RL Unplugged: A Suite of Benchmarks for Offline
Reinforcement Learning

Caglar Gulcehre?*  Ziyu Wang®:* Alexander Novikov”:* Tom Le Paine®-*

Sergio Gémez Colmenarejo®  Konrad Zotna®  Rishabh Agarwal®  Josh Merel”

Daniel Mankowitz” Cosmin Paduraru® Gabriel Dulac-Arnold® Jerry Li®
Mohammad Norouzi® Matt Hoffman® Nicolas Heess Nando de Freitas”
D: DeepMind G: Google Brain
Abstract

Offline methods for reinforcement learning have a potential to help bridge the
gap between reinforcement learning research and real-world applications. They
make it possible to learn policies from offline datasets, thus overcoming concerns
associated with online data collection in the real-world, including cost, safety, or
ethical concerns. In this paper, we propose a benchmark called RL Unplugged to
evaluate and compare offline R methods. RL Unplugged includes data from a
diverse range of domains including games (e.g., Atari benchmark) and simulated
motor control problems (e.g., DM Control Suite). The datasets include domains
that are partially or fully observable, use continuous or discrete actions, and have
stochastic vs. deterministic dynamics. We propose detailed evaluation protocols
for each domain in RL Unplugged and provide an extensive analysis of supervised
learning and offline RL methods using these protocols. We will release data for
all our tasks and open-source all algorithms presented in this paper. We hope
that our suite of benchmarks will increase the reproducibility of experiments and
make it possible to study challenging tasks with a limited computational budget,
thus making RL research both more systematic and more accessible across the
community. Moving forward, we view RL Unplugged as a living benchmark suite
that will evolve and grow with datasets contributed by the research community and
ourselves. Our project page is available on github.

1 Introduction

Reinforcement Learning (RL) has seen important breakthroughs, including learning directly from
raw sensory streams [Mnih et al., 2015], solving long-horizon reasoning problems such as Go [Silver
et al., 2016], StarCraft II [Vinyals et al., 2019], DOTA [Berner et al., 2019], and learning motor
control for high-dimensional simulated robots [Heess et al., 2017, Akkaya et al., 2019]. However,
many of these successes rely heavily on repeated online interactions of an agent with an environment.
Despite its success in simulation, the uptake of RL for real-world applications has been limited.
Power plants, robots, healthcare systems, or self-driving cars are expensive to run and inappropriate
controls can have dangerous consequences. They are not easily compatible with the crucial idea of

*Indicates joint first authors.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.


https://git.io/JJUhd

IEEYIRET DM Control Suite / DML -l Atari 2600
Real World RL Suite 1

Action space continuous continuous continuous discrete
Observation space state pixels pixels pixels
Exploration difficulty low to moderate high moderate moderate

Dynamics | deterministic / stochasitic deterministic deterministic stochastic

Figure 1: Task domains included in RL Unplugged. We include several open-source environments that are
familiar to the community, as well as recent releases that push the limits of current algorithms. The task domains
span key environment properties such as action space, observation space, exploration difficulty, and dynamics.

exploration in RL and the data requirements of online RL algorithms. Nevertheless, most real-world
systems produce large amounts of data as part of their normal operation.

There is a resurgence of interest in offline methods for reinforcement learning,! that can learn
new policies from logged data, without any further interactions with the environment due to its
potential real-world impact. Offline RL can help (1) pretrain an RL agent using existing datasets, (2)
empirically evaluate RL algorithms based on their ability to exploit a fixed dataset of interactions,
and (3) bridge the gap between academic interest in RL and real-world applications.

Offline RL methods [e.g Agarwal et al., 2020, Fujimoto et al., 2018] have shown promising results on
well-known benchmark domains. However, non-standardized evaluation protocols, differing datasets
and lack of baselines make algorithmic comparisons difficult. Important properties of potential
real-world application domains such as partial observability, high-dimensional sensory streams
such as images, diverse action spaces, exploration problems, non-stationarity, and stochasticity are
under-represented in the current offline RL literature. This makes it difficult to assess the practical
applicability of offline RL algorithms.

The reproducibility crisis of RL [Henderson et al., 2018] is very evident in offline RL. Several works
have highlighted these reproducibility challenges in their papers: Peng et al. [2019] discusses the
difficulties of implementing the MPO algorithm, Fujimoto et al. [2019] mentions omitting results
for SPIBB-DQN due to the complexity of implementation. On our part, we have had difficulty
implementing SAC [Haarnoja et al., 2018]. We have also found it hard to scale BRAC [Wu et al.,
2019] and BCQ [Fujimoto et al., 2018]. This does not indicate these algorithms do not work. Only
that implementation details matter, comparing algorithms and ensuring their reproducibility is hard.
The intention of this paper is to help in solving this problem by putting forward common benchmarks,
datasets, evaluation protocols, and code.

