
We thank the reviewers for their constructive comments on our submission. Below we address the raised concerns and1

include clarifications as suggested.2

Experimental data. All reviewers noted a lack of experiments conducted on real data as a weakness of the work.3

We agree. As R4 suggests, we are ourselves working to validate these ideas experimentally. But there are two serious4

difficulties with using existing data in our context: First, because ground truth connectivity is almost never known for5

real data in vivo, most previous work, like ours, evaluates correctness on synthetic data, including (1; 2). Second, since6

we are modeling responses to stimulation of specific neurons, we require a dataset comprising similar manipulations.7

We know of no good benchmark data for these purposes, though we aim to generate them in future. Thus, our immediate8

follow-up plans involve performing simulations in more biologically plausible spiking networks, including nonlinear9

effects of photostimulation that more closely match biological responses (3; 4). This will allow us to directly compare10

our model to parametric approaches like (2; 5), since we agree with R1 that there are indeed likely to be cases and11

datasets in which these models outperform ours.12

Relation to compressed sensing. We thank R3 for pointing out the highly relevant paper (1) and apologize for13

the omission. We now include this work (along with (2) in our discussion of inference from observation data using14

parametric models). While the manuscript already discusses relationships between our approach and one-bit compressed15

sensing, we had missed this work. Key differences between the present work and (1) include: (a) For speed and16

scalability, we focus on recovering binarized (present/absent) connections, not full weights. In practice, this may be all17

experiments require, and when it does not suffice, our approach may be used to rapidly pre-screen connections before18

performing more focused testing (an approach also suggested in (1)). (b) While the CoSaMP approach of (1) assumes a19

known level of sparsity, our method does not. In fact, our incorporation of uncertainty in weights allows for optional20

stopping. (c) We demonstrate scaling and speed necessary for implementation in the online setting. We plan to more21

fully discuss all these issues in our revised manuscript.22

Theoretical note. In comparison with compressed sensing, we note an interesting connection: while our at =23

‖w � xt‖∞, the equivalent linear predictor for 1-bit CS is ‖w � xt‖1, and our relaxed at is constrained to lie between24

these two. This raises the possibility that a generalization of our model might be able to interpolate between the two25

approaches.26

Stimulation types. R3 noted as a weakness that we only consider randomized stimulation groups. This is incorrect.27

In our experiments, we also consider selecting subgroups adaptively by choosing to stimulate neurons with maximum28

marginal uncertainty (cf. Figure 3 in main text). As we show, this results in performance improvements over fully29

randomized stimulation.30

Our contributions. While there has been much previous work on inferring network connectivity, as all reviewers note,31

the present work also contains novel methodological advances of broader interest, including: (a) the first application of32

group testing to network inference in neuroscience; (b) a novel relaxation of group testing, along with an equivalence to33

variational Bayesian inference; (c) a fast dual decomposition algorithm and GPU software implementation that makes34

online inference practical in large networks.35
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