
We thank the reviewers for the feedback. We first highlight our main contributions and then respond to specific points.1

R1, R2, R4: Contributions: (1) We emphasize that to the best of our knowledge, Theorem 4 in our paper is the first2

result to show that for a specific class of test functions, one obtains improved asymptotic CLT rates by discretizing3

Underdamped Langevin Diffusion (ULD) using Euler or Randomized Mid-Point (RMP) methods. Prior works4

demonstrated improved W2 rates for sampling with Euler or RMP discretizations of ULD compared to Overdamped5

Langevin Diffusion (OLD). However, such results are not insightful as far as the CLT rate for numerical integration is6

concerned, which is the focus of our paper. (2) Surprisingly, while RMP discretization obtains improved W2 rates for7

sampling over Euler discretization, it has the same CLT rates as Euler discretization in both OLD and ULD settings.8

This points to the second major contribution of our submission: One should take the W2 rate improvements with a9

pinch of salt if the main goal is to compute integrals, arguably the main application of samplers in machine learning.10

R1: Regarding Proposition 2.1 - As discussed in Lines 142-145, we would like to clarify that, to obtain the same W211

rates based on OLD, other discretizations require higher-order smoothness assumption whereas Proposition 2.1 only12

requires gradient-smoothness. Initialization: For the RMP discretization, if the initialization is far from the minimizer,13

we have to decrease the step size much quicker as large step size in the region where gradient is large (far from14

minimizer) can result in very inaccurate discretization of the process. In this sense, the rate will deteriorate. Also in the15

regime we consider, obtaining a point that is ε close to such a minimizer only costs O(log(1/ε)) iterations. Compared16

to the sampling rate, which is O(1/ε), this is significantly cheaper. Thms 1 and 3, and Ergodicity: Ergodicity results17

in Thms 1 and 3 are important properties of RLMC and RULMC, and they form the basis of the CLT results. In other18

words, to obtain confidence intervals (CIs) which is through establishing a CLT, stated (asymptotic) ergodicity results19

are sufficient. We emphasize that it is possible to obtain geometric ergodicity results (with rates); however, we preferred20

not to add this, as they are not needed for establishing CLT results, which are our main focus. Prop 2.2: Indeed this21

is an important observation and the bias is higher than vanilla Euler discretization of OLD. This is also reflected in22

the CLT bias term ρ in Lines 208-209. Prop 3.1: We emphasize that the conclusion in Prop 3.1 does not follow from23

[SL19]. Indeed, one possibility to use the result in [SL19] to obtain bias in W2 metric is to let the iterations go to24

infinity in their main theorem. However, their result (and proof) assume an upper bound on the number of iterations25

(depending on the choices of ε). This leads to a worse bound than our stated result. Biased/Unbiased CLT & Limit of26

γ̂n always exist? These two aspects are related and form the crux of our main result. Note that in Theorem 2, lines 205,27

206 and 207 respectively, we consider three cases: when the limit γ̂∞ := limn→∞ γ̂n is (i) equal to 0, (ii) between 028

and ∞, and (iii) equal to +∞ (and hence doesn’t exist). Next, note that in the definition of πγn(ϕ), we have already29

centered with the true expectation (which is zero in our setup by definition). Only when the limit γ̂∞ equals zero, we30

obtain an unbiased CLT, meaning the normal distribution is exactly centered at the true expectation. If the limit γ̂∞ is in31

the interval (0,∞), the CLT is biased meaning it is no longer centered around the truth – as a consequence, we need to32

do appropriate bias-correction when obtaining practical confidence intervals. When the limit γ̂∞ is +∞, we converge33

to a degenerate random variable (i.e., a constant). We hope this clarifies our main results. The same interpretation34

applies also to Theorem 4. Comparison & No surprising result is shown: Please see Lines 2-10 above for our main35

contributions. Apart from the result in [LP02] (which we have compared against), we are not aware of any CLT results,36

in particular for ULD. We would greatly appreciate pointers to specific papers if the reviewer thinks otherwise – we37

would be happy to cite them and compare our results with those in the suggested papers.38

R2: Bias variance Trade-off: With respect to sampling (i.e., W2 rates), roughly speaking, the optimal rate obtained39

in [SL19] is exactly based on picking a constant step-size by trading off bias and variance. However, as we show, to40

obtain a CLT for numerical integration, especially the one centered on the true value of the integral, one needs to have a41

specific decreasing step-size choice. Complicated terms in CLT: We will add specific examples in our revision, to42

provide more insights. However, the main take-away from our general results is the asymptotic rate improvement of43

CLT with RMP/Euler discretization of ULD. Simulations: We definitely agree with the reviewer that adding numerical44

experiments would be enlightening. We will add simulations to the camera-ready version if the paper is accepted.45

R4: Comparison: Note that [LS19] provides a table comparing results only for the W2 rates for which there are several46

related works to compare against. Our main contribution in this work is the CLT rate improvement with the RMP47

discretization of ULD. We are not aware of prior works in this direction, to the best of our knowledge. Nevertheless,48

we will take R4’s advice and add a table comparing CLT rates for RMP and Euler discretizations of both ULD and49

OLD established in our paper and [LP02]. If the reviewer is aware of any other state-of-the-art CLT results for some50

discretization of ULD or OLD, we would greatly appreciate it and would add it to the table in our revision. L235-51

237: We mean the tuple (U1, U2, U3) is in R3d i.e., Ui ∈ Rd, for i = 1, 2, 3. Also, we missed an identity matrix in the52

covariance definition. Thanks for catching this. We will fix these typos in our revision. L131, L202: These suggestions53

are well-taken and we would incorporate them in our revision. L305: O(n5/8) is the best achievable rate by picking for54

α among polynomially decreasing step-size choices of the form γk = k−α . Hence, we call it optimal following the55

terminology in [LP02]. We will clarify it in our revision as optimal among polynomially decreasing step-size choices.56