The availability of large datasets with strong benchmarks has been the main factor for the success of
machine learning in many domains. Examples of this include vision challenges, such as ImageNet
[Deng et al., 2009] and COCO [Veit et al., 2016], and game challenges, where simulators produce
hundreds of years of experience for online RL agents such as AlphaGo [Silver et al., 2016] and the
OpenAl Five [Berner et al., 2019]. In contrast, lack of datasets with clear benchmarks hinders the
similar progress in RL for real-world applications. This paper aims to correct this such as to facilitate
collaborative research and measurable progress in the field.

To this end, we introduce a novel collection of task domains and associated datasets together with
a clear evaluation protocol. We include widely-used domains such as the DM Control Suite [Tassa
et al., 2018] and Atari 2600 games [Bellemare et al., 2013], but also domains that are still challenging
for strong online RL algorithms such as real-world RL (RWRL) suite tasks [Dulac-Arnold et al.,
2020] and DM Locomotion tasks [Heess et al., 2017, Merel et al., 2019a,b, 2020]. By standardizing
the environments, datasets, and evaluation protocols, we hope to make research in offline RL more
reproducible and accessible. We call our suite of benchmarks “RL Unplugged”, because offline RL
methods can use it without any actors interacting with the environment.

! Sometimes referred to as ‘Batch RL,” but in this paper, we use ‘Offline RL’.



This paper offers four main contributions: (i) a unified API for datasets (ii) a varied set of environments
(iii) clear evaluation protocols for offline RL research, and (iv) reference performance baselines.
The datasets in RL Unplugged enable offline RL research on a variety of established online RL
environments without having to deal with the exploration component of RL. In addition, we intend
our evaluation protocols to make the benchmark more fair and robust to different hyperparameter
choices compared to the traditional methods which rely on online policy selection. Moreover,
releasing the datasets with a proper evaluation protocols and open-sourced code will also address
the reproducibility issue in RL [Henderson et al., 2018]. We evaluate and analyze the results of
several SOTA RL methods on each task domain in RL Unplugged. We also release our datasets in an
easy-to-use unified API that makes the data access easy and efficient with popular machine learning
frameworks.

2 RL Unplugged

The RL Unplugged suite is designed around the following considerations: to facilitate ease of use, we
provide the datasets with a unified API which makes it easy for the practitioner to work with all data
in the suite once a general pipeline has been established. We further provide a number of baselines
including state-of-the art algorithms compatible with our API.?

2.1 Properties of RL Unplugged

Many real-world RL problems require algorithmic solutions that are general and can demonstrate
robust performance on a diverse set of challenges. Our benchmark suite is designed to cover a range
of properties to determine the difficulty of a learning problem and affect the solution strategy choice.
In the initial release of RL Unplugged, we include a wide range of task domains, including Atari
games and simulated robotics tasks. Despite the different nature of the environments used, we provide
a unified API over the datasets. Each entry in any dataset consists of a tuple of state (s;), action (a;),
reward (7;), next state (s;+1), and the next action (a;1). For sequence data, we also provide future
states, actions, and rewards, which allows for training recurrent models for tasks requiring memory.
We additionally store metadata such as episodic rewards and episode id. We chose the task domains
to include tasks that vary along the following axes. In Figure 1, we give an overview of how each
task domain maps to these axes.

Action space We include tasks with both discrete and continuous action spaces, and of varying
action dimension with up to 56 dimensions in the initial release of RL Unplugged.

Observation space We include tasks that can be solved from the low-dimensional natural state space
of the MDP (or hand-crafted features thereof), but also tasks where the observation space consists
of high-dimensional images (e.g., Atari 2600). We include tasks where the observation is recorded
via an external camera (third-person view), as well as tasks in which the camera is controlled by the
learning agent (e.g. robots with egocentric vision).

Partial observability & need for memory We include tasks in which the feature vector is a
complete representation of the state of the MDP, as well as tasks that require the agent to estimate the
state by integrating information over horizons of different lengths.

Difficulty of exploration We include tasks that vary in terms of exploration difficulty for reasons
such as dimension of the action space, sparseness of the reward, or horizon of the learning problem.

Real-world challenges To better reflect the difficulties encountered in real systems, we also include
tasks from the Real-World RL Challenges [Dulac-Arnold et al., 2020], which include aspects such as
action delays, stochastic transition dynamics, or non-stationarities.

The characteristics of the data is also an essential consideration, including the behavior policy used,
data diversity, i.e., state and action coverage, and dataset size. RL Unplugged introduces datasets
that cover those different axes. For example, on Atari 2600, we use large datasets generated across
training of an off-policy agent, over multiple seeds. The resulting dataset has data from a large
mixture of policies. In contrast, we use datasets from fixed sub-optimal policies for the RWRL suite.

