A More detailed hyper-parameter settings

In this section, we provide more detailed hyper-parameter settings as a supplementary to Section 4.1.
All models on SVHN, CIFAR-10, STL-10 are trained for 80, 200, 200 epochs respectively. SGD with
momentum optimizer and cosine annealing [50] learning rate scheduler are used for all experiments.
Momentum and weight decay parameter are fixed to 0.9 and 5 x 10~* respectively. We try all
learning rates in {0.1,0.05,0.01} for all experiments. We report the results of the best performing
hyper-parameter setting for each experiment.

B \-accuracy plots

In this section, we provide a new way to present the same results shown in Figures 4 and 6, by
comparing SA/RA of different methods under different As in Figures 8 and 9, for the readers’
reference.
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Figure 8: Comparison of trade-off between accuracy and robustness of different methods on three
datasets. Top and bottom row show SA and RA under different A\’s respectively.

C More discussions on )\ sampling set

Discrete v.s. continuous sampling Uniformly sampling A from the continuous set [0, 1] achieves
similar results as sampling from discrete and sparse S; (within +0.2% for SA/RA on SVHN), but
requires 10% more epochs to converge. We also empirically find sampling small lambdas more
densely converges faster.

OAT (normal BN) trained without A = 0 As discussed in Section 3.2, standard (A = 0) and
adversarial (A # 0) features have very different BN statistics, which accounts for the failure of OAT
with normal BN (when trained on both A = 0 and A\ # 0) and motivates our dual BN structure. One
natural question to ask is: will OAT (normal BN) achieve good performance when it is trained only
on As unequal to 0?7 Experimental results show that OAT (normal BN) trained without A = 0 (e.g., on
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Figure 9: Comparison of OATS with baseline PGD-ATS on CIFAR-10 with ResNet34 backbone. Top
and bottom row show SA and RA under different As respectively. Left, middle, right columns are the
full network, 0.75 width, and 0.5 width sub-network respectively.

S4 ={0.1,0.2,0.3,0.4,1.0}) achieve similar performance with PGD-AT baselines (within +0.5%
SA/RA on CIFARI10) at A > 0. But its best achievable SA (91.5% on CIFAR10) is much lower than
that of OAT with dual BN (93.1% on CIFAR10).

D Visual interpretation by Jacobian saliency

In this section, we compare Jacobian saliency of OAT with PGD-AT, as discussed in Section 4.5.
Visualization results on SVHN, CIFAR10 and STL10 are shown in Figures 10, 11 and 12, respectively.

E Ablation on encoding of \

In this section, we investigate the influence of three different encoding schemes on OAT:

e No encoding (None). A is taken as input a scalar, e.g., 0.1, 0.2, etc.

e DCT encoding (DCT-d). The n-th A value in S; is mapped to the n-th column of the
d-dimensional DCT matrix [51]. For example, O is mapped to the first column of the
d-dimensional DCT matrix.

e Random orthogonal encoding (RO-d). Similar to DCT encoding, the n-th A value is mapped
to the n-th column of a d-dimensional random orthogonal matrix.

Results of OAT with different encoding schemes on CIFAR-10 are shown in Figure 13. As we can
see, using encoding generally achieves better SA and RA compared with no encoding. For example,
the best SA achievable using RO-16 and RO-128 encoding are 93.16% and 93.68% respectively,
which are both much higher than the no encoding counterpart at 92.53%. We empirically find RO-128
encoding achieves good performance and use it as the default encoding scheme in all our experiments.
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(a) Original images in SVHN test set

(c) Jacobian saliency maps of PGD-AT models

Figure 10: Jacobian saliency maps of OAT and PGD-AT models on SVHN. For (b) and (c), in each
column are saliency maps of corresponding images in the same column of (a); in each row are saliency
maps of models under different As (A = 0,0.1,0.2,0.3,0.4, 1.0 from top row to bottom row).
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(c) Jacobian saliency maps of PGD-AT models

Figure 11: Jacobian saliency maps of OAT and PGD-AT models on CIFAR-10. For (b) and (c), in
each column are saliency maps of corresponding images in the same column of (a); in each row are

saliency maps of models under different As (A = 0,0.1,0.2,0.3,0.4, 1.0 from top row to bottom
row).
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(c) Jacobian saliency maps of PGD-AT models

Figure 12: Jacobian saliency maps of OAT and PGD-AT models on STL-10. For (b) and (c), in
each column are saliency maps of corresponding images in the same column of (a); in each row are

saliency maps of models under different As (A = 0,0.1,0.2,0.3,0.4, 1.0 from top row to bottom
row).
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Figure 13: Results of OAT with different encoding schemes on CIFAR-10.
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