants � and �

0 such that for all a � 0,

Pxt⇠Dŵt,b
(|u · xt| � a)  � exp

✓
��

0
a

r2 + b

◆
.

Let Mt = ( 12yt � ( 12 � ⌘)ŷt). Observe that |Mt|  1. Therefore, Ut = hu, gti = Mtu · xt has the
exact same tail probability bound, i.e.

Pxt⇠Dŵt,b
(|Ut| � a)  � exp

✓
��

0
a

r2 + b

◆
.

The lemma now follows from Lemma 36 in Appendix H with the setting of Zt = Ut.

20



Lemma 11 relies on the following useful lemma from [5].
Lemma 12. There exist numerical constants � and �

0 such that for any isotropic log-concave
distribution DX over Rd, any unit vector ŵ in Rd and u 2 Rd with kuk2  1, ku � ŵk  r, any
scalar b in [0, 1], the following holds for all a � 0:

Px⇠Dŵ,b (|u · x| � a)  � exp

✓
��

0
a

r + b

◆
.

Proof. Using Lemma 3.3 of [5] with C = 1, we have that there exists numerical constants c0, c00 > 0,
such that for any K � 4,

Px⇠Dw,b

⇣
|u · x| � K

p
r2 + b2

⌘
 c exp

 
�c

0

0K

r
1 +

b2

r2

!
 c0 exp (�c

0

0K) .

Therefore, for every a � 4(r + b) � 4
p
r2 + b2,

Px⇠Dw,b (|u · x| � a)  c0 exp

✓
�c

0

0
ap

r2 + b2

◆
 c0 exp

✓
�c

0

0
a

(r + b)

◆
.

In addition, for every a < 4(r + b), Px⇠Dw,b (|u · x| � a)  1 trivially holds, in which case,

Px⇠Dw,b (|u · x| � a)  1  exp (4c00) exp

✓
�c

0

0
a

(r + b)

◆
.

Therefore, we can find new numerical constants � = max(c0, exp (4c00)) and �
0 = c

0

0, such that

Px⇠Dw,b (|u · x| � a)  � exp

✓
��

0
a

r + b

◆

holds.

The lemma below provides a coarse bound on the last term in the regret guarantee (3).

Lemma 13. With probability 1� �,
PT

t=1 kxtk21  T ·
�
17 + ln Td

�b

�2
.

Proof. Given x 2 Rd and j 2 [d], let x(j) be the j-th coordinate of x. As DX is isotropic log-
concave, for x ⇠ DX , from Lemma 39 we have that for all coordinates j in {1, . . . , d} and every
a > 0,

Px⇠DX

⇣���x(j)
��� � a

⌘
 exp(�a+ 1). (9)

Therefore, using union bound, we have

Px⇠DX (kxk1 � a)  d exp(�a+ 1).

In addition, as b 2 [0, ⇡
72 ] ⇢ [0, 1

9 ], we have by Lemma 37, Px⇠DX (x 2 Rŵ,b) � b
216 .

Now, by the simple fact that P(A|B)  P(A)
P(B) , we have that

Px⇠Dŵ,b (kxk1 � a) = Px⇠DX (kxk1 � a|x 2 Rŵ,b) 
Px⇠DX (kxk1 � a)

Px⇠DX (x 2 Rŵ,b)

 216d

b
exp(�a+ 1).

Therefore, taking a = 17 + ln Td
�b in the above inequality, we get that, the above event happens with

probability at most �
T . In other words, with probability 1� �

T ,

kxtk1  17 + ln
Td

�b
. (10)

Thus, taking a union bound, we get that with probability 1� �, for every t, Equation (10) holds. As a
result,

PT
t=1 kxtk21  T ·

�
17 + ln Td

�b

�2.
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E Analysis of initialization: Proof of Theorem 3

E.1 Obtaining a halfspace constraint on u

Before going into the proof of Theorem 3, we introduce a few notations. Throughout this section,
we use E to denote E(x,y)⇠D as a shorthand. Denote by w̄

def
= E [xy], and denote Ê as the empirical

expectation over (xi, yi)mi=1; with this notation, wavg = Ê [xy]. Denote by ws̃ = Hs̃(wavg); in this
notation, w] = ws̃

kws̃k
.

Lemma 14. If Algorithm 3 is run with hard-thresholding parameter s̃ = 81 · 238 · s
(1�2⌘)2 , number

of labeled examples m = 81 · 251 · s
(1�2⌘)2 ln

8d
�0 , then with probability 1� �

0
/2, the unit vector w]

obtained at line 3 is such that
⌦
w

]
, u
↵
� (1� 2⌘)

9 · 219 . (11)

Proof. First, Lemma 15 below implies that

hw̄, ui � (1� 2⌘)

9 · 216 . (12)

Moreover, as u is a unit vector, and DX is isotropic log-concave, hu, xi comes from a one-dimensional
isotropic log-concave distribution. In addition, y is a random variable that takes values in {±1}.
Therefore, by Lemma 34, y hu, xi is (32, 16)-subexponential. Lemma 31, in allusion to the choice of
m, implies that with probability 1� �

0
/4,

�����
1

m

mX

i=1

[yi hu, xii]� E [y hu, xi]

�����  32

s
2 ln 8

�

m
+ 32

ln 8
�

m
 (1� 2⌘)

9 · 217 (13)

Thus,

hwavg, ui =
*

1

m

mX

i=1

yixi, u

+
� (1� 2⌘)

9 · 216 � (1� 2⌘)

9 · 217 � (1� 2⌘)

9 · 217 . (14)

Now, consider ws̃ = Hs̃(wavg). By Lemma 17 shown below, with the choice of m, we have that
with probability 1 � �

0
/4, kws̃k2  2. Hence, by union bound, with probability 1 � �

0
/2, both

Equation (14) and kws̃k2  2 hold.