2See our github project page for the details of our API (https://github.com/deepmind/
deepmind-research/tree/master/rl_unplugged).


https://github.com/deepmind/deepmind-research/tree/master/rl_unplugged
https://github.com/deepmind/deepmind-research/tree/master/rl_unplugged

Training Validation Testing Training Validation Testing

Data Data
Env 6 Env 6 Env 6

En S G
IT2 o | onine |TT° Online | Score ﬂz , | offine | TT° Online | Score

Policy Policy [~ Policy Policy [~
Selection Evaluation Selection Evaluation

v

v

EnR i,

Figure 2: Comparison of evaluation protocols. (left) Evaluation using online policy selection allows us to
isolate offline RL methods, but gives overly optimistic results because they allow perfect policy selection. (right)
Evaluation using offline policy selection allows us to see how offline RL performs in situations where it is too
costly to interact with the environment for validation purposes; a common scenario in the real-world. We intend
our benchmark to be used for both.

2.2 Evaluation Protocols

In a strict offline setting, environment interactions are not allowed. This makes hyperparameter
tuning, including determining when to stop a training procedure, difficult. This is because we cannot
take policies obtained by different hyperparameters and run them in the environment to determine
which ones receive higher reward (we call this procedure online policy selection).? Ideally, offline
RL would evaluate policies obtained by different hyperparameters using only logged data, for
example using offline policy evaluation (OPE) methods [Voloshin et al., 2019] (we call this procedure
offline policy selection). However, it is unclear whether current OPE methods scale well to difficult
problems. In RL Unplugged we would like to evaluate offline RL performance in both settings.

Evaluation by online policy selection (see Figure 2 (left)) is widespread in the RL literature, where
researchers usually evaluate different hyperparameter configurations in an online manner by inter-
acting with the environment, and then report results for the best hyperparameters. This enables us
to evaluate offline RL methods in isolation, which is useful. It is indicative of performance given
perfect offline policy selection, or in settings where we can validate via online interactions. This
score is important, because as offline policy selection methods improve, performance will approach
this limit. But it has downsides. As discussed before, it is infeasible in many real-world settings, and
as a result it gives an overly optimistic view of how useful offline RL methods are today. Lastly, it
favors methods with more hyperparameters over more robust ones.

Evaluation by offline policy selection (see Figure 2 (right)) has been less popular, but is important as
it is indicative of robustness to imperfect policy selection, which more closely reflects the current
state of offline RL for real-world problems. However it has downsides too, namely that there are
many design choices including what data to use for offline policy selection, whether to use value
functions trained via offline RL or OPE algorithms, which OPE algorithm to choose, and the meta
question of how to tune OPE hyperparameters. Since this topic is still under-explored, we prefer not
to specify any of these choices. Instead, we invite the community to innovate to find which offline
policy selection method works best.

Importantly, our benchmark allows for evaluation in both online and offline policy selection settings.
For each task, we clearly specify if it is intended for online vs offline policy selection. For offline
policy selection tasks, we use a naive approach which we will describe in Section 4. We expect future
work on offline policy selection methods to improve over this naive baseline. If a combination of
offline RL method and offline policy selection can achieve perfect performance across all tasks, we
believe this will mark an important milestone for offline methods in real-world applications.

3Sometimes referred to as online model selection, but we choose policy selection to avoid confusion with
models of the environment as used in model based RL algorithms.



Table 1. DM Control Suite tasks. We reserved five

tasks for online policy selection (top) and the rest four ~ Table 2. DM Locomotion tasks. We reserved four
are reserved for the offline policy selection (bottom). tasks for online policy selection (top) and the rest three
See Appendix E for reasoning behind choosing this  are reserved for the offline policy selection (bottom).
particular task split. See Appendix E for reasoning behind choosing this
particular task split.

Environment ,NO' A.Ct'

episodes  dim Envi No. Seq. Act.
nvironment . .

episodes length  dim.

Cartpole swingup 40 1
Cheetah run 300 6 Humanoid corridor 4000 2 56
Humanoid run 3000 21 Humanoid walls 4000 40 56
Manipulator insert ball 1500 5 Rodent gaps 2000 2 38
Walker stand 200 6 Rodent two tap 2000 40 38
Finger turn hard 500 2 Humanoid gaps 4000 2 56
Fish swim 200 5 Rodent bowl escape 2000 40 38
Manipulator insert peg 1500 5 Rodent mazes 2000 40 38

Walker walk 200 6

3 Tasks

For each task domain we give a description of the tasks included, indicate which tasks are intended
for online vs offline policy selection, and provide a description of the corresponding data. Let us
note that we have not modified how the rewards are computed in the original environments we used
to generate the datasets. For the details of those reward functions, we refer to the papers where the
environments were introduced first.

