A Preliminaries for Deferred Proofs

A.1 Rényi Divergence Facts

We state additional facts about Rényi divergences that are needed in our proofs.

Fact 17 (Monotonicity [van Erven and Harremos|, 2014, Theorem 3]). For any distributions P, Q)
and 0 < ag < ag we have D, (P||Q) < Dq, (P||Q).

Fact 18 (Post-Processing [van Erven and Harremos| 2014, Theorem 9]). For any sample spaces
X, Y, distributions X1, X5 over X, and any function f : X — ) we have D, (f(X1)||f(X2)) <
Do (X4]|X2).

Fact 19 (Gaussian Divergence [van Erven and Harremos|, 2014, Example 3]).

2
Do (N(0,0°14)||N(z,0°14)) < a!xlIQ
g

Fact 20 (Adaptive Composition Theorem [Mironov, [2017, Proposition 1]). Let Xy, X1,. .., Xy be
arbitrary sample spaces. For eachi € [k], let 1;, 0} : A(X;—1) — A(X;) be maps from distributions
over X;_1 to distributions over X; such that for any point mass distribution (a distribution whose
support contains a single value) X;_1 over X;_1, Do, (i (X;—1) ||V} (Xi—1)) < &;. Then, for ¥, ¥’ :
we have D, (¥(Xo)||¥'(Xo)) < S8, &i for any Xo € A(Xp).

Fact 21 (Weak Triangle Inequality [Mironov, 2017, Proposition 11]). For any oo > 1, p,q > 1
satisfying 1/p 4+ 1/q = 1 and distributions P, @), R with the same support:

-1
Da(PIIR) < S Dy (PIIQ) + Dytams i @IIRD)

A.2 Gaussians and Brownian Motion
We give some standard tail bounds on Gaussians and Brownian motion that will be useful:
Fact 22 (Univariate Gaussian Tail Bound). For X ~ N(0,0?) and any x > 0, we have

2
Pr[X > ] = Pr[X < —a] < exp (;2> ,
g

Fact 23 (Isotropic Multivariate Normal Tail Bound). For X ~ N(0,1;) and any x > 0, we have
22
Pr[|X |2 > Vd + 2] < exp <2) :

Fact 24 (Univariate Brownian Motion Tail Bound). Let B; be a standard (one-dimensional) Brownian
motion. For any 0 < a < b, we have:

2
Pr| sup [B, — B, > x| =2-Pr[N(0,b—a) > z] < 2exp R —
t€la,b 2(b — CL)
€[a,b]
The preceding fact is also known as the reflection principle.

Fact 25 (Multivariate Brownian Motion Tail Bound). Let B; be a standard d-dimensional Brownian
motion. For any 0 < a < b, we have:

Pr| sup |Bi — Bull2 > Vb —a (\/34—3:)

t€la,b]

< 2exp(—2?/4).

A.3 Gradient Descent

For completeness, we recall the contractivity properties of gradient descent.
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Fact 26 (Discrete Gradient Descent Contracts). Let f : R* — R be a 1-strongly convex, L-smooth
function. Then for n < £, we have |z —nV f(z) — 2’ + nV f(2/)|l2 < (1 - L+1)||x — 2|2 <
(1= D)z — 2'||2 for any z, 2" € R%.

See e.g. [Hardt et al.l 2016, Lemma 3.7] for a proof of this fact.

Since we assume f’s global minimum is at 0 (and thus Vf(0) = 0), as a corollary we have
|l = nVf(2)|l2 < (1 —n/2)||z||2. We also have as a corollary:

Fact 27 (Continuous Gradient Descent Contracts). Let f : R? — R be a I-strongly convex, L-
smooth function. Then for any xq, zh € R? and x, z} that are solutions to the differential equation

dry = =V f(z¢)dt we have ||z; — }||2 < e7t/2||zg — zp]|2.