In this event, Lemma 16 (also shown below), in combination with the fact that s̃ = 81·238s
(1�2⌘)2 , implies

that

hws̃, ui � hwavg, ui �
r

s

s̃
kws̃k � (1� 2⌘)

9 · 217 � (1� 2⌘)

9 · 219 · 2 =
(1� 2⌘)

9 · 218 . (15)

By the fact that w] = ws̃
kws̃k

and using again kws̃k  2, we have

⌦
w

]
, u
↵
� 1

2
hws̃, ui �

(1� 2⌘)

9 · 219 ,

which is the desired result.

Lemma 15. Suppose that Assumption 1 is satisfied. Then

hw̄, ui � (1� 2⌘)

9 · 216 .

Proof. Recall that w̄ = E[xy]. We have

hw̄, ui = E[y(u · x)]
= E [E[y | x](u · x)]

� (1� 2⌘)E [|u · x|] � (1� 2⌘)

9 · 216 ,
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where the first equality is by the linearity of inner product and expectation, the second equality is
by the tower property of conditional expectation. The first inequality uses Lemma 7. For the last
inequality, we use the fact that z = u · x can be seen as drawn from a one-dimensional isotropic
log-concave distribution with density fZ , along with Lemma 37 with d = 1 with states that for every
z 2 [0, 1/9], fZ(z) � 2�16, making Ez⇠fZ [|z|] bounded from below by 1

9·216 .

The following lemma is inspired by Lemma 12 of [87].
Lemma 16. For any vector a and any s-sparse unit vector u, we have

|hHs̃(a), ui � ha, ui| 
r

s

s̃
kHs̃(a)k .

Proof. Let ⌦ be the support of Hs̃(a), and ⌦0 be the support of u. Given any vector v, denote
by v1 (resp. v2, v3) the vector obtained by zeroing out all elements outside ⌦ \ ⌦0 (resp. ⌦ \ ⌦0,
⌦0 \ ⌦) from v. With this notation, it can be seen that Hs̃(a) = a2 + a3, hHk(a), ui = ha2, u2i,
ha, ui = ha2, u2i+ ha3, u3i. Thus, it suffices to prove that |ha3, u3i| 

p
s
s̃ kHs̃(a)k.

First, this holds in the trivial case that a3 is a zero-vector. Now suppose that a3 is non-zero. By the
definition of Hs̃, this implies that all the elements of Hs̃(a) is non-zero, and hence kHs̃(a)k0 = s̃.
In addition, every element of a3 has absolute value smaller than that of Hs̃(a). Consequently, the
average squared element of a3 is larger than that of Hs̃(a), namely

ka3k2

ka3k0
 kHs̃(a)k2

kHs̃(a)k0
. (16)

Since ka3k0 = |⌦0\⌦|  |⌦0| = s, and kHs̃(a)k0 = s̃, we obtain ka3k 
p

s
s̃ ka1k. The result

follows by observing that |ha3, u3i|  ka3k · ku3k  ka3k where the first inequality is by Cauchy-
Schwarz and the second one is from the premise that kuk = 1.

Recall that wavg = Ê [xy] is the vector obtained by empirical average all xiyi’s. In the lemma below,
we argue that the `2 norm of ws̃ = Hs̃(wavg) is small. As a matter of fact, we show a stronger result
that, keeping any s̃ elements of vector w (and zeroing out the rest) makes the resulting vector have a
small norm.
Lemma 17. Suppose s̃ 2 [d] is a natural number. With probability 1 � �

0
/4 over the draw of

m = 213 · s̃ ln 8d
�0 examples, the following holds: For any subset ⌦ ⇢ [d] of size s̃, we have that

k(wavg)⌦k  2, where (wavg)⌦ is obtained by zeroing out all but the elements in ⌦.

Proof. We prove the lemma in two steps: first, we show that w̄ = E [xy] must have a small `2 norm
– specifically, this implies that kw̄⌦k2 is small; second, we show that w̄ and wavg are close to each
other entrywise. Then we combine these two observations to show that (wavg)⌦ has a small `2 norm.
Write the vector w̄ = (w̄(1)

, w̄
(2)

, . . . , w̄
(d)) and the vector x = (x(1)

, x
(2)

, . . . , x
(d)).

For the first step, by Lemma 18 shown below, we have

X

i2⌦

⇣
w̄

(j)
⌘2


dX

j=1

⇣
w̄

(j)
⌘2

=
dX

j=1

(E
h
x
(j)

y

i
)2  1. (17)

For the second step, we know that as x(j) is drawn from an isotropic log-concave and y take values
in {±1}, by Lemma 34 in Appendix H, x(j)

y is (32, 16)-subexponential. Therefore, by Lemma 31,
along with union bound, we have that with probability 1� �, for all coordinates j in [d],

���w(j)
avg � w̄

(j)
��� =

���Ê[x(j)
y]� E[x(j)

y]
���  32

s

2
ln 2d

�

m
+ 32

ln 2d
�

m
 1p

s̃
, (18)

where the last inequality is from our setting of m.

