
To All Reviewers: With positive scores from all the reviewers, we thank all the reviewers for their valuable feedbacks.1

Code has been submitted as the supplementary material and will be publicly released if the paper gets accepted.2
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Figure A: Viewed with zooming in.

Q: Justification for self-adjustment of Eq. (11). We design Eq. (11), w̃i =3

wi+
(
(Ri)Twi−wi

)
·αi to further mitigate angular bias. In Sec. 3.3, we adopt4

alternating optimization for the non-convex objective of Eq. (7). It does reduce5

the angular bias, which, however, cannot guarantee the global optimum. Usu-6

ally, it either overshoots (Fig. A(a)) or undershoots (Fig. A(b)) the binarization7

sign
(
(Ri)Twi

)
. Eq. (11) constrains that the final weight vector moves along the8

residual direction of (Ri)Twi −wi with α ≥ 0. It is intuitive that when overshooting, α ≤ 1; when undershooting,9

α ≥ 1. We empirically observe that overshooting is in a dominant position. Thus, we simply constrain α ∈ [0, 1] to10

shrink the learnable domain of α, which we find can well further reduce the quantization error and boost the performance11

as demonstrated in Tab. 4 of the paper. The final value of α varies across different layers. In Fig. A(c), we show how α12

updates during training in ResNet-20 (layer2.2.conv2). We will clarify this part in our final version.13

Reviewer #1: clear accept (8) – insightful, interesting, attractive and pleasure to read.14

Q1: Per-iteration rotation. Taking ResNet-20 on CIFAR-10 (one GTX 1080 GPU) as an example, per-iteration15

rotation achieves 86.7% (53.33 hours) top-1 accuracy while per-epoch rotation achieves 86.5% (5.83 hours). Per-epoch16

rotation achieves 9.15× speed-up with negligible accuracy compromise. Thus we adopt per-epoch rotation. Q2:17

Fig. 2(b) and Fig. 5. Fig. 2(b) shows per-layer quantization error consisting of λ, w and b in Eq. (1), and Fig. 5 shows18

per-layer distribution of w. Since λ was ignored in Fig. 5, it is inappropriate to compute quantization error by comparing19

w with their centers (binarization). Q3: Angular bias of activation. It consumes additional computation in the test20

stage since the activation is input-related. Thus, we do not apply activation rotation. Q4: Typos. They have been fixed.21

Reviewer #2: above the acceptance (6) – new, interesting, clearly written and sufficiently explained.22

Q1: Approximation brings more improvements. Our approximation achieves a good accuracy of 86.6% based23

on a mediocre baseline XNOR-Net (83.7%), which is hard to be further boosted. Nevertheless, our rotation still24

increases it to 87.1%. Actually, combining our rotation with XNOR-Net (without approximation) can also obtain a25

great performance of 86.4%. Thus, our rotation should not be evaluated simply by a relative increment from 86.6%26

to 87.1%. Q2: Additional parameters. Additional parameters include αi, Ri
1 and Ri

2, which are floating-point. αi27

brings negligible consumption. Theoretical complexities of Ri
1 and Ri

2 are provided in line 127 of the paper. We28

take ResNet-20 on CIFAR-10 to test actual complexity. It takes 21 (19) seconds to finish one training epoch on one29

GTX 1080 GPU with (without) bi-rotation. Besides, only 0.06MB space are introduced additionally. Both the time30

and space cost are negligible. Moreover, Ri
1 and Ri

2 are applied in the training stage to learn weight binarization,31

which means no overhead in the test stage. Q3: Approximation motivation. The approximation has to be “soft” to32

backward gradient, and also has to well approximate the sign function to minimize the forward error. Though tanh33

function enables gradient propagation, it never reaches the exact values of -1/+1 even with annealing hyperparameter.34

Our approach not only enables gradient propagation, but also behaves exactly the same as the sign function in the ends35

which distinguishes our method from others. In our final version, we will reorganize Sec. 3.4 and include more related36

works including tanh (annealing). Q4: Penalizing the angle while learning. Though reducing the angle error, we find37

it hard to increase the probability of weight flip. Thus, the rotation is introduced. Q5: loss of bi-rotation. Bi-rotation38

doesn’t increase the loss since the bi-rotation matrices are equivalent to full-matrix rotation (see line 125 of the paper39

and our response to Q2 of Reviewer #3). Q6: Test time overhead? No (see Q2).40

Reviewer #3: above the acceptance (6) – innovative, interesting, and good awareness of the literature.41

Q1: How to compensate for rotating the weights? At the beginning of each training epoch, we apply the weight42

rotation to reduce the angle first. A regular training epoch is then applied on basis of the rotated weights to retain43

the accuracy (see lines 145–147 of the paper). Q2: Going-forward suggestions. We really appreciate your valuable44

suggestions. First, since Martinez et al., haven’t released their code yet, we could not verify currently if properly45

training the network will correct the angular bias as the rebuttal period is very limited. However, we will do it after the46

rebuttal. Second, our GPU platform can perform full rotation on CIFAR-10 and it shows similar results to bi-rotation.47

However, it exceeds our hardware capacity to evaluate on ImageNet because of the massive memory consumption.48

In sum, our final version will include the following changes: 1) Angular bias and weight flip will be clearly defined49

in the introduction. 2) The validation will be re-formatted and table notations will be explained in the caption. 3)50

More existing approximations will be added in Sec. 3.4. 4) Lines 37, 86 and 104 will be rephrased. 5) Eq. (11) will be51

justified. 6) We will rewrite our broader impact.52

Reviewer #4: above the acceptance (6) – novel, interesting, well written and easy to understand.53

Q1: Typos. We have carefully proofread the manuscript and fixed the typos.54