Proof. This follows by noting that the x; is the limit as integer & goes to oo of applying k discrete
gradient descent steps to xo with n = t/k. So, the contractivity bound we get for x; is ||xt||2 <

limy o0 (1 — t/2K)%|| 202 = e 2||20]|2. O

B Deferred Proofs From Section

B.1 Proof of Lemmal3

Proof. We prove the bound for D, (Xo.1k||X{.7), the bound for Dy, (X{. 7. || Xo:7k) follows simi-
larly. Let a tuple {2;,, /1 fo<i<; be good if each x;,, /;, satisfies either (i) ||, /p — i /kyll2 < 7 (e,
&) or (ii) {mzn/k}igggj are all 1. We claim that for each j, for any point mass distribution Xj.;
over good (j + 1)-tuples:

o(51)’
2.20 "

Do ((Xo:5), %' (Xo:5)) < 3)

By Fact [18| we can instead bound the divergence between 9(Xy.;), 4 (Xo.;) which are defined
equivalently to ¢, ¢’ except without the step of replacing the last entry with L if £, is violated. If

Xo.; is a point mass on a good tuple containing |, then Dy, (¢(Xo.5)|[¢'(Xo.j)) = 0. For X, that is
a point mass on a good tuple not containing L, D, (¢)(Xo.;)|[4/' (Xo.;)) is just the divergence between
the final values of 1(Xo.;), ¢’(Xo.;). The distance between the final values in ¢ (Xo.;), ¢’ (Xo.;)
prior to the addition of Gaussian noise in 1, ¢’ is the value of 2 LIV (@ine) — V(@ j/k)m)2 for

the single tuple in the support of X.;, which is at most L,Z" by smoothness and because &, holds for
all good tuples not containing L. (3) now follows by Fact[T9

Then, Xo.7x, X{.7 are arrived at by a composition of T'k applications of ¢, ¢’ to the same initial
distribution Xj. Note that X and the distributions arrived at by applying ¢ or ¢’ any number of
times to X, have support only including good tuples. Then combining Fact [20] (with the sample
spaces being good tuples) and (3) we have:

Lrn 2
@ (T) _ TaL?r?ny
2.2 4

Do (Xork||Xo.1x) < Tk -
C Deferred Proofs From Section 4

C.1 Proof of Lemmal7|

Proof. We consider the discrete chain first. For each timestep starting at ¢ that is a multiple of 7,
using smoothness we have:
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o~ il = max |-~ 9 f(a +\f/ dB,|)>
€t t+n) €[t t+n)

<al Vel + VZ, max | / 4B
< oLl + V2, max | / dB, .

. . .o . . t’ .
Using the tail bound for multivariate Brownian motion, maxtle[t t+m [, dBsl|2 is at most

2\"/5 (\/& +/In(T/ 5)) /1 with probability at least 1 — 5% for each timestep. So it suffices to
show that with probability at least 1 — %, forall0 < t < Tn that are multiples of 7, ||z¢|2 <

2 (\/& + \/ln(T/(S)). From (@), with probability 1 — 755 [[zoll> < 5% (\/E+ Mln(T/é)).
We will show that if ||a¢]]s < 2f (\f—&— VIn(T/0) ) then with probability 1 — T—H we have

|zetp]l2 < ﬁ (\/E + +/In(T/9) ), completing the proof for the discrete case by a union bound.

This follows because by Fact the gradient descent step is (1 — 7/2)-Lipschitz for the range of
1 we consider. This gives that after the gradient descent step but before adding Gaussian noise,

14 has norm at most (1 —n/2)[lzfl2 < (1 —1/2)55% (\/E+ ln(T/cS)). Then,
NG (\/E+ W) only if \f||ftt+’7 dB||s is larger than ¢,/ (f+ 1n(T/5)), which

happens with probability at most

T +1 by the multivariate Gaussian tail bound.

‘We now consider the continuous chain. For all ¢ that are multiples of 7:

max ||z}, — z}|2 = | nax ||/ —Vf(xh)ds + V2dB,]|2
wElt,t+n) E[t,t+n)

<nL max |2|2+ max H\/i/ dBg||2-
w€E[t,t+mn) w€lt,t+n t

As with the discrete chain, the multivariate Brownian motion tail bound gives that

max V2 [ Bl < § (Vi + VIR Vi

wE[t,t+n)

with probability at least 1 — %. So it suffices to show that at all times between 0 and 77,

|21l < 2\% (\/& + /In(T/9) ) with probability at least 1 — . We first claim that with probability

atleast 1 — 2, for all ¢ that are multlples of n, [|z}]]2 < 4f (\[ ++/In(T/9) ) This is true for x{,

with probablhty atleast 1 — by (2). By contractivity of continuous gradient descent, x} +n