The above two items together imply that,
X

j2⌦

⇣
w

(j)
avg

⌘2

X

j2⌦

2
⇣
w̄

(j)
⌘2

+ 2
⇣
w

(j)
avg � w̄

(j)
⌘2

 2 + 2
s̃

s̃
 4. (19)
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The lemma is concluded by recognizing that the left hand side is k(wavg)⌦k2 and by setting � = �
0
/4

in (18).

Lemma 18. Given a vector x 2 X , we write x = (x(1)
, x

(2)
, . . . , x

(d)). We have
dX

j=1

�
E
⇥
x
(j)

y
⇤�2  1. (20)

Proof. Denote by function ⇣(x)
def
= E[y|x]. As y 2 {±1}, we have that for every x, ⇣(x) 2 [�1,+1].

In this notation, by the tower property of expectation, E
⇥
x
(j)

y
⇤
= E

⇥
x
(j)

⇣(x)
⇤
.

For f, g in L
2(DX), we denote by hf, giL2(DX) = Ex⇠DX [f(x)g(x)] their inner product in L

2(DX).
As DX is isotropic,

D
x
(j)

, x
(j)
E

L2(DX)
= Ex⇠DX

h
x
(j)

x
(j)
i
=

⇢
1, i = j,

0, i 6= j.

Therefore, x(1)
, . . . , x

(d) is a set of orthonormal functions in L
2(DX). This implies

dX

j=1

⇣
E
h
x
(j)

⇣(x)
i⌘2

=
dX

j=1

D
⇣, x

(j)
E2

L2(DX)
 h⇣, ⇣iL2(DX)  1. (21)

where the equality is from the definition of hf, giL2(DX), the first inequality is from Bessel’s inequality,
and the second inequality uses the fact that ⇣(x)2 2 [0, 1] and DX is a probability measure. This
completes the proof.

E.2 Obtaining a vector that has a small angle with u

One technical challenge in directly applying the same analysis of Theorem 4 to the initialization phase
is that, some of the wt’s obtained may have large obtuse angles with u (e.g. ✓(wt, u) is close to ⇡),
making their corresponding fu,b(wt) value small. To prevent this undesirable behavior, Algorithm 3
add a linear constraint

⌦
w,w

]
↵
� (1�2⌘)

9·219 on the set K when applying REFINE, which ensures that
all vectors in K will have angle with u bounded away from ⇡. The lemma below formalizes this
intuition.

Recall that Algorithm 3 sets K =
n
w : kwk2  1, kwk1 

p
s,
⌦
w,w

]
↵
� (1�2⌘)

9·219

o
.

Lemma 19. For any two vectors w1, w2 2 K, the angle between them, ✓(w1, w2), is such that

✓(w1, w2)  ⇡ � (1� 2⌘)

9 · 219 .

Proof. First, by the definition of K, for w1, w2 in K, we have
⌦
wi, w

]
↵
� (1�2⌘)

9·219 for i = 1, 2. In
addition, by the definition of K, both w1 and w2 have norms at most 1. This implies that their
normalized version, ŵ1 and ŵ2, satisfies,

⌦
ŵi, w

]
↵
� (1�2⌘)

9·219 for i = 1, 2.

For i = 1, 2, let ŵi = ŵi,k + ŵi,? be an orthogonal decomposition, where ŵi,k (resp. ŵi,?)
denotes the component of ŵi parallel to (resp. orthogonal to) w]. As kŵik  1, we have that
kŵi,?k  1, implying that |hŵ1,?, ŵ2,?i|  kŵ1,?k · kŵ2,?k  1. In addition,

⌦
ŵ1,k, ŵ2,k

↵
=

⌦
ŵ1, w

]
↵
·
⌦
ŵ2, w

]
↵
�
⇣

(1�2⌘)
9·219

⌘2
. Therefore,

cos ✓(w1, w2) = hŵ1, ŵ2i =
⌦
ŵ1,k, ŵ2,k

↵
+ hŵ1,?, ŵ2,?i � �1 +

✓
(1� 2⌘)

9 · 219

◆2

.

By item 3 of Lemma 23, we get that

�1 +
1

2
(✓(w1, w2)� ⇡)2 � �1 +

✓
(1� 2⌘)

9 · 219

◆2

,

The above inequality, in combination with the basic fact that ✓(w1, w2) 2 [0,⇡], implies that
✓(w1, w2)  ⇡ � (1�2⌘)

9·219 .
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The following lemma is the main result of this subsection, which shows that by using the new
constraint set K in Algorithm 3, REFINE obtains a vector with constant angle with u with O

⇣
s

(1�⌘)4

⌘

labels.
Lemma 20. Suppose we are given a unit vector w

] such that
⌦
w

]
, u
↵

� (1�2⌘)
9·219 . If Algo-

rithm 2 is run with initialization w1 = 0, bandwidth b = ⇥
�
(1� 2⌘)2

�
, step size ↵ =

⇥

✓
(1� 2⌘)2/

⇣
ln d

�0(1�2⌘)

⌘2
◆

, constraint set K =
n
w : kwk2  1,

⌦
w,w

]
↵
� (1�2⌘)

9·219

o
, regu-

larizer �(w) = 1
2(p�1)kwk

2
p, number of iterations T = O

✓
s

(1�2⌘)4

⇣
ln d

�0(1�2⌘)

⌘3
◆

, then with

probability 1� �0

2 , it returns a vector ṽ0 such that ✓(ṽ0, u)  ⇡
32 .