3.1 DM Control Suite

DeepMind Control Suite [Tassa et al., 2018] is a set of control tasks implemented in MuJoCo [Todorov
et al., 2012]. We consider a subset of the tasks provided in the suite that cover a wide range of
difficulties. For example, Cartpole swingup a simple task with a single degree of freedom is included.
Difficult tasks are also included, such as Humanoid run, Manipulator insert peg, Manipulator insert
ball. Humanoid run involves complex bodies with 21 degrees of freedom. And Manipulator insert
ball/peg have not been shown to be solvable in any prior published work to the best of our knowledge.
In all the considered tasks as observations we use the default feature representation of the system state,
consisting of proprioceptive information such as joint positions and velocity, as well as additional
sensors and target position where appropriate. The observation dimension ranges from 5 to 67.

Data Description Most of the datasets in this domain are generated using D4PG. For the environ-
ments Manipulator insert ball and Manipulator insert peg we use V-MPO [Song et al., 2020] to
generate the data as DAPG is unable to solve these tasks. We always use 3 independent runs to ensure
data diversity when generating data. All methods are run until the task is considered solved. For each
method, data from the entire training run is recorded. As offline methods tend to require significantly
less data, we reduce the sizes of the datasets via sub-sampling. In addition, we further reduce the
number of successful episodes in each dataset by 2/3 so as to ensure the datasets do not contain too
many successful trajectories. See Table 1 for the size of each dataset. Each episode in this dataset
contains 1000 time steps.

3.2 DM Locomotion

These tasks are made up of the corridor locomotion tasks involving the CMU Humanoid [Tassa et al.,
2020], for which prior efforts have either used motion capture data [Merel et al., 2019a,b] or training
from scratch [Song et al., 2020]. In addition, the DM Locomotion repository contains a set of tasks
adapted to be suited to a virtual rodent [Merel et al., 2020]. We emphasize that the DM Locomotion
tasks feature the combination of challenging high-DoF continuous control along with perception
from rich egocentric observations.

Data description Note that for the purposes of data collection on the CMU humanoid tasks, we use
expert policies trained according to Merel et al. [2019b], with only a single motor skill module from



Table 3: Atari games. We have 46 games in total in our Atari data release. We reserved 9 of the games for
online policy selection (top) and the rest of the 37 games are reserved for the offline policy selection (bottom).

BEAMRIDER DOUBLEDUNK MsS. PACMAN ROAD RUNNER ZAXXON
DEMONATTACK ICE HOCKEY POOYAN ROBOTANK

ALIEN BREAKOUT FROSTBITE NAME THIS GAME  TIME PILOT
AMIDAR CARNIVAL GOPHER PHOENIX Up AND DOWN
ASSAULT CENTIPEDE GRAVITAR PONG VIDEO PINBALL
ASTERIX CHOPPER COMMAND  HERO Q*BERT WIZARD OF WOR
ATLANTIS CrAZY CLIMBER JAMES BOND RIVER RAID YARS REVENGE
BANK HEIST ENDURO KANGAROO SEAQUEST

BATTLEZONE FISHING DERBY KRULL SPACE INVADERS

BOXING FREEWAY KUNG FU MASTER ~ STAR GUNNER

motion capture that is reused in each task. For the rodent task, we use the same training scheme as
proposed by Merel et al. [2020]. For the CMU humanoid tasks, each dataset is generated by 3 online
methods whereas each dataset of the rodent tasks is generated by 5 online methods. Similarly to the
control suite, data from entire training runs is recorded to further diversify the datasets. Each dataset
is then sub-sampled and the number of its successful episodes reduced by 2/3. Since the sensing
of the surroundings is done by egocentric cameras, all datasets in the locomotion domain include
per-timestep egocentric camera observations of size 64 x 64 x 3. The use of egocentric observation
also renders some environments partially observable and therefore necessitates recurrent architectures.
We therefore generate sequence datasets for tasks that require recurrent architectures. For dataset
sizes and sequence lengths of see Table 2.

3.3 Atari 2600

The Arcade Learning environment (ALE) [Bellemare et al., 2013] is a suite consisting of a diverse
set of 57 Atari 2600 games (AtariS7). It is a popular benchmark to measure the progress of online RL
methods, and Atari has recently also become a standard benchmark for offline RL methods [Agarwal
et al., 2020, Fujimoto et al., 2019] as well. In this paper, we are releasing a large and diverse dataset
of gameplay following the protocol described by Agarwal et al. [2020], and use it to evaluate several
discrete RL algorithms.

Data Description The dataset is generated by running an online DQN agent and recording transitions
from its replay during training with sticky actions [Machado et al., 2018]. As stated in [Agarwal
et al., 2020], for each game we use data from five runs with 50 million transitions each. States in
each transition include stacks of four frames to be able to do frame-stacking with our baselines.