4(T+1)
is equal to Az} + /2 [/ ALdB, for some A which has eigenvalues in [—e~"/2, ¢~"/?] and a set

of matrices { A’|s € [0,7]} with eigenvalues in [—e~(7=5)/2 ¢~ (n=5)/2} H Then conditioning on the
claim holding for xy, ||z}, [|2 exceeds ﬁ (\f +/In(T/5) ) only if the norm of v/2 ] 1 AldB,

exceeds = 1 e %) (\[4— V/In( T/(5) ' ‘f(f—i— v/In T/6) Since Brownian mo-

tion is rotatlonally symmetric, and all A/, have elgenvalues in [—1, 1], this occurs with probablhty
upper bounded by the probability v/2 ftt“’ dB; exceeds this bound, which is at most 4(T =y by the

*In particular, recalling the proof of Facts 2 and L we can write A explicitly as limy_, o H (I d—
2572 f(2;)), where z; is some point on the path from 0 to 2’ +4 an - Bach Ay can be written similarly, except only
k

considering the gradient descent process from time ¢ + s to t + 7.
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Brownian motion tail bound. The claim follows by taking a union bound over all ¢ that are multiples
of n.

Then, conditioning on the event in the claim, for each corresponding interval [¢, ¢ + 1) since gradient
descent contracts we have

A

u
max ol < o+ max [V2 [ dB.
u€lt,t+n) t

u€lt,t+n)
¢ u

We conclude by using the multivariate Brownian motion tail bound to observe that

IN

max ||ﬂ/tust|2 < ﬁ (Va+ vin(175)),

w€lt,t+n)

d

with probability at least 1 — %, and then taking a union bound over all intervals. O

C.2 Proof of Lemmal§|

Proof. Let z be an arbitrary parameter, 7 : [z,00) — (0,1/2) be an arbitrary map, and &s be the
event specified in the lemma statement for § € (0, 1). Using the definition of expectation, we have:

BY] = [Py >
g/oz1dy+/mPr[Yzy]dy
<z+ /:O n(y) + (1 —n(y)) PrlY = y[&,,)]dy
<z+ /:O n(y) + PrlY = y|&,,)]dy
=z+ /:O n(y) + PrlY? > ¢°1,,))dy

> E[Y?|E, )]
<z +/ n(y) + T"(y)dy
4

< Z+/ n(y) + W(y?“’yedy'

1
We now choose 7(y) = (Z—f) " to minimize the value of the expression in the integral. We will

eventually choose z such that 0 < n(y) < 1/2forall y > z as is required of 1. Plugging in this
choice of 7 gives the upper bound:

E[Y] <z + A7 (77 +7‘$)/ g~ T dy
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1ty
0

We finish by choosing z = 5% ('yﬁ + 'y_ﬁ) . This gives the upper bound on E[Y] in the
lemma statement. We also verify that 7(y) is a map to (0 1/2): n(y) x y_%, giving that n(y) > 0.
For all y > z, since v < 1 we have (y) < n(z) = <1/2. O

v+1
C.3 Proof of Theorem

Proof. We bound D, (P||Q), the bound on D, (Q||P) follows similarly. We first need the following
corollary of Lemma([5] which follows from that lemma by taking the limit as & goes to infinity and

applying Fact[I8}

Corollary 28. For any L-smooth f and n > 0, and any initial distribution Xy let X; be the
distribution over positions x; arrived at by running the discretized underdamped Langevin dynamics
with step size n on f from Xq for continuous time t, except that Xy = L if €, does not hold at time t
for this chain. Let X, be the same but for the continuous underdamped Langevin dynamics. Then for
any integer T' > 0:

TaL*r?y

Da(XTnHX/Tn)vDa(X/TnHXTn) < 4

For arbitrary 61, 02, plugging in v = cL(vV/d + /In(T/61) + /In(T/d2)) /7 into Corollary
(where c is the constant specified in Lemma and using the definition 7' = 7/n we get that

3ra/ LA (d + In(;5) + In(55))n
4

Do (X X7,) <

forall k € Z* and X7, XTn as defined in Corollary. Usmg the definition of Rényi divergence,
this gives:

XTn(x)a/
—dr <

X, ()" X)L Prexle= 7 )
R4 XT'r](x)

kX (2)7 1 Pry gy fr= L1 5 ea(e) geal@)”

where:

