
Supplementary Materials
This is the supplementary materials section for the NeurIPS 2020 paper titled “A simple normative
network approximates local non-Hebbian learning in the cortex”.

A Equivalence of CCA and RRR with ⌃ = C�1
yy

In this section we show that the RRR objective in Eq. (3) is equivalent to CCA when ⌃ = C�1
yy . We

start with the standard CCA optimization objective

max
Wx2Rm⇥k,Wy2Rn⇥k

Tr
�
W>

x CxyWy

�
, subject to W>

x CxxWx = W>
y CyyWy = Ik. (16)

We then implement both constraints as Lagrange multipliers in the objective function

max
Wx2Rm⇥k,Wy2Rn⇥k

min
⇤x,⇤y2Rk⇥k

Tr
⇥
W>

x CxyWy +
1

2
(W>

x CxxWx � Ik)⇤x

+ 1

2
(W>

y CyyWy � Ik)⇤y

⇤
, (17)

where ⇤x and ⇤y are symmetric Lagrange multipliers. Taking derivatives with respect to Wx and
Wy we find

CxyWy = CxxWx⇤x, (18)
CyxWx = CyyWy⇤y. (19)

Multiplying these by W>
x and W>

y respectively and using the constraints, we find ⇤ := ⇤x =

⇤y = W>
x CxyWy. Replacing ⇤x and ⇤y by ⇤ in Eqs. (18) and (19) brings us to the generalized

eigenvalue problem formulation of CCA.


0 Cxy

Cyx 0

� 
Wx

Wy

�
=


Cxx 0
0 Cyy

� 
Wx

Wy

�
⇤. (20)

We then solve for Wy in Eq. (19) to find Wy = C�1
yy CyxWx⇤

�1. Plugging this into Eq. (18) and
multiplying both sides by C�1

xx we arrive at

C�1

xxCxyC
�1

yy CyxWx = Wx⇤
2, subject to W>

x CxxWx = Ik.

Multiplying both sides by W>
x Cxx and using the constraint we have:

W>
x CxyC

�1

yy CyxWx = ⇤2, subject to W>
x CxxWx = Ik.

The top eigenvalues of this equation can again be found via an optimization objective:

min
Wx2Rm⇥k

Tr(�W>
x CxyC

�1

yy CyxWx) subject to W>
x CxxWx = Ik. (21)

We then introduce the auxiliary variable Vy and rename Wx ! Vx and arrive at:

min
Vx2Rm⇥k

min
Vy2Rn⇥k

Tr(V>
y CyyVy � 2V>

x CxyVy) subject to V>
x CxxVx = Ik.

which is the same as Eq. (3) for ⌃ = C�1
yy .

B Naive implementation of the RRR constraint is not biologically plausible.

The RRR objective derived in Sec. 3 given by Eq. (3):

min
Vx2Rm⇥k

min
Vy2Rn⇥k

Tr(V>
y ⌃

�1Vy � 2V>
x CxyVy) subject to V>

x CxxVx = Ik.

includes a constraint on the weight matrices. Here, we show that if the constraint is directly
implemented via a Lagrange multiplier (and not via an inequality as in Sec. 4.2), the naive neural

14



network implementation would not be biologically plausible. To see this explicitly,we enforce this
constraint by a Lagrange multiplier ⇤:

min
Vx2Rm⇥k

min
Vy2Rn⇥k

max
⇤2Rk⇥k

Tr(V>
y ⌃

�1Vy � 2V>
x CxyVy) +⇤(V>

x CxxVx � Ik).

If we now look at the ⇤ dependent synaptic update rule for Vx by performing gradient descent, we
have:

�Vx ⇠ CxxVx⇤+ · · · . (22)
This update includes the multiplication of two sets of synaptic weights Vx and ⇤. This would mean
that the update for any component of Vx would require the knowledge of other components of Vx as
well. This is not biologically plausible.

C Saturation of the Bio-RRR inequality constraint

Here we show that the inequality constraint imposed in Bio-RRR is saturated at its optimum in
the offline setting. This was previously shown in [45]. Here we provide an alternative proof. The
optimization objective is given in Eq. (4):

min
Vx2Rm⇥k

min
Vy2Rn⇥k

max
Q2Rk⇥k

TrV>
y ⌃

�1

s Vy � 2V>
x CxyVy +QQ>(V>

x CxxVx � Ik),

we first find the optimum for Vy by setting the Vy derivative to zero:

0 = V>
x Cxy �V>

y ⌃
�1

s ) V>
y = V>

x Cxy⌃s.