In our release, we provide experiments on the 46 of the Atari games that are available in OpenAl
gym. OpenAl gym implements more than 46 games, but we only include games where the online
DQN’s performance that has generated the dataset was significantly better than the random policy. We
provide further information about the games we excluded in Appendix F. Among our 46 Atari games,
we chose nine to allow for online policy selection. Specifically, we ordered all games according to
the their difficulty,* and picked every fifth game as our offline policy section task to cover diverse
set of games in terms of difficulty. In Table 3, we provide the full list of games that we decided to
include in RL Unplugged.

3.4 Real-world Reinforcement Learning Suite

Dulac-Arnold et al. [2019, 2020] identify and evaluate respectively a set of 9 challenges that are
bottlenecks to implementing RL algorithms, at scale, on applied systems. These include high-
dimensional state and action spaces, large system delays, system constraints, multiple objectives,
handling non-stationarity and partial observability. In addition, they have released a suite of tasks
called realworldrl-suite’® which enables a practitioner to verify the capabilities of their algorithm
on domains that include some or all of these challenges. The suite also defines a set of standardized
challenges with varying levels of difficulty. As part of the “RL Unplugged” collection, we have

“The details of how we decide the difficulty of Atari games are provided in Appendix G.
>See https://github.com/google-research/realworldrl_suite for details.


https://github.com/google-research/realworldrl_suite

generated datasets using the ‘easy‘ combined challenges on four tasks: Cartpole Swingup, Walker
Walk, Quadruped Walk and Humanoid Walk.

Data Description The datasets were generated as described in Section 2.8 of [Dulac-Arnold et al.,
2020]; note that this is the first data release based on those specifications. We used either the no
challenge setting, which includes unperturbed versions of the tasks, or the easy combined challenge
setting (see Section 2.9 of [Dulac-Arnold et al., 2020]), where data logs are generated from an
environment that includes effects from combining all the challenges. Although the no challenge
setting is identical to the control suite, the dataset generated for it is different as it is generated
from fixed sub-optimal policies. These policies were obtained by training 3 seeds of distributional
MPO [Abdolmaleki et al., 2018] until convergence with different random weight initializations, and
then taking snapshots corresponding to roughly 75% of the converged performance. For the no
challenge setting, three datasets of different sizes were generated for each environment by combining
the three snapshots, with the total dataset sizes (in numbers of episodes) provided in Table 4. The
procedure was repeated for the easy combined challenge setting. Only the “large data” setting was
used for the combined challenge to ensure the task is still solvable. We consider all RWRL tasks as
online policy selection tasks.

Table 4: real-world Reinforcement Learning Suite dataset sizes. Size is measured in number of episodes,
with each episode being 1000 steps long.

Cartpole swingup ~ Walker walk  Quadruped walk  Humanoid walk

Small dataset 100 1000 100 4000
Medium dataset 200 2000 200 8000
Large dataset 500 5000 500 20000

4 Baselines

We provide baseline results for a number of published algorithms for both continuous (DM Control
Suite, DM Locomotion), and discrete action (Atari 2600) domains. We will open-source implementa-
tions of our baselines for the camera-ready. We follow the evaluation protocol presented in Section 2.2.
Our baseline algorithms include behavior cloning (BC [Pomerleau, 1989]); online reinforcement
learning algorithms (DQN [Mnih et al., 2015], D4PG [Barth-Maron et al., 2018], IQN [Dabney
et al., 2018]); and recently proposed offline reinforcement learning algorithms (BCQ [Fujimoto et al.,
2018], BRAC [Wu et al., 2019], RABM [Siegel et al., 2020], REM [Agarwal et al., 2020]). Some
algorithms only work for discrete or continuous actions spaces, so we only evaluate algorithms in
domains they are suited to. Detailed descriptions of the baselines and our implementations (including
hyperparameters) are presented in Section A in the supplementary material.

Naive approach for offline policy selection For the tasks we have marked for offline policy selec-
tion, we need a strategy that does not use online interaction to select hyperparameters. Our naive
approach is to choose the set of hyperparameters that performs best overall on the online policy
selection tasks from the same domain. We do this independently for each baseline. This approach is
motivated by how hyperparameters are often chosen in practice, by using prior knowledge of what
worked well in similar domains. If a baseline algorithm drops in performance between online and
offline policy selection tasks, this indicates the algorithm is not robust to the choice of hyperparame-
ters. This is also cheaper than tuning hyperparameters individually for all tasks, which is especially
relevant for Atari. For a given domain, a baseline algorithm and a hyperparameter set, we compute
the average® score over all tasks allowing online policy selection. The best hyperparameters are then
applied to all offline policy selection tasks for this domain. The details of the experimental protocol
and the final hyperparameters are provided in the supplementary material.

4.1 DM Control Suite

In Figure 4, we compare baselines across the online policy selection tasks (left) and offline policy
selection tasks (right). A table of results is included in Section B of the supplementary material. For
the simplest tasks, such as Cartpole swingup, Walker stand, and Walker walk, where the performance

5We use the arithmetic mean with the exception of Atari where we use median following [Hessel et al., 2018].