4
_ 3rd/(of — 1)L
= 1 .
Removing the conditioning on the continuous chain: Let &5, denote the (at least probability 1—4;)
event that the conditions in Lemmal are satisfied for the discrete chain and &;, denote the (at least

probability 1 — d5) event that the conditions in Lemmalare satisfied for the continuous chain. By
Lemrna L we have Q(z) > X7, (), Q(2|&s,) < = 5 X, (). Then for d; < 1/2:

3ra/(of = 1)L (d + 21n(Z))n
ci(a’) = exp ( : ) ’

X @ 1o ] _ [ onten K@
Fee | Qe 552] - otee) i
1 XTU( ) } -
S T8 Jea X ()1
2-c1(a)

= 5162(&/)653(&/) .

This statement holds independent of d». We will eventually choose «’ such that for the choice
of n speciﬁed in the lemma statement, ¢1(o’) < 2,¢3(a’) < 1. Then applying Lemma [§| with

Yﬁ%g_Z 5*22533 v = c3(a’), we get:
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XT??(x)w//2
Q(x)a’/2

8
ca(a’)/2”
1

|«

Removing the conditioning on the discrete chain: We now turn to removing the conditioning on
&5, Here we need to be a bit more careful since unlike with X7, (z), X7, () is in the numerator
and so the inequality X, (x) < P(x) is facing the wrong way. Since P, () have the same support,

E,q [

we note that:

E Xy (2)*'/? =E,p Koy () /271
T~Q Q(z)>'/2 x Q(z) /21
(%) o ya'/271
> ?ExNP,yNUnif(O,P(m)) [W Ay < Xy ()]
o I yo//271
= ?EINP,y~Um‘f(O,P(w)) W y < Xpp(x)
. P <X
wa,yNUngf(O,P(z)) [y = T (37)}
o [ yo//271
> ?Eg:NP,yNUnif(O,P(x)) Q@)1 Es, | - (1 —061).
(%) follows as for any given any x, we have:
/ 1 /
X «@ /2—1 — X o’ /2
T”I(x) XTn(x) Tﬁ(x)
B /XTn(w) 1 Ol 0//2—1d
0o Xpya) 2 i
z Y
0 P(z) 2
P(I) 1 a/ ,
_ = oal/2—-1 I <X d
| 7% 1y < Xy (o)) dy

al

2

In turn, for all §; < 1/2, we have

EINP,yNUnif(O,P(I)) [Q(

yo//271

z) /21

551]

<

Ey~vnif(0,P(z)) [ya//Q_l Ty < Xoy(2)]] -

32
= qrgee”

If co(’) /2 < 1/2 (which is equivalent to c2(a’) = c3(a’) < 1), by applying Lemma|g]for § = 2

ol ja—1/2

with X = W”B = %,’Y = Cg(a/)/2 we get:
z~Py~Unif(0,P(x)) Qz) /4172 | = o/
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Eono

P(x)a'/4+1/2 B o 1 E ya//4—1/2
Q@A | = 71 T3 ) Ba~cPy~Unif(0.P(x)) Q@)A1
_19(a'/4+1/2)
B Va!
<15V

From moderate o’-Rényi divergence to small a-Rényi divergence: If ¢ > 3a lf?, without loss of
generality we can assume e.g. o > 4 (by monotonocity of Rényi divergences, if o < 4 it suffices
to bound the 4-Rényi divergence instead of the a-Rényi divergence at the loss of a constant in the

bound for 7). Then for o/ = 4« — 2 this inequality lets us conclude the lemma holds. Otherwise, for
l<k<d/4+1/2 fora= w

, by Jensen’s inequality we get:

1
— InE;q [

Qx)*] ~a-1 Q(x)or (a=1r
?’l?j_'illn)i/s then gives D (P||Q) < € as desired (note that for ¢ < 22 we have
k > 1 as is required). Now, we just need to verify that ¢1 (a’) < 2, c2(a’) = c3(a’) < 1 holds for
o = W — 2. Since c2(a’) = e3(a’) < In(cq1(a’))/d, it just suffices to show ¢; (o) < 2.
This holds if:

o ar11l/k
P(x) }S 1 ) (ExNQ{P(x) }/>Sln15+§lna+%lnn.