Plugging this back into the optimization objective yields

min
Vx2Rm⇥k

max
Q2Rk⇥k

Tr�V>
x Cxy⌃sCyxVx +QQ>(V>

x CxxVx � Ik). (23)

The equilibrium condition for this system is given by

0 = V>
x Cxy⌃sCyx �QQ>V>

x Cxx, (24)

0 = Q>(V>
x CxxVx � Ik), (25)

Note that Eq. (25) on its own does not imply that V>
x CxxVx = Ik. However, if we can prove

that Q which is a k ⇥ k matrix, is full rank and has no zero eigenvalues, then Eq. (25) implies
V>

x CxxVx = Ik. This is a realization of the fact that when imposing an inequality constraint, for
example f(x) > 0, via a Lagrange multiplier � by optimizing minx max��0 �f(x), if the Lagrange
multiplier at the optimum is slack � > 0, then the inequality constraint is saturated f(x) = 0.

In what follows we show that at equilibrium, QQ> has no zero eigenvalues and therefore Q is full
rank. This then proves that V>

x CxxVx = Ik is satisfied at the optimum. To proceed, we multiply
Eq. (24) by Vx on the right to get:

0 = V>
x Cxy⌃sCyxVx �QQ>V>

x CxxVx.

Plugging this back into the objective (23), we see after cancellations that the only remaining term in
the objective is �QQ>.

We then use Eq. (24) to solve for QQ>

QQ> = Ṽ>
x C

� 1
2

xx Cxy⌃sCyxC
� 1

2
xx Ṽx(Ṽ

>
x Ṽx)

�1, (26)

where we have defined Ṽx := C
1
2
xxVx. Since QQ> is symmetric, we can take the transpose of both

sides of this equation to write:

QQ> = (Ṽ>
x Ṽx)

�1Ṽ>
x C

� 1
2

xx Cxy⌃sCyxC
� 1

2
xx Ṽx. (27)

Comparing Eq. (26) and Eq. (27), we see that (Ṽ>
x Ṽx)�1 and Ṽ>

x C
� 1

2
xx Cxy⌃sCyxC

� 1
2

xx Ṽx com-
mute. Therefore, they also commute with (Ṽ>

x Ṽx)�1/2. We can use this to write QQ> as

QQ> = U>
x C

� 1
2

xx Cxy⌃sCyxC
� 1

2
xx Ux, (28)

15



Inputs to distal dendrites

Distal synaptic weights

Inputs to proximal dendrites

Proximal synaptic weights

Pyramidal-to-interneuron

synaptic weights

Interneuron-to-pyramidal

synaptic weights (inhibitory)

Total distal dendritic current

Output of pyramidal cells

Calcium plateau potentials

Output of interneurons

Figure 4: The Bio-RRR circuit with decoupled interneuron-to-pyramidal weights (Q) and pyramidal-to-
interneuron weights (R). Following Hebbian learning rules, the weights R approach Q> exponentially.

where we have defined the semi-orthogonal matrix U>
x = (Ṽ>

x Ṽx)�
1
2 Ṽ>

x . Plugging everything
back into the objective, and remembering that the only remaining term in the objective is �QQ> we
get

min
Ux2Rm⇥k

Tr�U>
x C

� 1
2

xx Cxy⌃sCyxC
� 1

2
xx Ux such that U>

x Ux = Ik. (29)

The minimum of this objective is when Ux aligns with the top k eigenvectors of the matrix M :=

C
� 1

2
xx Cxy⌃sCyxC

� 1
2

xx . As M = FF> with F := C
� 1

2
xx Cxy⌃

1/2
s , the rank of M is equal to the rank

of F which is equal to the rank of Cxy . Therefore, if Cxy has at least k non-zero eigenvalues, then at
the optimum, QQ> has no zero eigenvalues and V>

x CxxVx = Ik which we set out to show.

D Decoupling the interneuron synapses

The Bio-RRR neural circuit derived in Sec. 5, with learning rules given in Eqs. (9)�(11), requires the
pyramidal-to-interneuron weight matrix (Q>) to be the the transpose of the interneuron-to-pyramidal
weight matrix (Q). Naively, this is not biologically plausible and is another example of the weight
transport problem discussed in Sec. 6, albeit a less severe one as both sets of neurons (pyramidal and
interneurons) are roughly in the same region of the brain. Here, we show that the symmetry between
these two sets of weights (Q and Q>) follows from the operation of local learning rules.