H BC
D4PG
BCQ

B BRAC

B RABM

Task reward

Cartpole Cheetah Humanoid Manipulator ~ Walker Finger Fish Manipulator Walker
Swingup Run Run Insert Ball Stand Turn Hard Swim Insert Peg Walk

Figure 4: Baselines on DM Control Suite. (left) Performance using evaluation by online policy selection.
(right) Performance using evaluation by offline policy selection. Horizontal lines for each task show 90th
percentile of task reward in the dataset. Note that D4PG, BRAC, and RABM perform equally well on easier
tasks e.g. Cartpole swingup. But BC, and RABM perform best on harder tasks e.g. Humanoid run.

1500 W BC
D4PG

B RABM

o
1S3
=]

Task reward
0
o
o

Humanoid Humanoid Rodent Rodent Humanoid Rodent Rodent
Corridor Walls Gaps Two Tap Gaps Escape Mazes

Figure 5: Baselines on DM Locomotion. (left) Performance using evaluation by online policy selection. (right)
Performance using evaluation by offline policy selection. Horizontal lines for each task show 90th percentile of
task reward in the dataset. The trend is similar to the harder tasks in DM Control Suite, i.e. BC and RABM
perform well, while D4PG performs poorly.

of offline RL is close to that of online methods, D4PG, BRAC and RABM are all good choices. But
the picture changes on the more difficult tasks, such as Humanoid run (which has high dimension
action spaces), or Manipulator insert ball and manipulator insert peg (where exploration is hard).
Strikingly, in these domains BC is actually among the best algorithms alongside RABM, although
no algorithm reaches the performance of online methods. This highlights how including tasks with
diverse difficulty conditions in a benchmark gives a more complete picture of offline RL algorithms.

4.2 DM Locomotion

In Figure 5, we compare baselines across the online policy selection tasks (left) and offline policy
selection tasks (right). A table of results is included in Section C of the supplementary material. This
task domain is made exclusively of tasks that are high action dimension, hard exploration, or both.
As a result the stark trends seen above continue. BC, and RABM perform best, and D4PG performs
quite poorly. We also could not make BCQ or BRAC perform well on these tasks, but we are not
sure if this is because these algorithms perform poorly on these tasks, or if our implementations are
missing a crucial detail. For this reason we do not include them. This highlights another key problem
in online and offline RL. Papers do not include key baselines because the authors were not able to
reproduce them, see eg [Peng et al., 2019, Fujimoto et al., 2019]. By releasing datasets, evaluation
protocols and baselines, we are making it easier for researchers such as those working with BCQ to
try their methods on these challenging benchmarks.

4.3 Atari 2600

In Figure 6, we present results for Atari using normalized scores. Due to the large number of tasks, we
aggregate results using the median as done in [Agarwal et al., 2020, Hessel et al., 2018] (individual
scores are presented in Appendix D). These results indicate that DQN is not very robust to the
choice of hyperparameters. Unlike REM or IQN, DQN’s performance dropped significantly on
the offline policy selection tasks. BCQ, REM and IQN perform at least as well as the best policy
in our training set according to our metrics. In contrast to other datasets (Section 4.1 and 4.2),
BC performs poorly on this dataset. Surprisingly, the performance of off-the-shelf off-policy RL
algorithms is competitive and even surpasses BCQ on offline policy selection tasks. Combining
behavior regularization methods (e.g., BCQ) with robust off-policy algorithms (REM, IQN) is a
promising direction for future work.



-

o

(=)
-
N
o

% Performance
~
o
% Performance
-
[e] o
o o

0

o
()]
(=}

N
o

BC DQN BCQ REM IQN BC DQN BCQ REM IQN

Figure 6: Baselines on Atari. (left) Performance using evaluation by online policy selection. (right) Performance
using evaluation by offline policy selection. The bars indicate the median normalized score, and the error bars
show a bootstrapped estimate of the [25, 75] percentile interval for the median estimate computed across different
games. The score normalization is done using the best performing policy among the mixture of policies that
generated the offline Atari dataset (see Appendix H for details).