Choosing k =

3ra/ (o — 1) LA (d + 2 In(F))n

<In2,

W~

which is given by choosing n = O( . %) with a sufficiently small constant hidden in 0. O

1
7L41n?
C.4 Proof of Lemma 10|

Proof. This follows from Lemma 4 in Vempala and Wibisono| [2019], which gives the bound
Do (N(0, £14)||R) < f(0) + £ In . We then note that the 1-strongly convex, L-smooth f with

the maximum f(0) is given When R is N(O, I,;), which has density R(x) = e ~(sm@mt3aT) O

C.5 Proof of Theorem

Proof. We will prove the bound for o > 3/2 - the bound for 1 < e < 3/2 follows by just applying
monotonicity to the bound for & = 3/2, at the loss of a multiplicative constant on 7,7, and the
iteration complexity.

Let R be the distribution arrived at by running contlnuous overdamped Langevin dynamics using

f for time 7 from initial distribution N (0, & N(0, +1,) satisfies ), so from Theoremlgl we
have D2, (P||Q) < £/3. From Lemmas 10 and - we have D20 (Q||R) < e/3. Then, we use weak
triangle inequality of Rényi divergence w1th P, q = 2 to conclude that D, (P||R) < e. O

C.6 Proof of Theorem

We have the following radius tail bound:

Lemma 29. For all n < 1 and any B-Lipschitz, L-smooth f, let x; be the random variable given by
running the discretized overdamped Langevin dynamics starting from an arbitrary initial distribution
for continuous time t. Then with probability 1 — 6 over {x; : t € [0,Tn]}, for all t < Tn and for a
sufficiently large constant c:

lze = @1/ jnll2 < e(B + Vd + /In(T/6)) /1)

Similarly, if x} is the random variable given by running continuous overdamped Langevin dynamics
starting from an arbitrary initial distribution for time t, with probability 1 — 6 over x} for all t < Tn:
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2} = @/ ppll2 < e(B+ Vd + /In(T/6)) /1)

Proof. By B-Lipschitzness of f, the movement in any interval of length 7 due to the gradient step
in both the discrete and continuous case is at most 257. By the multivariate Brownian motion tail
bound, in both the discrete and continuous cases the maximum movement due to the addition of
Gaussian noise is at most ¢( \f d + /In(T/6)),/n with probability at least 1 — 7 in each interval of
length 1, and then the lemma follows by a union bound and triangle 1nequa11ty O

Now Theorem[I2]follows identically to Theorem [9] except using Lemma[34]instead of Lemmal[7]

D Deferred Proofs From Section 3]

D.1 Proof of Lemma (13|

To prove Lemma[I3] we modify the proofs of Lemma 4 and 5 of [Vempala and Wibisono| [2019]. To
describe the modifications, we reintroduce the following definitions from that paper:

Definition 30. We say that a distribution Q) has LSI constant k if for all smooth functions g : R™ — R
for which E,.q[g(x)?] < oco:

E.nq [9(z)?1og (9(2)?)] — Esng [9(2)?] log (Eeng [9(2)?]) < EINQ [IVg()]?] -

Definition 31. We define for o # 0, 1:

Fu(QIIR) = Even [

Q(x)*

Go(Q||IR) = Eynr L IV log Q(x)

R(z)

4
2 _
8] = Eanr

v (ggx;)/] .

For o = 0, 1 these quantities are defined as their limit as o goes to 0, 1 respectively.

Unlike [Vempala and Wibisono| [2019], we extend this definition to negative values of a, which allows
us to swap the arguments @, R:

Fact32. Fi_,(Q||R) = F,(R||Q),G1-o(Q||R) = G4 (R]||Q). We also recall that D1_,(Q||R) =
52 Da(RI|Q).

