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Abstract

One of the primary goals of systems neuroscience is to relate the structure of
neural circuits to their function, yet patterns of connectivity are difficult to establish
when recording from large populations in behaving organisms. Many previous
approaches have attempted to estimate functional connectivity between neurons
using statistical modeling of observational data, but these approaches rely heav-
ily on parametric assumptions and are purely correlational. Recently, however,
holographic photostimulation techniques have made it possible to precisely tar-
get selected ensembles of neurons, offering the possibility of establishing direct
causal links. A naive method for inferring functional connections is to stimulate
each individual neuron multiple times and observe the responses of cells in the
local network, but this approach scales poorly with the number of neurons. Here,
we propose a method based on noisy group testing that drastically increases the
efficiency of this process in sparse networks. By stimulating small ensembles of
neurons, we show that it is possible to recover binarized network connectivity
with a number of tests that grows only logarithmically with population size under
minimal statistical assumptions. Moreover, we prove that our approach, which
reduces to an efficiently solvable convex optimization problem, can be related to
Variational Bayesian inference on the binary connection weights, and we derive
rigorous bounds on the posterior marginals. This allows us to extend our method
to the streaming setting, where continuously updated posteriors allow for optional
stopping, and we demonstrate the feasibility of inferring connectivity for networks
of up to tens of thousands of neurons online.

1 Introduction

A long-standing problem in systems neuroscience is that of inferring the functional network structure
of a population of neurons from its neural activity. That is, given a set of neural recordings, we would
like to know which neurons influence which others in the system without a priori knowledge of
their anatomical connectivity. This problem is made difficult in two ways: First, new techniques in
microscopy and neural probe technology have dramatically increased the size of recorded neural
populations [1, 2], posing a computational challenge. Second, the fact that typical interventions in
these systems remain broad and non-specific poses problems for causal inference [3, 4].

However, recent advances in precision optics and opsin engineering have resulted in photostimulation
tools capable of precisely targeting individual neurons and neuronal ensembles [5–9]. This suggests
that a combination of simultaneous recording and selective stimulation could potentially allow for
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functional dissection of large-scale neural circuits. Yet the most common methods for inferring
functional connectivity are purely statistical models, applied to observational data [10, 11]. They do
not consider causal inferences based on interventions (though cf. [12–14]), and often make stringent
parametric assumptions, which can limit their ability to recover connectivity even in simulations
[15, 16].

Here, we take a different approach to inferring functional connectivity based on targeted stimulation
of small, randomly-chosen neural ensembles. We adopt the framework of group testing [17–19],
an experimental design strategy that relies on simultaneous tests of multiple items. Group testing
reduces the complexity of detecting rare defects (here, true connections) from linear to logarithmic
in the number of units, allowing it to scale to large neural populations. We show that this approach,
which makes only mild statistical assumptions, can be significantly more efficient than testing single
neurons in isolation. Furthermore, we propose an efficient convex relaxation of the inference problem
that is related to marginal Bayesian posteriors for the existence of individual connections. Finally,
we show that an optimization scheme based on dual decomposition offers a highly parallelizable,
GPU-friendly problem formulation that allows us to perform inference on a population of 104 neurons
in the online setting. Taken together, these ideas suggest new algorithmic possibilities for the adaptive,
online dissection of large-scale neural circuits.

2 Network Inference as Group Testing

Our goal is to recast the problem of inferring functional connectivity between neurons as a group
testing problem. This functional connectivity has only to do with the ability of one neuron to cause
changes in the activity of another and does not imply a direct synaptic connection. Thus, two neurons
may be functionally connected when no direct synaptic connection exists. In particular, we are not
addressing the problem of unobserved confounders—unrecorded neurons that mediate observed
interactions. Nonetheless, functional connectivity remains a quantity of intense interest, since it is
likely to reflect patterns of influence and information flow in neural circuits [20, 21].