Proof. We first check the premises of Lemma 8 with the chosen w1 2 K, constraint set

K =

⇢
w : kwk2  1, kwk1 

p
s,
⌦
w,w

]
↵
� (1� 2⌘)

9 · 219

�
,

r1 = 2
p
s, r2 = 2:

1. Observe that kuk1 
p

kuk0kuk2 
p
s; in addition, by the definition of K, kw1k1 

p
s.

Therefore, kw1 � uk1  kuk1 + kw1k1  2
p
s = r1;

2. w1 is in K by definition; for u, we have kuk2 = 1 by definition; kuk1 
p
s by the argument

above;
⌦
u,w

]
↵
� (1�2⌘)

9·219 . Therefore, u is also in K.

3. For every w in K, as kwk2  1, we have kw � uk  kwk2 + kuk2 = r2; in addition, by
the definition of K, every w in K satisfies that kwk  1.

Therefore, applying Lemma 8, we have that with probability 1� �0

2 ,

1

T

TX

t=1

fu,b(wt)  c·

0

@↵
�
ln 2Td

�0b

�2

(1� 2⌘)
+

4s ln d

↵(1� 2⌘)T
+

b

(1� 2⌘)
+

(b+ 2)

(1� 2⌘)

0

@

s
ln 1

�0

T
+

ln 1
�0

T

1

A

1

A .

Specifically, with the choice of ↵ = ⇥

✓
(1� 2⌘)2/

⇣
ln d

�0(1�2⌘)

⌘2
◆

, b = O
�
(1� 2⌘)2

�
, T =

O

✓
s

(1�2⌘)4

⇣
ln d

�0(1�2⌘)

⌘3
◆

, we have that all four terms ↵(ln 2Td
�0b )

2
/(1�2⌘), 4s ln d/↵(1�2⌘)T , b/(1�2⌘),

(b+2)·

 r
ln 1

�0
T +

ln 1
�0

T

!

/(1�2⌘) are all at most (1�2⌘)
c·5·36·251 , implying that

1

T

TX

t=1

fu,b(wt)  4c · (1� 2⌘)

c · 5 · 36 · 251  (1� 2⌘)

5 · 36 · 249 .

Define A =
n
t 2 [T ] : fu,b(wt) � (1�2⌘)

36·240

o
. As 1

T

PT
t=1 fu,b(wt) � (1�2⌘)

36·240 · 1
T

PT
t=1 1(t 2 A) =

(1�2⌘)
36·240

|A|

T , we have |A|

T  1
5·29 . Therefore, |Ā|T � 1 � 1

5·29 , and for every t in Ā, wt is such that
fu,b(wt) <

(1�2⌘)
36·240 .

We establish the following claim that characterizes the iterates wt where t 2 Ā.

Claim 21. If w 2 K and fu,b(w) <
(1�2⌘)
36·240 , then ✓(w, u) < (1�2⌘)

9·219 .

Proof. First, we show that it is impossible for ✓(w, u) � ⇡
2 . By Lemma 19, for all w in K, we have

that ✓(w, u)  ⇡ � (1�2⌘)
9·219 . By the choice of b, we know that ✓(w, u)  ⇡ � 36b. By item 2 of

Lemma 22, we have

fu,b(w) �
⇡ � ✓(w, u)

34 · 221 � (1� 2⌘)

36 · 240 , (22)
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which contradicts with the premise that fu,b(w) <
(1�2⌘)
36·240 .

Therefore, ✓(w, u) 2 [0, ⇡
2 ]. We now conduct a case analysis.

1. If ✓(w, u)  36b, then by the definition of b, we automatically have ✓(w, u) < (1�2⌘)
9·219 .

2. Otherwise, ✓(w, u) 2 [36b, ⇡
2 ]. In this case, by item 1 of Lemma 22, we have

fu,b(w) �
✓(w, u)

34 · 221 .

This inequality, in conjunction with the assumption that fu,b(w) <
(1�2⌘)
36·240 , implies that

✓(w, u)  (1�2⌘)
9·219 .

In summary, in both cases, we have ✓(w, u)  (1�2⌘)
9·219 . This completes the proof.

Claim 21 above implies that, for all t in Ā, ✓(wt, u)  (1�2⌘)
9·219  ⇡

128 . In addition, |Ā|T � 1� 1
5·29 .