Proof of Lemmal[I3} Bakry and Emery [[1985] shows that since the initial distribution satisfies that
—log Qg is 1-strongly convex, () has LSI constant 1. Consider instead running the discrete over-
damped Langevin dynamics with step size n starting with (Jo. In one step, we apply a gradient
descent step that is (1 — 1/2)-Lipschitz (see e.g. [Hardt et al., 2016, Lemma 3.7]), and then add
Gaussian noise N(0,2nI;). Lemma 16 in [Vempala and Wibisono| [2019] shows that applying a
(1—n/2)-Lipschitz map to a distribution with LSI constant ¢ results in a distribution with LSI constant
at least ¢/(1 —n/2)2. Adding Gaussian noise N (0,211;) to a distribution with LSI constant c results
in a distribution with LSI constant at least 1#%271 (see e.g. [Wang and Wang, 2016, Proposition
1.1]). Putting it together, we get that after one step of the discrete dynamics, the LSI constant of the
distribution goes from c to at least:

1 c
%4_277_ 1—(1=2c)n+n?/4

Then, we have that 1 — (1 — 2¢)n + n?/4 < 1, i.e. the LSI constant does not decrease after one step,
as long as 7 < 4(1 — 2¢). Taking the limit as 7 goes to 0, we conclude that ;s LSI constant can
never decrease past 1/2, i.e. (); has LSI constant at least 1/2 for all ¢ > 0.
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Now, since (J; has LSI constant at least 1/2, we can repeat the proof of Lemma 5 in[Vempala and!

'Wibisono|[2019]] with the distributions swapped to show that % > LD, (R||Q). Applying

Fact to the proof of Lemma 6 in|Vempala and Wibisono| [2019], we can show that d%Da (R||Q:) =

R[|Q+)

—QW Combining these two inequalities and integrating gives the lemma. O

D.2 Proof of Lemma 13

The proof of Lemma [[3] follows similarly to that of Lemma[I0]

Proof of Lemmal(I3] Since f is 1-strongly convex and L-smooth, we have:

FO)+ 5 lel3 < (@) < FO) + il

Then:

exp((a — 1) Da(RIQ0)) = / %dx

(2m) 4o~ 1)/2/ exp< )+O‘_1|w||§> dx
iy 2
(27r)d(a—1)/2
< B [ o (~5he2) 0o
(2m)de/2
eaf(0) °

Taking logs and using that the L-smooth f that minimizes f(0) is N(0,+1;) with density
exp(—¢ log(27/L) — Lz|13):

(0%

-1

d d
Da(RIIQ0) < —— . (2log2w - f(0>) < ogn

For o > 2, the above bound is thus at most dlog L as desired, and for 1 < a < 2 we can just use
monotonicity of Rényi divergences to bound D, (R||Qo) by D2(R||Qo).

Similarly:

+1/L

)
exp((1/L) D141/ (Qol|R)) /%71/de
S Ry I G LR EVATS

o O)/L
= (2) d<1+1/L>/2/ (””“""2) dz
o O)/Ld/2

T (2m)dL

Taking logs and using that the 1-strongly convex f that maximizes f(0) is N (0, I;) with density
exp(—§ log(27) — L||z|3):
< dLlog L'

Dy /(@) < L { FO)/L+ S1og L — 5 tog(am)| < P
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D.3 Proof of Theorem/[T]

Proof of Theorem[I] Let @ be the distribution of the continuous overdamped Langevin dynamics
using f run from initial distribution N (0, I;) for time ¢. Assume without loss of generality that

o > 2. If 7 is at least a sufficiently large constant times o In “2£ [emma|l5|and Lemma13|give
that Dyo(R||Q-) < €/3. Theorem[9] gives that D, (Q-||P) < e/3 Fact21]with p, ¢ = 2 gives that
D, (R||P) <e.

Similarly, Lemma|l4|and Lemma/15|give that at time ¢ = 3 log((2cc — 1) L), D2 (Q¢||R) < dlog L.
Then Lemma T 1] gives that, Doo (Q-||R) < /3. Theorem@]glves that Doo (P||Q~) < €¢/3. Fact.
with p, ¢ = 2 again gives that D,, (P| |IR) <e.