To establish conventions, it will help to consider a simple baseline protocol for establishing functional
connectivity: let each test consist of stimulating a single neuron, with the test possibly repeated
several times. In this setup, a stimulated neuron i can be considered functionally upstream of a second
neuron j if j typically alters its activity in response to stimulation of i. More precisely, we assume
that there exists a test h : D → {0, 1} that concludes from data whether stimulation of i altered
activity in j. This approach has two important advantages: First, we do not need to assume that
excitation of i results in excitation of j, only that the test detects a difference. In other words, we are
not limited to excitatory connections. Second, while a given test might make parametric assumptions
about the data, our subsequent analysis will be agnostic to these assumptions. Thus the ability to
consider a multiplicity of tests offers us a degree of statistical flexibility not present in approaches that
must rely on, e.g., linearity of synaptic contributions from different neurons. But these benefits imply
a tradeoff: we will only be able to amass statistical evidence for the existence of such connections,
and possibly their signs, but not their relative strength. We view this as a reasonable tradeoff in
cases where the structure of connections is of primary concern, with the added observation that, once
connections are identified, a second round of more focused testing or post-hoc methods can serve to
establish strengths.

To model the effects of ensemble photostimulation, we assume that all neurons in the target set
receive roughly the same light intensity, and that this intensity is sufficient to evoke a detectable
response if any one of the neurons is connected to some other. Moreover, we assume that stimulation
is strong enough that even, in cells receiving mixed excitatory and inhibitory connections, one will
predominate. That is, given N observed neurons subjected to stimulations indexed by t, let xtj = 1 if
neuron j is stimulated on round t, and wi→j = 1 if neuron i functionally influences neuron j. With
these conventions, we define the predicted activation of unit i as the logical OR of all the connections

ati(w) =
N∨
j=1

wijxtj = max(wi· � xt·) (1)

and the outcome of the hypothesis test h with false positive rate α and false negative rate β as

yti|(ati = 1) ∼ Bern(1− β) yti|(ati = 0) ∼ Bern(α) . (2)
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Neuron

Test 1 2 3 4 5 6 Result

1 0 0 1 1 0 1 1
2 0 1 1 0 1 1 1
3 1 0 1 0 1 0 0
4 1 1 0 0 0 0 1
5 0 0 1 0 1 0 0

Figure 1: Neural stimulation as group testing. (a) Holographic photostimulation targets specific
subsets of neurons (red), which result in activity in a target neuron (green). Neurons 2, 4, and 6
are functionally connected to the target neuron (blue lines), and stimulation of any one of them is
sufficient to evoke activity. (b) Equivalent group testing matrix (xti), with each row a test and each
column a neuron. The result of each test (yt) is a logical OR of the stimulation variables for the true
connections (blue). Test 2 (gray) corresponds to the stimulation in (a).

Note that this assumes a is a sufficient statistic for the outcome y, which may not hold if, e.g., false
positive rates increase with the number of stimulated neurons [19].

This formulation, in which multiple units are combined into a single test that returns a positive
result if any of the individual units would alone, is known as the group testing problem. Originally
devised by Dorfman [17] as an efficient means of testing for syphilis in soldiers, group testing has
spawned an enormous literature, with applications in medicine, communications, and manufacturing
(recently reviewed in [19]). As shown by Atia and Saligrama [22], this can be cast in the language
of information theory as a channel coding problem with x the codebook and y the channel output.
Moreover, [22] demonstrated that when x is a randomized testing strategy to find K true positives,
the number of tests required to solve the problem with exponentially small average-case error is both
upper and lower bounded asymptotically by K logN , even when tests are noisy and K ∼ o(N).

The problem we consider here is more specifically one of noisy group testing in the sparse regime.
That is, we allow the test to be corrupted as specified in (2) and assume K ∼ O(Nθ) with θ ∈ (0, 1).
Within this regime, approaches principally differ along two axes: adaptive versus non-adaptive test
designs and the method used to infer w. In non-adaptive designs, the tests are fixed in advance,
allowing them to be run in parallel at the cost of some statistical efficiency (though not necessarily
asymptotically [23, 24]). Adaptive designs, by contrast, are chosen sequentially, often to optimize the
information gained with each test. Below, we consider both methods, but for the remainder of this
section and the next, we focus on the second axis: the method of inferring w.