Combining the above facts with the simple fact that cos ✓(wt, w) � �1 for all t in A, we have:

1

T

TX

t=1

cos(✓t, u) � cos
⇡

128
·
✓
1� 1

5 · 29

◆
� 1 ·

✓
1

5 · 29

◆

�
✓
1� 1

2

⇣
⇡

128

⌘2
◆
· (1� 1

5 · 29 )�
1

5 · 29

� 1� 1

5

⇣
⇡

32

⌘2

� cos
⇡

32

where the first inequality is from the above conditions on A and Ā we obtained; the second inequality
uses item 2 of Lemma 23; the third inequality is by algebra; the last inequality uses item 1 of
Lemma 23.

Combining the above result with Lemma 24, we have the following for ṽ0 = w̃:

cos ✓(ṽ0, u) = cos ✓(w̃, u) � 1

T

TX

t=1

cos(✓t, u) � cos
⇡

32
.

This implies that ✓(ṽ0, u)  ⇡
32 .

Theorem 3 is now a direct consequence of Lemmas 14 and 20.

Proof of Theorem 3. First, by Lemma 14, we have that there exists an event E1 that happens with
probability 1� �

0
/2, in which the unit vector w] obtained is such that

⌦
w

]
, u
↵
� (1�2⌘)

9·219 . In addition,
Lemma 20 states that there exists an event E2 with probability 1��

0
/2, in which if

⌦
w

]
, u
↵
� (1�2⌘)

9·219 ,
it returns ṽ0 such that ✓(ṽ0, u)  ⇡

32 . The theorem follows from considering the event E1 \ E2,
which happens with probability 1 � �

0, in which ṽ0, the final output of Algorithm 3, satisfies that
✓(ṽ0, u)  ⇡

32 . The total number of label queries made by Algorithm 3 is:

n = O

 
s ln d

(1� 2⌘)2
+

s

(1� 2⌘)4

✓
ln

d

�0(1� 2⌘)

◆3
!

= O

 
s

(1� 2⌘)4

✓
ln

d

�0(1� 2⌘)

◆3
!
.
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F The structure of function fu,b

Recall that
fu,b(w) = E(x,y)⇠Dŵ,b

[|u · x|1(sign (hw, xi) 6= sign (hu, xi))] .
Note that for all w, fu,b(w) � 0. In this section, we show a few key properties of fu,b, in that if w
has an acute angle with u, fu,b(w) behaves similar to the ✓(w, u); if w has an obtuse angle with u,
fu,b(w) behaves similar to ⇡ � ✓(w, u).
Lemma 22. Suppose w and u are two unit vectors; in addition, suppose b  ⇡

72 . We have:

1. If ✓(u,w) 2 [36b, ⇡
2 ], then fu,b(w) � ✓(w,u)

34·221 .

2. If ✓(u,w) 2 [⇡2 ,⇡ � 36b], then fu,b(w) � ⇡�✓(w,u)
34·221 .

Proof. We prove the two items respectively.

1. For the first item, we denote by �
def
= ✓(u,w). Define region

R1 =

⇢
x : hw, xi 2 [0, b], hu, xi 2


� sin�

36
,� sin�

18

��
.

It can be easily seen that R1 is a subset of the disagreement region between w and u. In
other words,

1(x 2 R1)  1(sign (hw, xi) 6= sign (hu, xi)).

It suffices to show that, region R1 has probability mass at least b
9·218 wrt DX . To see why it

completes the proof, observe that

Ex⇠DX [|u · x|1(|hw, xi|  b)1(sign (hw, xi) 6= sign (hu, xi))]
� Ex⇠DX [|u · x|1(x 2 R1)]

� sin�

36
· Ex⇠DX1(x 2 R1)

� �

72
· Px⇠DX (x 2 R1) �

� · b
34 · 221 ,

where the first inequality uses the fact that R1 is a subset of both {x : |hw, xi|  b} and
{x : sign (hw, xi) 6= sign (hu, xi)}; the second inequality uses the fact that for all x in R1,
|u · x| � sin�

36 ; the third inequality uses the elementary fact that sin� � �
2 .

As Px⇠DX (|hw, xi|  b)  b by Lemma 38, this implies that

fu,b(w) =
Ex⇠DX [|u · x|1(|hw, xi|  b)1(sign (hw, xi) 6= sign (hu, xi))]

Px⇠DX (|hw, xi|  b)
� � · b

9 · 218 · b

=
�

9 · 218 .

Now we turn to lower bounding the probability mass of R1 wrt DX . We first project x down
to the subspace spanned by {w, u} - call the projected value z = (z1, z2) 2 R2. Observe
that z can also be seen as drawn from an isotropic log-concave distribution in R2; denote by
fZ its probability density function.

Without loss of generality, suppose w = (0, 1) and u = (sin�, cos�). It can be now seen
that x 2 R1 iff z lies in the parallelogram ABDC, denoted as R̃1, where A = ( 1

36+
b

tan� , b),
B = ( 1

18 + b
tan� , b), C = ( 1

36 , 0), D = ( 1
18 , 0). See Figure 1 for an illustration. Crucially,

kOCk = kCDk = 1
36 , kACk = kBDk = b

sin�  1
18 , as b  �

36  sin�
18 . Therefore,

by triangle inequality, all four vectices, A,B,C,D have distance at most 1
9 to the origin.

Therefore, for all z 2 R̃1, kzk  1
9 . By Lemma 37, this implies that fZ(z) � 2�16 for all z

in R̃1. Moreover, the area of parallelogram R̃1 is equal to b · 1
36 = b

36 .