E Deferred Proofs From Section

E.1 Proof of Theorem [16]

Proof. The proof follows similarly to that of Theorem[9] Similarly to the overdamped Langevin
dynamics we have:

Lemma 33. For any L-smooth f and Xo.r, X1, as defined in Section@ we have:

TalL?r?
DQ(XO?T’CHX(/):Tk)’Da(X(/):TkHXO:Tk) < T’n . %

The proof follows almost exactly as did the proof of Lemma[5} we note that the updates to position
are deterministic, and so by Fact[I8] we just need to control the divergence between velocities, which
can be done using the same analysis as in Lemmal 5l The multiplicative factor of 1/~ appears because

the ratio of the Gaussian’s standard deviation to the gradient step’s multiplier is 1/~ /u times what it
was in the overdamped Langevin dynamics. Next, similar to Lemma([7} we have the following tail
bound on 7:

Lemma 34. Fix any v > 2, and define
Umax = C\/ Yl (\/Td + \/111(1/5)) .
Fixanyn < #iL, and any distribution over xq, vy satisfying that

l[voll3
2

Pr |:/’Lf(x0) + < % a,x:| Z 1- 67 (4)

let x¢, vy be the random variable given by running the discretized underdamped Langevin dynamics
starting from xg,vg drawn from this distribution for time t. Then with probability 1 — § over
{(z¢,v¢) : t € [0, 7]}, for all t < 7 that are multiples of n) and for a sufficiently large constant c:

thJrn - xt”? S UmaxT™]-

Similarly, if x; is the random variable given by running continuous underdamped Langevin dynamics
starting from xq, vo drawn from this distribution for time t, with probability 1 — § over {(z},v}) :
te€[0,7)} forallt < r:

th - th/anH2 < UmaxT™]-

We give the proof in the following subsection. We note that the correct tail bound likely has a
logarithmic dependence on 7 and not a polynomial one. However, based on similar convergence
bounds (e.g. |Vempala and Wibisono| [2019], Ma et al. [2019]), we conjecture that the time 7 needed
for continuous underdamped Langevin dynamics to converge in Rényi divergence has a logarithmic
dependence on d, 1 /e. So, improving the dependence on 7 in this tail bound will likely not improve
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the final iteration complexity’s dependence on d, 1/ by more than logarithmic factors. In addition,
settling for a polynomial dependence on 7 makes the proof rather straightforward.

Finally, from Lemma 33} plugging in the tail bound of Lemma[34]for » (which holds since we assume
n < :L) we get the divergence bound:

3ura/ L (1d + In(5:) + In(55))n?

Do/ (XO:Tka X(/);Tk) S 4

We can then just follow the proof of Theorem J]as long as:

3 Qd/ /_1L222
prida’ (o’ — 1) cn><2,

c1(a’) = exp ( -

For o/ = %0‘11;1/5 — 2. This follows if n = O(m . %) as assumed in the lemma

statement. O

E.2 Proof of Lemma 34|
Proof. We can assume ¢ < 1/2, at a loss of a multiplicative constant. We first focus on the continuous

chain. It suffices to show the maximum norm of the velocity over [0, 7) iS ¥Uimax With the desired
probability. We will instead focus on bounding the Hamiltonian, defined as follows:

¢r = uf () + [logl3/2.

Analyzing the rate of change, by Ito’s lemma we get

_ O¢y

- !
ox}

-dzy +

doy kel d 2_1_1 Z o Po d(vy)i d(vy); a

-dv
du! 2, D000, B, dB,
= uV f(x}) - vidt +v) - (—pV f(x})dt — yvidt + /2yudBy) + 2yud - dt

=y(2ud — |[v}]13)dt + /2yp(v; - dBy).

So, we can write the Hamiltonian at any time as a function of the initial Hamiltonian ¢y and the
random variables B; and v} as:

/

t t
IU?
b¢ = do— / 10, 13ds + /277 / 10, la—22— . dB, + 2vpdt.
0 0

(AP

Let V; denote fg |v%]|3ds. By scalability of Brownian motion, we can define a Brownian motion B,
jointly distributed with B; such that dB; = m % fovt dB.. Then, we have:

Vi o
b1 = b0 — Wi + V20 / A AB 2,
0 g(s)

Where g(r) is the value 7 such that [ ||v}]|3ds = r. We can then use the rotational symmetry
of Brownian motion to define another Brownian motion B}’ jointly distributed with B} such that
'Ul
9

u-dB) = —*“®— . dB; for a fixed unit vector u, giving:
t ”Ug(t)”Q t

Vi
¢t = do — Vi + \/2'yu/ u-dBY + 2yudt.
0
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We will show that with probability at least 1 — § over By, the maximum of ¢'(V) := ¢g — 4V +
V2 fOV u-dBY over V € |0, oo) is at most vrmx Under this event, if ¢ is sufficiently large then
forall t € [0,7) we have ¢; < % + 2ypdr < 202, giving the desired velocity bound.