For simplicity we focus on a single output neuron j and its potential incoming connections wij (see
Fig. 1). Since the inference problems for wij and wij′ are completely independent for j′ 6= j, these
problems can be trivially parallelized, and we drop the index j in what follows. Given (1) and (2), we
can infer the true connections by maximizing the total log likelihood over all T tests:

log p({yt}|{wi, xt}) = T log(1− α)− log
1− α
α

∑
t

yt (3)

− log
1− α
β

∑
t

at(w) + log
(1− α)(1− β)

αβ

∑
t

ytat(w)

=
∑
t

[
log

(1− α)(1− β)

αβ
yt − log

1− α
β

]
at(w) + const ,

where the constant does not depend on w. For any reasonable test, we expect 1− β > α (i.e., the
true positive rate exceeds the false positive rate) and 1 − α > β (true negative rate exceeds false
negative rate), so that the term in brackets is positive when yt = 1 and negative when yt = 0. Thus
the maximum likelihood solution is one in which the bits at(w) and yt most often match, similar to
one-bit compressed sensing [25, 26].

Unfortunately, this integer programming problem is NP-hard in general [19], so approximate solution
methods must be used. Previous approaches have used Monte Carlo methods like Gibbs Sampling
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[27] and message-passing approaches like Belief Propagation [19, 28]. A third class of approaches
[26] proposes to relax the binary variables wi ∈ {0, 1} → wi ∈ [0, 1] and solve a linear program to
minimize

∑
i wi + γ

∑
t ξt, with the ξt slack variables representing noise (bit flips between yt and

at) and γ parameterizing the sparsity of the solution. This method indeed performs well in practice
[19, 26] and makes no assumptions about the form of the noise, though it does require tuning γ,
which may be difficult when the true number of defects K is unknown.

Here, we propose an alternate relaxation based on independently relaxing the variables at → at and
relating these to the wi via constraints. That is, instead of the N + T variables {wi, ξt}, we will
choose to optimize over {wi, at}, solving

max
{wi,at}

∑
t

ctat subject to xtiwi ≤ at ≤
∑
i

xtiwi, wi, at ∈ [0, 1] (4)

with ct = log (1−α)(1−β)
αβ yt − log 1−α

β . The constraints we impose on the new variables at can be
understood from (1) by noting that the maximum of a set of positive variables must be greater than
or equal to each of them individually and at most equal to their sum. As we will show, this linear
program in N + T variables with

∑
ti xti + T constraints may be large (and grows with the number

of tests) but can nonetheless be solved efficiently even for sizable neural populations. Unfortunately,
there is no guarantee that the solution to (4) produces a solution to the original integer optimization
problem, and one is left with the problem of finding some method of rounding wi to produce a binary
solution [29]. Fortunately, as we will argue below, this is unnecessary, and a slight alteration to (4)
gives the wi an attractive interpretation.

3 Relaxed Group Testing as Bayesian Inference

In the discussion above we focused on maximum likelihood decoding, since this procedure has
exponentially small error in the large T limit [22–24, 30]. However much of this work also assumes
that the number of true positives K is known. In our case, by contrast, we might only have weak
beliefs about the distribution of connections across neurons. Moreover, with a fixed time budget for
data collection, we would benefit from the option to either stop the experiment early (if all connections
have been found) or produce an estimate of uncertainty for the wi at the end of the experiment.

Thus we consider the problem of Bayesian inference for the likelihood given in (3) with Bernoulli
priors wi ∼ Bern(πi). In this case, the log posterior takes the form

log p(w|x, y) =
∑
t

ctat(w) +
∑
i

µiwi − logZ , (5)

with µi = log πi

1−πi
andZ a normalizing constant. Clearly, the posterior is in exponential family form,

with sufficient statistics wi and at(w). Full inference requires computation of Z , which is practically
infeasible for N or T large. However, we are primarily concerned with posterior (marginal) beliefs
about individual connections, so we might settle for only knowing p(wi|x, y).