To derive fully biologically plausible learning rules, we replace the pyramidal-to-interneuron weight
matrix (Q>) by a new weight matrix R which a priori is unrelated to Q (Fig. 4). We then impose the
Hebbian learning rules for both sets of weights

Q Q+
⌘

⌧
(ztn

>
t �Q) (30)

R R+
⌘

⌧
(ntz

>
t �R). (31)

If we assume that Q and R assume values Q0 and R0 at time t = 0, after viewing T samples, the
difference Q> �R can be written in terms of the initial values as

Q> �R = (1� ⌘/⌧)T (Q>
0
�R0). (32)

We see that the difference decays exponentially. Therefore, after viewing a finite number of samples,
R would be approximately equal to Q> and we get back the Bio-RRR update rules.

E Numerical experiment details

In this section we provide further details on the numerical experiments of Sec. 7 where we validate our
formalism on the MediaMill dataset [65]. As in [36], to ensure that the problem is well-conditioned,
we add a small diagonal term "Im (resp. "In) to the estimates of the covariance matrices Cxx and

16



Cyy, with " = 0.1. We do this explicitly for the offline algorithms, and implicitly by adding this
diagonal element to the rank one updates of the online algorithms.

Figure 3 of Sec. 7 shows performance of Bio-RRR when s = 0 (Bio-RRMSE) and s = 1 (Bio-CCA)
in terms of the objective function Eq. (3):

min
Vx2Rm⇥k

min
Vy2Rn⇥k

Tr(V>
y ⌃

�1

s Vy � 2V>
x CxyVy) subject to V>

x CxxVx = Ik.

Since this objective has a whitening constraint which is not necessarily enforced in other algorithms
we compare with, when measuring the performance of each algorithm, we manually enforce this
constraint at each time step. Similarly, the weight Vy is not present in the same form in all algorithms,
we therefore integrate it out in the objective, placing it at its optimum Vy = ⌃sCyxVx. Explicitly,
we plot the value of the quantity

�Ṽ>
x Cxy⌃sCyxṼx where Ṽx = (V>

x CxxVx)
�1/2Vx. (33)

By explicitly imposing the whitening constraint and integrating Vy out, this quantity has the advantage
of measuring only the correct alignment of the latent space Z = VxX and not the overall magnitude.
This makes for a fair comparison, especially when considering methods such as IQMD [32] and the
2-layer ANN of Sec. 6, which do not impose any constraints on the overall magnitude of the latent
space.

In our experiments, we run the offline algorithms for 2 ⇥ 104 iterations (equal to one epoch) and
the online algorithms for 105 iterations (5 epochs). For each algorithm, we run the experiment
5 times with random initializations and random sample order in the online case and report the
mean ± standard deviation of the quantity in Eq. (33).

To directly verify that the Bio-RRR algorithm indeed satisfies the whitening constraint as claimed in
Sec. 4, we plot the deviation of the variables from the constraint at each time point. Explicitly, Fig. 5
shows the value of the quantity kV>

x CxxVx � Ikk2/k on the MediaMill dataset for both RRMSE
(s = 0) and CCA (s = 1) in the online setting. We see that, at convergence, the RRR whiteness
constraint is indeed satisfied.

(a) RRMSE

102 103 104 105

iteration

10-4

10-2

100

C
C

A 
or

th
on

or
m

al
ity

 d
ev

ia
tio

n

k=1
k=2
k=4

(b) CCA

Figure 5: The deviation of the RRMSE solution (left) and CCA solution (right) from orthonormality constraint in
terms of kV>

x CxxVx � Ikk2/k in the online setting. Mean ± standard deviation over 5 runs of the experiment.

In the following, we provide further details in the individual RRMSE and CCA experiments.

RRMSE. The RRMSE experiments are run in Python on a 2019 MacBook Pro 13" with 2.8GHz
quad-core 8th-generation Intel Core i7 (i7-8569U CPU at 2.80GHz) processor. Of the three methods
compared, IQMD does not have any hyperparameters. For ANN and Bio-RRMSE, which include
learning rates as hyperparameters, we parametrize each individual learning rate as ⌘ = ⌘0

1+t/N where
⌘0 encodes the learning rate at the start of training and N encodes the rate of decay of the learning
rate. Furthermore, as the plasticity rate of different neurons are not necessarily the same, for increased
realism, we allow for unequal learning rates for the different weights of both Bio-RRMSE and ANN.
For each algorithm and each value of k, we perform a coarse grid search covering two decades for
each parameter, starting with the largest value for which the algorithm does not diverge. We find that
the performance of neither algorithm is very sensitive to the choice of N and ⌘0. In the online setting

17



(with results shown in Fig. 3a), for Bio-RRMSE we use ⌘x = 1.5
1+t/500 , 3.5

1+t/200 , and 3

1+t/7000 for
k = 1, 2, 4 with ⌘y = ⌘q = 0.002⇥ ⌘x in each case. Here ⌘x, ⌘y and ⌘q are respectively the learning
rate for the Vx, Vy and Q synaptic weight matrices. For ANN, ⌘x = 0.5

1+t/500 and ⌘y = 0.5⇥ ⌘x for
k = 1, 2, 4.