5 Related Work

There is a large body of work focused on developing novel offline reinforcement learning algorithms
[Fujimoto et al., 2018, Wu et al., 2019, Agarwal et al., 2020, Siegel et al., 2020]. These works
have often tested their methods on simple MDPs such as grid worlds [Laroche et al., 2017], or fully
observed environments were the state of the world is given [Fujimoto et al., 2018, Wu et al., 2019, Fu
et al., 2020]. There has also been extensive work applying offline reinforcement learning to difficult
real-world domains such as robots [Cabi et al., 2019, Gu et al., 2017, Kalashnikov et al., 2018] or
dialog [Henderson et al., 2008, Pietquin et al., 2011, Jaques et al., 2019], but it is often difficult to
do thorough evaluations in these domains for the same reason offline RL is useful in them, namely
that interaction with the environment is costly. Additionally, without consistent environments and
datasets, it is impossible to clearly compare these different algorithmic approaches. We instead focus
on a range of challenging simulated environments, and establishing them as a benchmark for offline
RL algorithms. There are two works similar in that regard. The first is [Agarwal et al., 2020] which
release DQN Replay dataset for Atari 2600 games, a challenging and well known RL benchmark.
We have reached out to the authors to include this dataset as part of our benchmark. The second is
[Fu et al., 2020] which released datasets for a range of control tasks, including the Control Suite,
and dexterous manipulation tasks. Unlike our benchmark which includes tasks that test memory
and representation learning, their tasks are all from fully observable MDPs, where the physical state
information is explicitly provided.

6 Conclusion

We are releasing RL Unplugged, a suite of benchmarks covering a diverse set of environments, and
datasets with an easy-to-use unified API. We present a clear evaluation protocol which we hope will
encourage more research on offline policy selection. We empirically evaluate several state-of-art
offline RL methods and analyze their results on our benchmark suite. The performance of the
offline RL methods is already promising on some control suite tasks and Atari games. However, on
partially-observable environments such as the locomotion suite the offline RL methods’ performance
is lower. We intend to extend our benchmark suite with new environments and datasets from the
community to close the gap between real-world applications and reinforcement learning research.

Acknowledgments and Disclosure of Funding

We appreciate the help we received from George Tucker and Ofir Nachum, firstly for sharing their
BRAC implementation, and also running it on our DM Control Suite datasets which we reported
as our baseline in this paper. We would like to thank Misha Denil for his insightful comments and
feedback on our initial draft. We would like to thank Claudia Pope and Sarah Henderson for helping
us in terms of arranging meetings and planning of the project.

Broader Impact

Online methods require exploration by having a learning agent interact with an environment. In
contrast, offline methods learn from fixed dataset of previously logged environment interactions.



This has three positive consequences: 1) Offline approaches are more straightforward in settings
where allowing an agent to freely explore in the environment is not safe. 2) Reusing offline data is
more environmentally friendly by reducing computational requirements, because in many settings
exploration is the dominant computational cost and requires large-scale distributed RL algorithms.
3) Offline methods may be more accessible to the wider research community, insofar as researchers
who do not have sufficient compute resources for online training from large quantities of simulated
experience can reproduce results from research groups with more resources, and improve upon them.

But offline approaches also have potential drawbacks. Any algorithm that learns a policy from data
to optimize a reward runs the risk of producing behaviors reflective of the training data or reward
function. Offline RL is no exception. Current and future machine learning practitioners should be
mindful of where and how they apply offline RL methods, with particular thought given to the scope
of generalization they can expect of a policy trained on a fixed dataset.

References

A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. A. Riedmiller. Maximum
a posteriori policy optimisation. In International Conference on Learning Representations (ICLR),
2018.

R. Agarwal, D. Schuurmans, and M. Norouzi. An optimistic perspective on offline reinforcement
learning. In International Conference on Machine Learning, 2020.

I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino, M. Plappert,
G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113,
2019.

G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. Tb, A. Muldal,
N. Heess, and T. Lillicrap. Distributed distributional deterministic policy gradients. arXiv preprint
arXiv:1804.08617, 2018.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279, 2013.

C. Berner, G. Brockman, B. Chan, V. Cheung, P. D¢biak, C. Dennison, D. Farhi, Q. Fischer,
S. Hashme, C. Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680, 2019.

S. Cabi, S. G. Colmenarejo, A. Novikov, K. Konyushkova, S. Reed, R. Jeong, K. Zokna, Y. Aytar,
D. Budden, M. Vecerik, O. Sushkov, D. Barker, J. Scholz, M. D. andx Nando de Freitas, and Z. Wang.
Scaling data-driven robotics with reward sketching and batch reinforcement learning. arXiv preprint
arXiv:1909.12200, 2019.

W. Dabney, G. Ostrovski, D. Silver, and R. Munos. Implicit quantile networks for distributional
reinforcement learning. arXiv preprint arXiv:1806.06923, 2018.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248-255.
Ieee, 2009.

G. Dulac-Arnold, D. Mankowitz, and T. Hester. Challenges of real-world reinforcement learning,
2019.

G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and T. Hester. An
empirical investigation of the challenges of real-world reinforcement learning. 2020.

J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning, 2020.

S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without exploration.
arXiv preprint arXiv:1812.02900, 2018.

S. Fujimoto, E. Conti, M. Ghavamzadeh, and J. Pineau. Benchmarking batch deep reinforcement
learning algorithms. arXiv preprint arXiv:1910.01708, 2019.