Luckily, two facts already mentioned allow us to compute these marginals efficiently: First, (5) is
in exponential family form, and second, the wi are sufficient statistics for the posterior. Taking a
Variational Bayes approach [31], we rewrite inference as an optimization problem. Let

q∗(w) ≡ arg max
q(w)∈Q

Eq[log p(y|w, x) + log p(w)] +H[q(w)] , (6)

where Q is some class of distributions over which we optimize and H = Eq[− log q(w)] is the
entropy. This is equivalent [31] to minimizing the KL divergence between q∗(w) and p(w|x, y), with
DKL(q∗‖p) = 0 if and only if q∗ = p almost everywhere.

We exploit the fact that we know the form of the posterior to choose a classQ that contains p(w|x, y),
since this will imply that (6) yields the true posterior. The obvious choice is to take Q to be the
exponential family defined by the sufficient statistics wi and at. However, instead of the natural
parameters corresponding to these sufficient statistics, we will define them in terms of the expectations
wi ≡ Eq[wi] and at ≡ Eq[at]. In optimization language, the latter are the primal variables and
the former the duals, which are related to one another through derivatives of the free energy logZ
[31, 32]. With this choice, we can write

(E[wi],E[at]) ≡ arg max
(w,a)∈M

∑
t

ctat +
∑
i

µiwi +H(w, a) (7)
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whereM is the marginal polytope, the set of marginals feasible under all possible distributions [32].
Clearly, since wi and at are binary, we have E[wi] = P ({wi = 1}), E[at] = P (∪j,xtj=1{wj = 1}),
and the constraints in (4) follow from simple containment and union bounds for any P . More
generally, letting St = {j|xtj = 1}, there are additional consistency conditions on the at:

at ≤ P (∪t′∈T {at′ = 1}) ≤
∑
t′∈T

at′ whenever St ⊂
⋃
t′∈T
St′ . (8)

That is, whenever any subset of trials T includes all neurons stimulated on trial t, at is bounded
above by the sum of the at′ from these other trials.

However, if we allowH to take values in R∪ {∞}, definingH(w, a) =∞ for (w, a) /∈M, then we
can write

(E[wi],E[at]) ≡ arg max
{wi,at}

∑
t

ctat +
∑
i

µiwi +H(w, a) (9)

s.t. xtiwi ≤ at ≤
∑
i

xtiwi, wi, at ∈ [0, 1],

where again, H incorporates the constraints in (8). This is equivalent to (4) when we assume flat
priors on wi (µi = 0) and no entropy term. In other words, the relaxed at and wi appearing in (4)
are approximate posterior probabilities for the binary variables at and wi, and this relation is exact
when the entropy termH is included as a regularizer. Thus, solving the optimization (9) allows us to
compute posterior marginals for the connections, even though we cannot write down p(w|x, y).

4 Optimization and Online Inference

The above arguments show that posterior inference for group testing can be reduced to the variational
problem (9). However, two difficulties remain: First, calculating H(w, a), requires knowing the
exponential family normalizing factor Z , which is intractable in general. Second, we need an efficient
method for solving (9) for very large problems. Note again that we have only been considering
the case of a single output neuron, which results in a convex program with N + T variables and
2N + 3T + NT nominal constraints (4). When generalized to the full network, we will have
N independent (and thus parallelizable) programs of this size, indicating both high memory and
computational requirements. Yet, as we will show, further simplifications are possible that allow
solutions to (9) to be implemented even for N > 104 in the online setting.

We begin by considering a slightly more general exponential family Q̃ in which the at as well as the
wi are fundamental variables, with (1) enforced by constraint:

log q̃η,ν(w, a) =
∑
t

γtat +
∑
i

δiwi −
∑
t

ηt(at −
∑
i

xtiwi)−
∑
ti

xtiνti(wi − at)− logZ(η, ν) ,

(10)
with ν, η ≥ 0. Note that this will be related to forming the Lagrangian of the problem (9), but here,
we are instead defining a set of probability distributions with supη,ν≥0 q̃ ∈ Q′ ⊃ Q. That is, as the
constraint forces are maximized, all distributions satisfy the explicit constraints in (9), though they
are not guaranteed to satisfy those in (8). We find that, in practice, this does not affect the accuracy of
recovery.