27



Therefore,

Px⇠DX (x 2 R1) = Pz⇠DZ

⇣
z 2 R̃1

⌘
=

Z

R̃1

fZ(z)dz � 2�16 · b

36
=

b

9 · 218 .

This completes the proof of the claim.

2. The proof of the second item uses similar lines of reasoning as the first. We denote by
�

def
= ⇡ � ✓(u,w). Define region

R2 =

⇢
x : hw, xi 2 [�b, 0], hu, xi 2


sin�

36
,
sin�

18

��
.

It can be easily seen that R2 is a subset of the disagreement region between w and u. In
other words,

1(x 2 R2)  1(sign (hw, xi) 6= sign (hu, xi)).

It suffices to show that, region R2 has probability mass at least b
9·218 wrt DX . To see why it

completes the proof, observe that

Ex⇠DX [|u · x|1(|hw, xi|  b)1(sign (hw, xi) 6= sign (hu, xi))]
� Ex⇠DX [|u · x|1(x 2 R2)]

� sin�

36
· Ex⇠DX1(x 2 R2)

=
�

72
Px⇠DX (x 2 R2) �

b · �
34 · 221 ,

where the first inequality uses the fact that R2 is a subset of both {x : |hw, xi|  b} and
{x : sign (hw, xi) 6= sign (hu, xi)}; the second inequality uses the fact that for all x in R2,
|u · x| � sin�

36 ; the third inequality uses the elementary fact that sin� � �
2 .

As Px⇠DX (|hw, xi|  b)  b by Lemma 38, this implies that

fu,b(w) =
Ex⇠DX [|u · x|1(|hw, xi|  b)1(sign (hw, xi) 6= sign (hu, xi))]

Px⇠DX (|hw, xi|  b)
� � · b

34 · 221 · b

=
�

34 · 221 .

Now we lower bound the probability mass of R2 wrt DX . We first project x down to the
subspace spanned by {w, u} - call the projected value z = (z1, z2) 2 R2. Observe that z
can also be seen as drawn from an isotropic log-concave distribution on R2; denote by its
density fZ(z).

Without loss of generality, suppose w = (0, 1) and u = (sin�,� cos�). It can be now
seen that x 2 R2 iff z lies in the parallelogram CDBA, denoted as R̃2, where A =
( 1
36 � b

tan� ,�b), B = ( 1
18 � b

tan� ,�b), C = ( 1
36 , 0), D = ( 1

18 , 0). See Figure 2 for
an illustration. Crucially, kOCk = kCDk = 1

36 , kACk = kBDk = b
sin�  1

18 , as
b  �

36  sin�
18 . Therefore, by triangle inequality, all four vertices A,B,C,D have distance

at most 1
9 to the origin. Therefore, for all z 2 R̃1, kzk  1

9 . This implies that fZ(z) � 2�16

for all z in R̃2. Moreover, the area of parallelogram R̃2 is equal to b · 1
36 = b

36 .

Therefore,

Px⇠DX (x 2 R2) = Pz⇠DZ

⇣
z 2 R̃2

⌘
=

Z

R̃2

fZ(z)dz � 2�16 · b

36
=

b

9 · 218 .

This completes the proof of the claim.
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OO

AA BB

CC DD

Figure 1: An illustration of parallelogram region R̃1 (the shaded region). Its four boundaries are:
lines AB and CD, which are {z : hw, zi = b} and {z : hw, zi = 0}; lines AC and BD, which aren
z : hu, zi = � sin�

36

o
and

n
z : hu, zi = � sin�

18

o
respectively.

OO AA BB

CC DD

Figure 2: An illustration of parallelogram region R̃2 (the shaded region). Its four boundaries are:
lines AB and CD, which are {z : hw, zi = �b} and {z : hw, zi = 0}; lines AC and BD, which aren
z : hu, zi = sin�

36

o
and

n
z : hu, zi = sin�

18

o
respectively.

G Basic inequalities

Lemma 23. If ✓ 2 [0,⇡], then:

1. cos ✓  1� ✓2

5 .

2. cos ✓ � 1� ✓2

2 .

3. cos ✓  �1 + 1
2 (✓ � ⇡)2.

4. cos ✓ � �1 + 1
5 (✓ � ⇡)2.

Lemma 24 (Averaging effects on angle). Suppose we have a sequence of unit vectors w1, . . . , wT .
Let w̃ = 1

T

PT
t=1 wt be their average. Suppose 1

T

PT
t=1 cos ✓(wt, u) � 0. Then, cos ✓(w̃, u) �

1
T

PT
t=1 cos ✓(wt, u).

Proof. We note that

hw̃, ui = 1

T

TX

t=1

hwt, ui =
1

T

TX

T=1

cos ✓(wT , u) � 0.
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In addition, by the convexity of `2 norm, kw̃k2 = k 1
T

PT
t=1 wtk2  1

T

PT
t=1 kwtk  1. This

implies that

cos ✓(w̃, u) =

⌧
w̃

kw̃k , u
�

� hw̃, ui = 1

T

TX

t=1

cos ✓(wt, u).

Lemma 25. Recall that q = ln(8d). Then for every x in Rd, kxkq  2kxk1.