S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipulation
with asynchronous off-policy updates. In 2017 IEEFE international conference on robotics and

10



automation (ICRA), pages 3389-3396. IEEE, 2017.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang, S. M. A.
Eslami, M. Riedmiller, and D. Silver. Emergence of locomotion behaviours in rich environments,
2017.

J. Henderson, O. Lemon, and K. Georgila. Hybrid reinforcement/supervised learning of dialogue
policies from fixed data sets. Computational Linguistics, 34(4):487-511, 2008.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement
learning that matters. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

M. Hoffman, B. Shahriari, J. Aslanides, G. Barth-Maron, F. Behbahani, T. Norman, A. Abdolmaleki,
A. Cassirer, F. Yang, K. Baumli, S. Henderson, A. Novikov, S. G. Colmenarejo, S. Cabi, C. Gulcehre,
T. L. Paine, A. Cowie, Z. Wang, B. Piot, and N. de Freitas. Acme: A research framework for
distributed reinforcement learning. Preprint arXiv:2006.00979, 2020.

N. Jaques, A. Ghandeharioun, J. H. Shen, C. Ferguson, A. Lapedriza, N. Jones, S. Gu, and R. Picard.
Way off-policy batch deep reinforcement learning of implicit human preferences in dialog. arXiv
preprint arXiv:1907.00456, 2019.

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakr-
ishnan, V. Vanhoucke, et al. Qt-opt: Scalable deep reinforcement learning for vision-based robotic
manipulation. arXiv preprint arXiv:1806.10293, 2018.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. 2015.

R. Laroche, P. Trichelair, and R. T. d. Combes. Safe policy improvement with baseline bootstrapping.
arXiv preprint arXiv:1712.06924, 2017.

M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht, and M. Bowling. Revisiting
the arcade learning environment: Evaluation protocols and open problems for general agents. Journal
of Artificial Intelligence Research, 61:523-562, 2018.

J. Merel, A. Ahuja, V. Pham, S. Tunyasuvunakool, S. Liu, D. Tirumala, N. Heess, and G. Wayne. Hier-
archical visuomotor control of humanoids. In International Conference on Learning Representations,
2019a.

J. Merel, L. Hasenclever, A. Galashov, A. Ahuja, V. Pham, G. Wayne, Y. W. Teh, and N. Heess.
Neural probabilistic motor primitives for humanoid control. In International Conference on Learning
Representations, 2019b.

J. Merel, D. Aldarondo, J. Marshall, Y. Tassa, G. Wayne, and B. Olveczky. Deep neuroethology of a
virtual rodent. In International Conference on Learning Representations, 2020.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, 1. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529-533, 2015.

X. B. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-weighted regression: Simple and scalable
oft-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

O. Pietquin, M. Geist, S. Chandramohan, and H. Frezza-Buet. Sample-efficient batch reinforcement
learning for dialogue management optimization. ACM Transactions on Speech and Language
Processing (TSLP), 7(3):1-21, 2011.

D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in neural
information processing systems, pages 305-313, 1989.

11



N. Y. Siegel, J. T. Springenberg, F. Berkenkamp, A. Abdolmaleki, M. Neunert, T. Lampe, R. Hafner,
and M. Riedmiller. Keep doing what worked: Behavioral modelling priors for offline reinforcement
learning. 2020.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484, 2016.

H. F. Song, A. Abdolmaleki, J. T. Springenberg, A. Clark, H. Soyer, J. W. Rae, S. Noury, A. Ahuja,
S. Liu, D. Tirumala, et al. V-MPO: On-Policy Maximum a Posteriori Policy Optimization for Discrete
and Continuous Control. In International Conference on Learning Representations, 2020.

Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Budden, A. Abdolmaleki, J. Merel,
A. Lefrancq, T. P. Lillicrap, and M. A. Riedmiller. DeepMind Control Suite. CoRR, abs/1801.00690,
2018. URL http://arxiv.org/abs/1801.00690.

Y. Tassa, S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez, T. P.
Lillicrap, and N. Heess. dm_control: Software and tasks for continuous control. arXiv preprint
arXiv:2006.12983, 2020.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026-5033. IEEE,
2012.

H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double g-learning. In
Thirtieth AAAI conference on artificial intelligence, 2016.

A. Veit, T. Matera, L. Neumann, J. Matas, and S. Belongie. Coco-text: Dataset and benchmark for
text detection and recognition in natural images. arXiv preprint arXiv:1601.07140, 2016.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell,
T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning.
Nature, 575(7782):350-354, 2019.

C. Voloshin, H. M. Le, N. Jiang, and Y. Yue. Empirical study of off-policy policy evaluation for
reinforcement learning. arXiv preprint arXiv:1911.06854, 2019.

Y. Wu, G. Tucker, and O. Nachum. Behavior regularized offline reinforcement learning. arXiv
preprint arXiv:1911.11361, 2019.

12


http://arxiv.org/abs/1801.00690