What is important to note here is that the introduction of dual variables has effectively decoupled
wi from at, since their dependency structure is a bipartite graph. Moreover, conditioned on the dual
variables, the primal variables are all independent. Following the derivation leading to (9) we can
now pose an equivalent optimization problem:

sup
η,ν≥0

wi,at∈[0,1]

∑
t

Lt(at, η, ν) +
∑
i

Li(wi, η, ν) , (11)

Lt =

(
ct − ηt +

∑
i

xtiνti

)
at +H2(at) (12)

Li =

(
µi +

∑
t

xtiηt −
∑
t

xtiνti

)
wi +H2(wi) , (13)
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withH2(x) = −x log x− (1−x) log(1−x) the entropy of a binary variable with mean x (measured
in nats). The univariate maximizations over at and wi can easily be solved numerically:

a∗t = f

(
ct − ηt +

∑
i

xtiνti

)
w∗i = f

(
µi +

∑
t

xtiηt −
∑
t

xtiνti

)
, (14)

where f(x) = ex/(1 + ex) is the logistic function. This formulation naturally leads to a dual
decomposition approach [33] in which we first maximize exactly over w and a then maximize (11)
at the resulting optimum with respect to η and ν. Alternately, we can bound the entropy H2 by a
quadratic (Appendix A), for which we have the solution:

a∗t =

[
1−

(
1

2

)∑
i xti

+
1

σ

(
ct − ηt +

∑
i

xtiνti

)]
[0,1]

(15)

w∗i =

[
1

2
+

1

σ

(
µi +

∑
t

xtiηt −
∑
t

xtiνti

)]
[0,1]

, (16)

where [·][0,1] indicates truncation to the unit interval and σ ∈ (0, 4] is a regularization parameter. In
practice, this more weakly regularized approach, which results in overconfident posteriors, performs
better when binarizing w to reconstruct the underlying network.

This approach is summarized in Algorithm 1. Thanks to the decoupled nature of (10), gradient
updates for η and ν can be performed in parallel, so efficient GPU implementations are possible. The
key limitation for this approach is memory: while the ν matrix is sparse (effectively masked by x),
one must still maintain space for a, w, c, µ, η, and ν for O(NST ) parameters, with S the average
number of neurons stimulated per trial. Thus, while we do benefit from using first-order methods with
momentum like Adam [34], these also come at the additional memory cost of O(2NST ) running
mean and variance estimates, making it impractical for systems larger than ∼ 103 neurons.

Algorithm 1 Dual decomposition inference

1: Initialize: ηt, νti ← 0
2:
3: while not converged do
4: Solve for a∗t , w∗i via (14) or (15), (16)
5: ηt ← ηt − α(

∑
i xtiw

∗
i − a∗t )

6: νti ← νti + αxti(w
∗
i − a∗t )

7: end while

Along different lines, we can further reduce memory requirements for very large systems by simply
limiting the gradient updates in Algorithm 1 to the ηt and νti for the most recent τ time steps. That
is, for τ = 50, we stop updating η2 for t > 52. This halts the memory growth of the algorithm with
number of tests performed, for a space complexity of O(NSτ + 2N2). As we will demonstrate in
the next section, this allows us to perform inference on a network of ∼ 104 neurons (one hundred
million potential connections) using gradient descent with negligible loss of accuracy. In fact, our
GPU implementation using CuPy [35] performed each gradient descent iteration in under 2 seconds,
fast enough to perform online inference during experiments.

Finally, we note that our identification of the wi with the posterior p(wi|x, y) naturally lends itself
to adaptive testing. In typical adaptive algorithms, one is interested in maximizing some expected
information gain or minimizing uncertainty, which can pose difficult computational problems when
only point estimates are available [18, 19]. Here, however, we can trivially select those units with
greatest posterior uncertainty for priority testing. In a different vein, access to calibrated uncertainties
also facilitates either early stopping (when a minimum certainty is required) or optimal test allocation
(when the number of tests is limited).