Proof. By algebra, kxkq =
⇣Pd

i=1 |xi|q
⌘ 1

q  (dkxkq
1
)

1
q  2kxk1.

We need the following elementary lemmas in our proofs. See e.g. [88] for the proof.
Lemma 26. If v, u are two vectors in Rd, and u is s-sparse, then, kHs(v)� uk2  2kv � uk2.
Lemma 27. Suppose v is a unit vector in Rd. Then for any w in Rd, kŵ � vk2  2kw � vk2.
Lemma 28. If v is a unit vector in Rd, and w is a vector in Rd, then ✓(w, v)  ⇡kw � vk2.

H Probability tail bounds

In this section we present a few well-known results about concentrations of random variables and
martingales that are instrumental in our proofs. We include the proofs of some of the results here
because we would like to explicitly track dependencies on relevant parameters.

We start by recalling a few facts about subexponential random variables; see e.g. [83] for a more
thorough treatment on this topic.
Definition 29. A random variable X with is called (�, b)-subexponential, if for all � 2 [� 1

b ,
1
b ],

Ee�(X�E[X])  e
�2�2

2 . (23)
Lemma 30. Suppose Z is (�, b)-subexponential, then with probability 1� �,

|Z � EZ| 
r

2�2 ln
2

�
+ 2b ln

2

�
.

Lemma 31. Suppose X1, . . . , Xn are iid (�, b)-subexponential random variables, then 1
n

Pn
i=1 Xi

is ( �
p
n

, b
n )-subexponential. Consequently, with probability 1� �,

�����
1

n

nX

i=1

(Xi � E [Xi])

����� 
r

2�2

n
ln

2

�
+

2b

n
ln

2

�
.

We next show the following fact: if a random variable has a subexponential tail probability, then it is
subexponential.
Lemma 32. Suppose Z is a random variable such that P(|Z| > a)  C exp

�
� a

�

�
for some C � 1.

Then,
Ee

|Z|
2�(lnC+1)  4.

Proof. We bound the left hand side as follows:

Ee
|Z|

2�(lnC+1) =

Z
1

0
P
⇣
e

|Z|
2�(lnC+1) � s

⌘
ds

=

Z
1

0
P (|Z| � 2�(lnC + 1) ln s) ds


Z

1

0
min

✓
1,

C

s2(lnC+1)

◆
ds

=

Z e

0
min

✓
1,

C

s2(lnC+1)

◆
ds+

Z
1

e
min

✓
1,

C

s2(lnC+1)

◆
ds

 e+

Z
1

e
Ce

�2 lnC
s
�2

ds  4.
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where the first equality is from a basic equality for nonnegative random variable Y : E [Y ] =R
1

0 P(Y � t)dt; the second equality is by rewriting the event in terms of |Z|; the first inequality
is from the assumption on |Z|’s tail probability and the simple fact that the probability of an event
is always at most 1; the third equality is by decomposing the integration to integration on two
intervals; the second inequality uses the fact that the first integral is at most e, and the integrand in
the second integral is at most Ce

�2 lnC
s
�2 as s � e; the last inequality uses the fact that C � 1 and

e+ 1
e  4.

Lemma 33. For random variable Z and some �0 2 R+, if E exp (�0 |Z|)  C0, then Z is
( 4

p
C0

�0
,

4
�0
)-subexponential.

Proof. As E exp (�0 |Z|) =
P

1

i=0
E|Z|

i�i
0

i! , where each summand is an nonnegative number, we have
that for all i,

E |Z|i �i
0

i!
 E exp (�0 |Z|)  C0. (24)

where the second inequality is by our assumption.

We introduce a new random variable Z
0 such that Z 0 has the exact same distribution as Z, and is

independent of Z. Observe that Z � Z
0 has a symmetric distribution, and therefore E(Z � Z

0)i = 0
for all odd i. We look closely at the moment generating function of Z � Z

0:

E exp (�(Z � Z
0)) =

1X

i=0

E(Z � Z
0)i

i!
�
2i =

1X

i=0

E(Z � Z
0)2i

(2i)!
�
2i

where the second equality uses the fact that Z � Z
0 has a symmetric distribution. Importantly, by the

conditional Jensen’s Inequality and the convexity of exponential function, E exp (�(Z � E[Z])) 
E exp (�(Z � Z

0)). Therefore, it suffices to bound E exp (�(Z � Z
0)) for all � 2 [��0

4 ,
�0
4 ].

We have the following sequence of inequalities:

E exp (�(Z � Z
0)) =

1X

i=0

E
h
|Z � Z

0|2i
i
�
2i

(2i)!

 1 +
1X

i=1

E
h
|Z|2i

i
22i�2i

0

(2i)!
·
✓

�

�0

◆2i

 1 + C0

1X

i=1

✓
2�

�0

◆2i

 1 + 2C0

✓
2�

�0

◆2

 exp

✓
8C0

�2
0

�
2

◆
.

where the first inequality we separate out the first constant term, and use the basic fact that |z � z
0|j 

2j�1(|z|j + |z0|j) for all j � 1, and the fact that Z and Z
0 has the same distribution; the second

inequality uses Equation (24) that E|Z|
2i�2i

0
(2i)!  C0; the third inequality uses condition that

��� �
�0

���  1
4 ,

and the elementary calculation that
P

1

i=1

⇣
�
�0

⌘2i
=
⇣

2�
�0

⌘2
· 1
1�( 2�

�0
)2

 8
⇣

�
�0

⌘2
; the last inequality

uses the simple fact that 1 + x  e
x for all x in R.

