
Supplementary Information (SI)

A Proof of identifiability for pi-VAE

Theorem 1. Assume that we observe data sampled from pi-VAE model defined according to equa-
tion 1,2 with Poisson noise and parameters ✓ = (f ,T,�). Assume the following holds:

i) The firing rate function f in equation 1 is injective.

ii) The sufficient statistics Ti,j in 2 are differentiable almost everywhere, and their derivatives T 0
i,j

are nonzero almost everywhere for 1  i  m, 1  j  k.

iii) There exists mk + 1 distinct points u0
, · · · ,umk+1 such that the matrix

L =

�
�(u1

)� �(u0
), · · · ,�(umk

)� �(u0
)

�

of size mk ⇥mk is invertible, then the pi-VAE model is identifiable up to ⇠.

Proof. (35) has proved that the Bernoulli observation model is identifiable under the same set of
assumptions. For Poisson observations with mean firing rate as �, we can transform it to Bernoulli
observations with parameter p = 1� exp(��) by keeping the zeros and treating the positive values
as ones. Because the Bernoulli model is identifiable, the Poisson model is also identifiable.

B Network architecture

For both the generative models in pi-VAE and VAE, we used the following strategy to parameterize f(·)
which maps the m-dimensional latent z to the mean firing rate of n-dimensional Poisson observations.
We first mapped the z1:m to the concatenation of z1:m and t (z1:m), where t(·) : Rm ! Rn�m

is parameterized by a feed-forward neural network with a linear output and 2 hidden layers, each
containing bn/4c nodes with ReLU activation function. Then we applied two GIN blocks. Same
as (64), we defined the affine coupling function as the concatenation of the scale function s and the
translation function t, computed together for efficiency, applied two affine coupling functions per
GIN block, and randomly permuted the input before passing it through each GIN block. We defined
both s, t in GIN block as mapping: Rbn/2c ! Rn�bn/2c. The scale function s is passed through a
clamping function 0.1 tanh(s), which limits the output to the range (�0.1, 0.1). For affine coupling
function, we have a linear output layer with and 2 hidden layers, each containing bn/4c nodes with
ReLU activation function.

We modeled the prior pT,�(z|u) in pi-VAE as independent Gaussian distribution. The natural
parameters �i,j are the Gaussian means and variances. For discrete u, we used different values of the
mean and variance for different labels. For continuous u, we parameterized the mean and spectrum
decomposition of variance together by a feed-forward neural network with a linear output layer
and 2 hidden layers, each containing 20 nodes with tanh activation function (the mean and variance
share the 2 hidden layers). For the cases of mixed discrete and continuous labels u, we encoded the
discrete labels with a one-hot vector, and mapped it together with the continuous components to the
mean and spectrum decomposition of variance using feed-forward neural network as described in the
continuous case.

For the recognition model in pi-VAE and VAE, we used q�(z|x) as independent Gaussian distribution,
and parameterized the mean and the spectrum decomposition of the variance separately using feed-
forward neural network with a linear output layer and 2 hidden layers, each containing 60 nodes with
tanh activation function.

Code implementing the algorithms is available at https://github.com/zhd96/pi-vae.

C Synthetic data simulations

To generate firing rate of the Poisson process from simulated latent z, we first padded z with n-m
zeros, then applied 4 RealNVP blocks, each containing 2 affine coupling functions with the same
structure as defined in section B except that s does not need to have sum equal to 0 here, and we used
bn/2c nodes for each hidden layer.

15

For discrete label simulation shown in Fig. 2a-d, we simulated 10

4 observations, and split them into
training, validation, test data (80%, 10%, 10% respectively). We set the batch size to be 200 during
training, and trained for 600 epochs. For the continuous label simulation shown in Fig. 2e-h, we
simulated 1.5 ⇥ 10

4 observations. The training-validation-test split is the same as discrete label
simulation. We set batch size as 300, and trained for 1000 epochs.

D Monkey reaching data: session 2

For each reaching direction, there are ⇠ 35 trials (see Fig. S1a). We analyzed 211 neurons from PMd
area, and focused on the reaching period from go cue (defined as t = 0) to the end, which typically
last for ⇠ 1 second. We binned the ensemble spike activities into 50ms bins. We randomly split the
dataset into 34 batches, where each batch contains at least one trial from each direction. We randomly
took 28 batches as training data, 3 batches as validation data and 3 batches as test data. Similar to
Session 1, We fit 4-dimensional latent models to the data based on pi-VAE and VAE respectively.
Results are shown in Fig. S1.