5 Experiments

We tested the performance of Algorithm 1 in both the offline (all data) and online (one test at a time)
settings. In the offline setting, we considered Bernoulli designs in which each neuron was stimulated
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Figure 2: Network recovery performance. (a) Recovery improves with increasing numbers of tests.
Dots (jittered for visibility) indicate posterior estimates for true connections (blue) and spurious
connections (orange) as tests are added. The classification threshold is at 0.5 (dotted line), and we do
not plot the nearly 106 true negatives at 0. (b) ROC curves as a function of test error rates. Even as α
and β grow, performance degrades only moderately. (c, d) Specificity and sensitivity, as a function of
test number and error rate. The naive approach gradually identifies positive connections, while group
testing quickly separates positive and non-connections across the 0.5 threshold.

independently on each trial with probability pstim = S/N . In the online setting, we considered both
Bernoulli designs and adaptive designs, in which the top S most uncertain neurons (those with wi
closest to 1

2 ) were selected for the next test. We used randomly generated binary graphs wij in which
each link appeared independently with probability K/N .

We also distinguish two separate problems: uncertainty quantification and recovery. The former
focuses on efficient calculation of accurate Bayesian posteriors using the formulation (9), while the
latter focuses on binarizing w to produce the most likely underlying w. Thus, for uncertainty we
use the correct entropyH2 and priors defined by µ, while for recovery we use the computationally
cheaper quadratic approximation toH with σ � 1, µ = 0 and a classification threshold at w = 1

2 . In
our experiments, this weak regularization, which resulted in overconfident posteriors, consistently
produced better recovery. The experiments presented here focus on the recovery problem. Results for
uncertainty are presented in Appendix D. Unless otherwise stated, we use a base case of N = 1000,
K = N0.3 ≈ 8 incoming connections per neuron, S = 10 stimulated neurons per test, α = β = 0.05,
µ = 0, σ = 0.1, and Adam [34] with step size 0.01, β1 = 0.9, and β2 = 0.999 for optimization in
the offline setting, with convergence typically achieved within 50 steps.

Sparse network recovery. Figure 2 demonstrates the effectiveness of our algorithm in correctly
recovering a binary network. The inferred system is initially regularized toward the maximum entropy
solution at (w = 1

2 ), but as the number of tests increases, connections are rapidly segregated toward
0 and 1, with classification based on a threshold at 0.5. True negatives are learned quickly at the
expense of incorrectly classifying some true positives (drop in sensitivity as specificity rises), but the
algorithm eventually corrects for this behavior (Fig. 2a). Tests with higher error rates show decreased
performance (Fig. 2b), but this is mitigated at larger numbers of tests. Finally, in comparison with a
naive model that stimulates single neurons (S = 1, Appendix B) group testing dominates on both
measures after about 500 trials (Fig. 2c,d).
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Figure 3: Recovery in the online and adaptive settings. (a) Specificity as a function of the number
of tests for the naive, online Bernoulli, and online adaptive designs. Performance is similar to the
batch case, with the online adaptive approach requiring the fewest tests overall. (b) Specificity as a
function of the scaled number of tests T (normalized N ) for different system sizes in the adaptive
case. The adaptive case exhibits an inflection point that moves toward T ≈ 0.2N for large N .

Online performance and adaptive stimulation. Motivated by real-time, online experimental
approaches that seek to intervene in live neural circuits with photostimulation [5, 6], we also consider
the online case. Here we use gradient descent (not Adam) and a sliding window of 1-10 tests to limit
memory requirements and increase speed. Even with only a few fast gradient steps for each new test,
we recover the network with the same level of sensitivity and specificity as in the batch case (Fig. 3).
Sensitivity plots show less variation (Appendix D). This enables us to scale inference to much larger
populations, even up to N = 104 (Fig. 3) with an average processing time of < 2s per stimulation,
for an estimated experiment time of ∼ 1.5 hours for 2500 tests.