Figure 6: Comparisons of RRMSE algorithms in the offline setting in terms of the objective value Eq. (33) vs.
iteration and runtime. Mean ± standard deviation over 5 runs of the experiment.

The performance of the RRMSE algorithms in the offline setting in terms of the quantity in Eq. (33)
(with ⌃ = In) is provided in Fig 6. We see again the IQMD is the more efficient algorithm and ANN
and Bio-RRMSE have comparable performance in terms of sample efficiency. However, in this case,
Bio-RRMSE is faster than ANN in terms of CPU runtime. In these experiments, for Bio-RRMSE we
use ⌘x = 25

1+t/500 , 24, and ⌘x = 20, for k = 1, 2, 4 again with ⌘y = ⌘q = 0.002⇥ ⌘x in each case.
For ANN we use ⌘x = ⌘y = 1

1+t/20000 for k = 1, ⌘x = ⌘y = 1 for k = 2, ⌘x = ⌘y = 0.8 for k = 4.

CCA. The CCA experiments are run in Matlab on a Windows PC with an Intel Core i7-4770k
processor clocked at 4.2Ghz. The performance of Bio-CCA as well as competing algorithms in both
online and offline setting, in terms of the quantity in Eq. (33) (with ⌃ = C�1

yy ), is shown in Fig. 3b
of Sec. 7. In this case, because of the Cyy factors in the objective function (2), a simple two-layer
artificial neural network implementation is not possible. In this experiment the state-of-the-art
competitor to Bio-CCA in the online setting is Capped-MSG [36] for which we use Kcap = 6k and
⌘t =

0.1p
t�100+1

. For Bio-CCA, in the online setting, we use ⌘x = 3

1+t/100 , 2.5
1+t/100 , 1.2

1+t/1000 for
k = 1, 2, 4, and in the offline setting we use ⌘x = 10, 10, 8 for k = 1, 2, 4. In all cases we use
⌘y = ⌘q = 0.02⇥ ⌘x.

F More numerical experiments

For a more detailed comparison of Bio-RRMSE and the backprop-trained ANN discussed in Sec. 6,
we looked at a number of image classification datasets (MNIST [68], Fashion MNIST [69], CIFAR-10,
and CIFAR-100 [70]). In all these cases, we take X to be the vectorized sample images in pixel space
and take Y to be the one-hot vector of image labels. Figure 7 shows the results of this experiment in
terms of the objective function given in Eq. (33) for one rank per dataset (k = 1, 2, 4, 8 respectively
for MNIST, FMNIST, CIFAR-10, CIFAR-100). In all cases, the performance of Bio-RRMSE is
comparable to the performance of backprop. The hyperparameters chosen for these experiments are
given in Tab. 1.

18



MNIST Fashion MNIST

CIFAR10 CIFAR100

Figure 7: Comparison of RRMSE vs backprop for a number of image classification datasets in terms
of the objective value in Eq. (33) with s = 0.

Bio-RRMSE Backprop

⌘x ⌘y ⌘q ⌘x ⌘y

MNIST 0.01
1+t/103

0.01
1+t/103

0.003
1+t/103

0.02
1+t/103

0.02
1+t/103

FMNIST 0.013
1+t/103

0.013
1+t/103

0.005
1+t/103

0.018
1+t/103

0.018
1+t/103

CIFAR-10 0.01
1+t/1.5⇥104

0.002
1+t/1.5⇥104

0.002
1+t/1.5⇥104

0.0065
1+t/104

0.0065
1+t/104

CIFAR-100 0.025
1+t/4⇥104

0.001
1+t/4⇥104

0.002
1+t/4⇥104

0.0065
1+t/1.1⇥104

0.0065
1+t/1.1⇥104

Table 1: Hyperparameter choices for the linear experiment with results reported in Fig. 7.

19


	Introduction
	Related works
	An objective function for reduced-rank regression problems
	Problem formulation 
	Parametrizing the projection matrix

	Algorithm derivation
	Offline algorithms
	Online algorithms

	Biological implementation and comparison with experiment
	Neural circuit
	Comparison with neuroscience experiments

	Interpretation of calcium plateau potential in Bio-RRR
	Numerical experiments
	Conclusion
	Equivalence of CCA and RRR with bold0mu mumu program@epstopdf=Cyy-1
	Naive implementation of the RRR constraint is not biologically plausible.
	Saturation of the Bio-RRR inequality constraint
	Decoupling the interneuron synapses
	Numerical experiment details
	More numerical experiments