E Alternative methods

E.1 Monkey reaching data

For supervised UMAP2, we set the reaching directions as labels, and embedded the high dimensional
spike count data into a 4-dimensional latent space. Other parameters were set to be the default values.
For PfLDS, we implemented the algorithm on our own using the same neural network architecture as
in (22) (the original code provided by the authors of that paper depends on Python Theano library,
which has not been maintained for a while). We assumed a 4-dimensional latent space and Poisson
observation model. We set the learning rate as 2.5⇥ 10

�4 and trained for 1500 epochs. Each batch
consisted of a single trial. The training, validation and test sets had 184, 16, 17 trials respectively. For
LFADS3, we assumed a 4-dimensional latent space along with a Poisson observation model. We
applied two versions of the model to the data, with the reaching direction as an additional input and
without this input. Other parameters were set to be the default values. We pre-processed the data by
discarding all the trials less than 1 second and trimming longer trials to make them 1 second long.
Each batch consisted of a single trial. The training, validation and test sets had 177, 16, 16 trials
respectively. For demixed PCA4, we pre-processed the data to make each reaching direction had the
same number of trials and each trial had the same length (i.e.,1 second). We took time and stimulus
as labels. We used 2 sets of components, each containing time, stimulus, as well as time and stimulus
mixing components. Other parameters (eg. regularizer) were set to be the default values.

E.2 Hippocampus data

For supervised UMAP, we used 2-dimensional latent variables model with rat’s locations as labels.
Other parameters were set as default. For PCA, we used two principal components. For “PCA
after LDA", we first applied LDA with rat’s running directions as response and neural activities
as predictors, and identified the 1-dimensional linear boundary which could separate the neural
activities of two directions most. Then we projected the neural activities on this boundary using
linear regression, then applied PCA with 2 principal components on the residuals. We found that
the resulting latents were all less interpretable than pi-VAE (Fig. S4), with no dimension directly
representing the rat’s location. Also the rhythmic-like fluctuations spanned across dimensions, rather
than concentrated in one dimension (not shown).

2https://umap-learn.readthedocs.io/en/latest/
3https://github.com/lfads/models
4https://github.com/machenslab/dPCA

16

Figure S1: Results on Macaque reaching data (Session 2). These results are similar to those obtained
from Session 1 as reported in the main text. (a) The macaque’s reaching trajectories for 8 directions
labeled by different colors. (b) The reaching speed of the macaque for each trial. (c,d) Scatter plots of
RMSE of fitted rate (n = 211 neurons) for comparing pi-VAE and VAE, as well as VAE and tuning
curve. (e) Decoding accuracy as function of time on test data by pi-VAE and tuning curve model. (f,g)
Inferred latent based on pi-VAE, i.e.,mean of q(z|x,u). (h,i) Inferred latent from pi-VAE averaged
over repeats from the same reaching direction. (j,k) Mean of q(z|x) from pi-VAE. (l,m) Mean of
q(z|x) by pi-VAE averaging over repeats from the same reaching direction. (n-q) Similar to (f-i) for
VAE.

Figure S2: Related to Fig. 3, on reaching data. Inferred latent without label prior using pi-VAE still
are still highly structured and interpretable. The first two dimensions carry information about the
reaching direction, while the third and fourth dimension mainly captures the dynamics over the time
course of a trial. (a,b) Mean of q(z|x) from pi-VAE. (c,d) Mean of q(z|x) by pi-VAE averaging over
repeats from the same reaching direction.

17

 latent geometrya b

L R

L

R

L R
position & direction

po
sit

io
n

&
di

re
ct

io
n

Figure S3: Related to Fig. 4. Results on Hippocampus CA1 data. Inferred latents without the label
prior using pi-VAE still exhibit clear structure, with the latent geometry respecting the geometry of the
track. (a) Mean of q(z|x) from pi-VAE. Two directions are color-coded by red and blue, and positions
are coded by color saturation. Black lines represent the mean of the latent states corresponding to
position on the track for two directions. (b) The distance between pairs of points from the two black
lines is computed to quantify the latent geometry.

0 2- 2

0

3

PC 1

PC
 2 2

0

- 2

0 3
PC 1

PC
 2

PCA PCA after LDAa b

0- 6

0

 6

UMAP

latent 1

la
te

nt
 2

c

Figure S4: Hippocampus data: results from several alternative methods. a) UMAP. b) PCA. c) PCA after Linear
Discriminant analysis (LDA). Notice that these methods recovered more entangled representation compared to
pi-VAE.

18

	Introduction
	Model
	Generative model
	Inference algorithm

	Results
	Validation using synthetic data
	Applications to neural population data
	Monkey reaching data
	Rat hippocampal CA1 data

	Comparison to alternative methods

	Discussion
	Broader Impact
	Proof of identifiability for pi-VAE
	Network architecture
	Synthetic data simulations
	Monkey reaching data: session 2
	Alternative methods
	Monkey reaching data
	Hippocampus data