To conclude, we have that for all � 2 [��0
4 ,

�0
4 ],

E exp (�(Z � EZ))  exp

✓
8C0

�2
0

�
2

◆
,

meaning that Z is
⇣

4
p
C0

�0
,

4
�0

⌘
-subexponential.
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Importantly, based on the above two lemmas we have the following subexponential property of
isotropic log-concave random variables.
Lemma 34. If X is a random variable drawn from a 1-dimensional isotropic log-concave distribution
DX , then X is (32, 16)-subexponential. Moreover, for any random variable Y such that |Y |  1
almost surely, Y X is also (32, 16)-subexponential.

Proof. By Lemma 39, we have that P(|X| � t)  e · e�t. Applying Lemma 32 with � = 1 and
C = e, we have that Ee

|X|
4  4. Now, using Lemma 33 with �0 = 1

4 and C0 = 4, we have that
X is (32, 16)-subexponential. The second statement follows from the exact same line of reasoning,
starting from P(|Y X| � t)  P(|X| � t)  e · e�t.

In the two lemmas below, we use the shorthand that Et [·]
def
= E [· | Ft], and Pt (·)

def
= P (· | Ft).

We need the following standard martingale concentration lemma (see e.g. [85, Theorem 2.19]) where
the conditional distribution of each martingale difference term has a subexponential distribution.
Lemma 35. Suppose {Zt}Tt=1 is sequence of random variables adapted to filtration {Ft}mt=1. In
addition, each random variable Zt is conditionally (�, b)-subexponential, formally,

Et�1 [exp (� (Zt � Et�1 [Zt]))]  exp

✓
�
2
�
2

2

◆
, 8� 2


�1

b
,
1

b

�
. (25)

Then with probability 1� �,�����

TX

t=1

(Zt � Et�1Zt)

�����  �

r
2T ln

2

�
+ 2b ln

2

�
.

Proof. As all Zt’s are conditionally (�, b)-subexponential, Theorem 2.19 of [85] implies thatPT
t=1 (Zt � Et�1Zt) is (�

p
T , b)-exponential, and for any a > 0,

P
 �����

TX

t=1

(Zt � Et�1Zt)

����� > a

!
 max(2e�

a2

2T�2 , 2e�
a
2b ).

Taking a0 = max
⇣q

2T ln 2
� , 2b ln

2
�

⌘
, we have P

⇣���
PT

t=1 (Zt � Et�1Zt)
��� > a0

⌘
 �. The

lemma is concluded by observing that a0 
q

2T ln 2
� + 2b ln 2

� .

Combining Lemmas 32, 33 and 35, we have the following useful inequality on the concentration
of a martingale where each martingale difference has a subexponential probability tail. We note
that Freedman’s Inequality or Azuma-Hoeffding’s Inequality does not directly apply, as they require
the martingale difference to be almost surely bounded. A similar result for subgaussian martingale
differences is shown in [70]; see also the discussions therein.
Lemma 36. Suppose {Zt}Tt=1 is sequence of random variables adapted to filtration {Ft}Tt=1. For
every Zt, we have that Pt�1(|Zt| > a)  C exp

�
� a

�

�
for some C � 1. Then, with probability 1� �,

�����

TX

t=1

Zt � Et�1Zt

�����  16�(lnC + 1)

 r
2T ln

2

�
+ ln

2

�

!
.

Proof. First, by Lemma 32, we have that Et�1 exp
⇣

|Z|

2�(lnC+1)

⌘
 4. Therefore, using Lemma 33,

we have that Z is (16�(lnC + 1), 8�(lnC + 1))-subexponential.

Therefore, by Lemma 35, we have that with probability 1� �,�����

TX

t=1

Zt � Et�1Zt

�����  16�(lnC + 1) ln
2

�
+ 16�(lnC + 1)

r
2T ln

2

�

 16�(lnC + 1)

 r
2T ln

2

�
+ ln

2

�

!
.

where the second inequality is by algebra.
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I Basic facts about isotropic log-concave distributions

The following useful lemmas are from [57].
Lemma 37. The statement below holds for d = 1, 2. Suppose DX is an isotropic log-concave
distribution on Rd, with probability density function f . Then, for all x such that kxk2  1

9 ,
f(x) � 2�16.

Proof. For any d = 1, 2, by items (a) and (d) of [57, Theorem 5.14], we have that for every x such
that kxk2  1

9 , f(x) � 2�9nkxk2f(0) � 2�d
f(0), and f(0) � 2�7d. Therefore, for x such that

kxk2  1
9 , f(x) � 2�7d · 2�d = 2�8d � 2�16.

Lemma 38. If x is a random variable drawn from a 1-dimensional isotropic log-concave distribution,
then for all a, b 2 R such that a < b,

P(x 2 [a, b])  b� a.

Lemma 39. If x is a random variable drawn from a 1-dimensional isotropic log-concave distribution,
then for every t � 0,

P(|x| > t)  e
�t+1

.
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