max

We first claim that with probability at at least 1 — g. for all non-negative integers k, we have

¢ (kvmax) < % For sufficiently large c, this holds for £ = 0 with probability at least

(k= l)v

S by @. Cond1t10n1ng on this event, for k > 0 if ¢/ (kv2,,,) > max then:

kv
k—1)v
V 27/1/ u- dB;/ = N(O 2]i;’yluxl‘)max) > _% ¢0 + k’yvrznax > (’Y - 1)kvr2naxa
0

2
Which occurs with probability at most exp(—%) < exp(— Tf“‘) If the constant ¢ in

. . . sk+2 .
Umax is sufficiently large, then this is less than £ °5—. Taking a union bound over all %k, we get the
claim. Next, we claim that in each interval [kv2 (k + 1)v2,,. ), the maximum increase of ¢'(V')
is more than (5£1)e2  with probability at most 57. Taking a union bound over all intervals,

2
this claim along with the previous claim this gives the desired bound on ¢’(V') with probability

1 — §. This claim follows by observing that in the interval [kv2 ., (k + 1)v2,.), ¢'(V) increases
more than maxy e(kv2 _ (k+1)02,,,) [f w2 U-dBY ] which is at most (£42)v2 .. with probability

()2t skt
at most exp(—-—Fg—=ex) < 0o,

max

The discrete chain is analyzed similarly. We have:

8¢t [“)(bt 1 62¢t d(’l)t)z' d(’l)t)j
cday + =L dop + = dt
e+ vt g Z d(v;)id(vs); dB; dB;

d¢t:87xt 8

i,j€[d]
= uV () - vedt + vy - (—pr(xL%m)dt — yvedt + \/2yudBy) + 2yud - dt
= UV f () = Vf(w0)) - vedt — yl|ve5dt + /2yp(v - dBy) + 2ypd - dt

< pLllze — @ o pyllzllocll2dt = yllocl3dt + v/2yp(v - dBy) + 2yud - dt

t
Ll [, vedslalodladt ~ ol Bt + /B dBy) + 2y
n

t
<uL (/ Us||2”t||2d5> dt — y[vell3dt + v/2yp(v - dBy) + 2ypd - dt
Ln

L t
< ( /. lvs||2+||vt|2ds> — e lBdt + /230 - dBy) + 2y - .
w7

Integrating, we get:

L
b0 < 00 - (y — 120 / lv:]13ds + /277 / ol A, + 2

< o1 / o 2ds + v27m / loglla 25— - dB, + 2yudt.
2 Jo 0 llvsll2

At this point we repeat the analysis from the continuous case (only losing a multiplicative constant
due to the /2 multiplier not being ). O

F On Distance Measures between Distributions

Existing algorithms for sampling from logconcave distributions are known to output samples from a
distribution that is close to the intended distribution. The closeness is typically measured in statistical
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distance, Wasserstein distance, or in KL divergence. Unfortunately, none of these distances are strong
enough to ensure differential privacy for the resulting algorithm. The more stringent choice of distance
in differential privacy is for a good reason: it is easy to construct examples of algorithms that ensure
privacy with respect to one of these weaker notions of distance but are clearly unsatisfactory from a
privacy point of view [Dwork and Rothl, [2014]. This motivates the question of efficient sampling in
terms of a stronger measure of distance such as oco-divergence, or Rényi divergence (both of which
upper bound KL divergence and thus upper bound statistical distance and Wasserstein distances).
Different distance notions can be related to each other and [Hardt and Talwar| [2010]] showed that an
exponentially small statistical distance guarantee suffices to derive a differentially private algorithm.
This allows for polynomial time algorithms using the classical logconcave samplers.

The faster sampling algorithms based on Langevin dynamics and relatives however have a polynomial
dependence on the distance. In this case, convergence under the various notions of distance is not
equivalent. None of the commonly used measures (Statistical distance, KL-divergence or Wasserstein
distance) can be polynomially related to common distances of interest from a privacy point-of-view
(oo-divergence, Rényi divergence). While (g, §)-DP can be related via a polynomial in §~1, this
would lead to algorithms that are polynomial in § !, which is undesirable as we often want § to be
sub-polynomial.
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