6 Discussion

We have proposed to apply noisy group testing to the problem of inferring functional connections in
a neural network. We showed that a relaxation of the maximum likelihood inference problem for this
setup is equivalent to Bayesian inference on the binarized network links, and that this problem can
be solved efficiently for large populations in the online setting. To our knowledge, this is the first
application of group testing to connectivity inference in neuroscience and the first proposal for truly
scalable network inference.

Group testing itself comprises a large literature, reviewed in [18] and more recently [19]. The link
between noisy group testing and information theory was established in [22–24, 30, 36] for the noise
models of false positives and dilutions and in [28] for both false positives and negatives. These
studies established asymptotically optimal numbers of tests maximum likelihood decoding. Linear
programming relaxation as a means of efficiently solving the decoding problem was previously
proposed in [26], where the objective was to identify the minimal set of positives under an arbitrary
noise model. Our approach differs in relaxing both the Boolean sums at and the defects wi, as well
as assuming a more specific noise model, which allows us to establish a novel connection between
the solution of the relaxed convex program and Bayesian inference (4).

In neuroscience, much previous work has focused on inferring functional connectivity from correla-
tional data, either spike trains or calcium fluorescence imaging [10, 11, 15, 37–47]. These methods
typically rely on likelihood-based models and make moderate to strong parametric assumptions
about the data generation process. This can result in inaccurate network recovery, even in simulation
[15, 16]. Even more problematic is the difficulty of accounting for unobserved confounders [43],
which can also arise in our setup when non-recorded units mediate functional connections.

Our work is similar in setup to [14], which also considered the possibilities inherent in selective
stimulation of individual neurons. That work also employed a variational Bayes approach, positing a
spike-and-slab prior on weights and an autoregressive generative model of ensuing calcium dynamics.
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Also of note is [48], which considered optimal adaptive testing of single neurons to establish
functional connections. More closely related are the approaches in [12, 49], which used a compressed
sensing approach to network recovery. Those works did recover synaptic weights up to an overall
normalization but did not consider either adaptive stimulation or the online inference setting. The
latter problem was considered in [13], which focused on measurement of subthreshold responses in
somewhat smaller systems.

By contrast with many of these approaches, ours makes relatively few statistical assumptions. We do
not posit a generative or parametric model, only the existence of some statistical test for a change (not
necessarily excitatory) in neuronal activity following stimulation. Moreover, our approach affords
approximate Bayesian inference (which could be extended to exact inference at the cost of additional
constraint forces added to (10)), does not require pretraining on existing data, and scales well to large
neural populations, making it suitable for use in online settings.

However, our approach does make key assumptions that might pose challenges for experimental
application. First, as Figure 2b shows, tests with poor statistical power require many more stimulations
to reach correct inference, and below some threshold number of trials, this decrease in performance
may be significant. Moreover, when statistical assumptions of the test h are violated, the real true
and false positive rates may not be known (though see Appendix C). Second, our approach ignores
the relative strength of connections, as we focus on the structure of the unweighted network. This
drastically reduces the number of parametric assumptions but would require a second round of
more focused testing if these were quantities of interest. Nonetheless, our results suggest significant
untapped potential in the application of adaptive experimental designs to large-scale neuroscience.

Broader Impact

The focus of this work is on improving neuroscience experiments through the use of more sophisti-
cated experimental designs. In particular, we targeted understanding the ways in which networks
of neurons are constructed and function together, which has long been a focus of the field. As this
advance is primarily theoretical, we do not anticipate any directly negative societal impacts. However,
our work’s broader impacts reflect those of neuroscience more generally: Diseases of the brain, from
Alzheimer’s to stroke to depression, affect a tremendous percentage of the world’s population, and
it is increasingly recognized that many of these conditions must be understood as pathologies of
neural networks. It is our hope that circuit dissection techniques like the ones presented here will
lend themselves to faster advances in our understanding of how the brain functions, with potential
positive applications in the treatment of degenerative diseases. In particular, the use of implantable
brain stimulation devices is now routine in the treatment of Parkinson’s Disease, and it is thought that
future brain-machine interfaces will help restore motor function for those suffering from paralysis. In
each case, one of the key requirements is the online analysis of brain data, to which the present work
represents a small contribution.
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