
We are grateful to the reviewers for their insightful reviews and feedback. We have incorporated fixes to simple issues1

such as typos and missing references and do not address those issues here.2

Reviewer 1, 2, and 4 commented that is that it is not clear how the Renyi divergence bounds in the paper relate/translate3

to private samplers. An additional issue that Reviewer 2 points out is that while we show that Dα(P ||R) is small for P4

being the distribution of the discrete finite-time dynamics and R being the stationary distribution, we need to also show5

that Dα(R||P ) to get efficient private samplers. We address this below. Assuming that we can bound both Dα(P ||R)6

and Dα(R||P ), the conversion to (ε, δ)-DP follows from the following argument. Suppose the underlying mechanism7

guarantees that R,R′ satisfy (ε, δ)-differential privacy. Fact 9 shows that if for α = 1 + 2 ln(1/δ)/ε, Dα(P ||R) and8

Dα(R||P ) are both at most ε/2, then P,R also satisfy the (bi-directional) divergence guarantee of (ε, δ)-differential9

privacy (and the same for P ′, R′). Then by composition theorems, P, P ′ satisfy (3ε, 3δ)-differential privacy. In our10

revisions to the paper, we will include a formal theorem/proof for this argument.11

Reviewer 2 points out that our result “bypasses” the problem of bounding the bias of the discrete dynamics’ stationary12

distribution. This is indeed the case and we discuss this briefly in our introduction. This can be seen as both a strength13

and weakness of our approach. We will also add this as an interesting future direction.14

Reviewer 2 suggests making the results more rigorous by verifying the “mild conditions” under which Langevin15

dynamics converges. The result of Vempala and Wibisono suggests that a sufficient condition is strong convexity, which16

we assume in the paper. This will be made more explicit in the introduction.17

Reviewers 3 and 4 suggest further comparisons of our iteration complexity to previous results and clarifying whether18

the result is optimal or near-optimal. We do currently remark in our concluding section that our dependence on ε is19

worse than that of results for KL-divergence, and also point out that a factor of 1/ε2 seems inherent to our analysis.20

Our revision will this discussion our introduction to make these points clearer to the reader. Unfortunately, we do not21

know of any lower bounds for the iteration complexity needed for Langevin dynamics to converge in Rényi divergence,22

so we are unable to comment on the optimality of the main result. We do however note that for Differential Privacy23

applications, the desired ε is usually a small constant (say 0.1 or 0.5).24

Reviewer 4 asks the benefit of using the unadjusted Langevin process. Part of our goal is to provide a simple and more25

accessible analysis, and our analysis is most simple when adapted to this algorithm. However, our approach might be26

useful to bound the discretization error of algorithms with Metropolis steps.27

Reviewer 4 asks to highlight the novelty of the proofs. As mentioned in the introduction, we feel the novelty is the28

simplicity of the approach, requiring almost no stochastic calculus, making the analysis ideally more accessible to e.g.29

members of the differential privacy community who are less familiar with the stochastic calculus literature.30

We end the rebuttal with a discussion on bounding Dα(R||P ), that we overlooked in the submission. Technically, the31

proof is essentially identical to Dα(P ||R) case, and we give details for completeness. The results in the submission32

bound both Dα(P ||Q) and Dα(Q||P ), where Q is the distribution of the continuous finite-time dynamics. While we33

state Theorem 8 as bounding Dα(P ||Q), we provide a bi-directional divergence bound in Lemma 5, and so the proof34

of Theorem 8 easily also bounds Dα(Q||P ). What remains is to bound Dα(R||Q), since the cited paper of Vempala35

and Wibisono (VW19) only immediately bounds Dα(Q||R). However, the techniques in that paper can easily be36

generalized to also derive a bound Dα(R||Q). Due to space constraints we can only provide a high-level summary of37

this generalization here, but for completeness our revisions include a full explanation in the appendix.38

We need two ingredients from VW19 to bound Dα(R||Q). The first is to show that if our initial distribution Q0 is a39

Gaussian with the correct variance then ideally Dα(Q0||R), Dα(R||Q0) . d (as opposed to Lemma 9 in our paper and40

the cited lemma from VW19, which only showsDα(Q0||R) . d). This guarantee is not attainable for large α. However,41

for Q0 = N(0, I) and any 1-smooth and L-strongly convex f , both divergences are bounded by d if, say, α = 1+1/2L.42

The Hypercontractivity Lemma (Lemma 14) in VW19 shows that after running for continuous time t proportional to43

log(α′L) (much smaller than the current continuous time bound we use), we will get that Dα′(R||Qt), Dα′(Qt||R) are44

both also finite and roughly d. The choice of Q0 = N(0, I) also satisfies the properties stated in Lemma 5 of our paper.45

The second is to show that Dα(R||Q) decreases exponentially. We show that the continuous chain (as opposed to the46

stationary distribution) always satisfies LSI with constant 1/3, and then we can slightly modify Lemma 5 and 6 in47

VW19 to show that Dα(R||Q) decays exponentially. Our choice of initial distribution Q0 satisfies LSI with constant 1.48

The continuous Langevin dynamics can be viewed as the limit of the discrete chain, which is repeated application of49

a (1− η/2)-Lipschitz gradient step followed by adding Gaussian noise N(0, 2ηI), as η approaches 0. Lemma 16 in50

VW19 shows that applying a (1− η/2)-contractive map increases the LSI constant by at least a multiplicative factor51

of (1− η/2)−2, and adding N(0, 2ηI) changes the LSI constant from α to at least 1
1/α+2η (see e.g. and "Functional52

Inequalities for Convolution Probability Measures" by Wang and Wang). Taking the limit as η goes to zero, we get that53

the continuous Langevin dynamics do not cause the LSI constant to decrease below 1/3.54


