
We thank all reviewers for their valuable comments. Let us first provide a concise recap of our contributions. i) We1

derive a closed form expression of the minimizer of the squared risk under the Demographic Parity (DP) constraint2

(Thm. 2.3). ii) We propose an efficient post-processing algorithm (Alg. 1) which can be applied on top of any3

off-the-shelf estimator of the regression function, requiring only unlabeled data. iii) Our algorithm achieves strong4

finite sample fairness guarantees without any assumptions (Prop. 4.1). iv) Under additional assumptions, we derive5

plug-and-play finite sample risk guarantees (Thm. 4.4). These contributions lead to an intuitive understanding of DP6

(ll. 107–128), result in a computationally efficient method (ll. 156–162) which is interpretable and enjoys strong finite7

sample statistical guarantees (Section 4). We highlight that contributions i) and iii) are, up to our knowledge, unique.8

We now address specific points raised by the reviewers, which will be included in the final version upon acceptance.9

Optimal Transport (OT) + Fairness (R2, R4): Let us highlight two key differences between "Wasserstein Fair10

Classification" (Jiang et al.) and our work. 1. While they directly work in the space of distributions and with11

transportation maps, we start from the problem of minimizing the risk under the DP constraint over functions and12

establish a link between the optimization over functions (l.h.s. problem in Thm. 2.3) and optimization over distributions13

(r.h.s. problem). In particular, they do not derive the form of a classifier which minimizes the misclassification risk (or14

the squared risk) under the DP constraint, a technical challenge that we solved in our paper for regression. 2. Unlike our15

contribution, they neither provide risk guarantees nor they give bounds on the violation of the DP constraint, whereas we16

provide finite sample controls of both. Apart from shared spirit of OT, to the best of our knowledge, our contributions17

do not follow or generalize any previous work on fairness. On the other hand, our statistical analysis borrows tools from18

non-parametric statistics, rank statistics, empirical processes, and statistics in Wasserstein (Wass.) spaces.19

Pareto frontier (R1, R3, R4): This is an interesting direction of future research. In order to study the Pareto frontier20

one needs to study the problem min{risk(g) : DP(g) ≤ ε}. Note that since DP is defined via the Kolmogorov-Smirnov21

(KS) distance it is oblivious to the geometry of the ambient space. In particular, the major technical challenge is to22

build a connection between the space of functions with L2 geometry and the distributions with the KS geometry. Our23

analysis establishes this connection for the case of DP = 0, by leveraging the fact that Wass. geometry in the space of24

distributions is “synchronized” with the squared risk geometry in the space of predictions. Another possible direction is25

to find g∗ε , which minimizes the squared risk under the constraint that the Wass. barycenter objective is bounded by ε.26

Yet, this does not directly imply that g∗ε is optimal for the problem min{risk(g) : DP(g) ≤ ε}.27

Other notions of fairness (R3, R4): It would indeed be interesting to investigate extension of our analysis to other28

fairness notions. The main difficulty in such an extension for, e.g., Equalized Odds is due to the conditioning on the29

signal Y . Notice also that DP is used in several papers, including Jiang et al. discussed above.30

R1. “naive" notion of fairness” Let us disagree that the notion of DP is naive. Generally group fairness constraints31

are trying to reflect a certain independence between the prediction and the sensitive attribute. DP is simply one of32

possible independence constraints that is, above all else, widely used in practice.33

R2. “Assumption 4.2” As stated in the paper (ll. 196–202), we agree with R2 that As. 4.2 might be strong in certain34

situations. However a form of this assumption is rather classical in non-parametric statistics (see e.g., “Fast learning35

rates for plug-in classifiers” Audibert & Tsybakov; Def. 2.2). In our settings As. 4.2 is mostly technical and can be36

further relaxed with much more involved analysis (see ll. 197–198). “choice of sigma is left to the user.” We care to37

point out that Thm. 4.4 gives exact order of σ and Rem. 3.1 provides general guidelines. “how to choose σ [...] why38

uniform noise?” R2 raises an important point. Indeed, fairness guarantees (Prop. 4.1) do not require any condition on39

the noise level σ>0, while Thm. 4.4 gives its exact value. This discrepancy is dictated by completely different proof40

techniques of Prop. 4.1 and Thm. 4.4 and the fact that DP does not care about the quality of the base estimator. In41

particular, for Thm. 4.4 it is important that the noise: i) is continuous ii) does not deviate far from zero. Meanwhile, in42

Prop. 4.1 we only need the continuity of the noise and we do not care about its magnitude. Continuous noise allows us43

to derive assumption free fairness guarantees using tools from rank statistics and empirical processes. One can indeed44

use Gaussian noise with small variance. It does not affect Prop. 4.1 and the proof of Thm. 4.4 can be slightly modified.45

R3. “ [...] does not scale well to large number of sensitive features”. We disagree with the reviewer. As indicated at46

ll. 160–161 our post-processing procedure has worst case training complexity N logN and logN for inference (with47

N being the total number of unlabeled data). “[...] continuous sensitive attribute.” We thank the reviewer for this48

comment, it allowed us to extend our results to this case. Informally, it requires to replace P(S=s) by the density ϕ(s)49

of random variable S (
∑

replaced by
∫

). Consequently, in the method (Eq. (6)) one needs to replace the estimates p̂s50

by an estimator ϕ̂(s) of the density ϕ(s) (e.g., KDE). We will include this part in the final version. “does this mean the51

probabilities are calculated in sample?” Note that all of our bounds are out of sample. In Eq.(8) P stands for the joint52

distribution of dataD, added noise, and (X,S). Under P(·|S=s,D), the method ĝ is seen as non-random. Randomness53

comes only from the point (X,S). “How do we know there aren’t points [...] that Pareto dominate this method”.54

It is clear that the predictor g∗ that minimizes the risk under the constraint that DP=0 is Pareto efficient, hence no55

other predictor can Pareto dominate g∗. Thanks to our finite sample guarantees, we can say that risk(ĝ) ≈ risk(g∗) and56

DP(ĝ) ≈ 0. Thus ĝ is nearly Pareto efficient and cannot be dominated by any other method at the population level.57

R4. Given the above discussion, we hope that the reviewer is convinced that our contributions neither follow trivially58

from previous works on OT and fairness, nor can be seen as a straightforward extension to the regression setup.59


