
Thanks to all reviewers for the insightful comments! We have already open-sourced most of our code (link hidden to1

preserve anonymity) and will provide the link at the beginning of Section 5 of the final paper. Detailed responses below:2

R1: The overall method seems to be not end-to-end. Algorithm 1 is in fact an end-to-end algorithm. All the trainable3

parameters β and {Wl, bl}l≤L−1 are updated simultaneously in the main SGD step. The only parameters that are not4

updated are the WL and bL, which are fixed random features that are frozen throughout the learning. The precision5

matrix update is only a side computation for summary statistics derived from the SGD-updated model. As a result, the6

optimization procedure is very similar to the determinisitic SGD training. We use the same initialization for the hidden7

weights as in the deterministic model, and use the default Glorot uniform initializer for the GP output layer weights β.8

R1: Clarity regarding Eqn (5). Thanks for highlighting a point that merits more clarification. Briefly, different from9

a classic minimax problem, we derived (5) under the assumption that we have partial knowledge about p∗ (i.e., we10

know the domain probability p∗(x ∈ X)), therefore it is possible for the known property of p∗ to enter into the final11

expression. Please see Appendix B for a full statement of the motivation, the assumptions and the proof for Eqn. (5). In12

particular, please see line 619-626 for an explanation of why (5) is structured as such. Eqn (5) (corresponds to Appendix13

Proposition 2) is used to motivate Section 2.2. In the final paper, we will include additional explanations / pointers to14

Appendix B around line 100, and replace "Proposition 2" with "Equation (5)" on line 110 to improve clarity.15

R2: It seems that the X is with L2-norm as distance metric. We in fact allow the metric for X to be non-Euclidean16

so it reflects the semantically meaningful distance in the data space (please see statement on line 55-56, the discussion17

on line 141-149, and the proof for Proposition 1 in Appendix D.2. which does not impose restriction on ||.||X and18

is based on the theoretical work of [3]). In addition, we’d like to point out that in the vision / language experiments19

(Section 5.2), the SNGP has superior performance in distinguishing in-domain / out-of-domain data, which is not likely20

if SNGP can only preserve a L2 metric, which is not suitable for an image / language manifold.21

R3: Ablation study. We have conducted such ablation study in Appendix C, where DNN-SN and DNN-GP are ablated22

versions of SNGP. Figure 2-3 shows that in the 2D example, the uncertainty surface of a DNN-SN behaves similarly to23

a deterministic DNN, while that of a DNN-GP is lacking in preserving input distance. Table 4-6 shows in the vision and24

language experiments, DNN-SN and DNN-GP tend to outperform the deterministic baseline, but underperform SNGP.25

Method / AUPRC C10 vs SVHN C10 vs C100 C100 vs SVHN C100 vs C10
MSP+OE 89.4 76.2 52.9 32.6

Mahalanobis 99.1 - 98.4 -
ODIN 92.5 - 93.9 -
SNGP 99.0 90.5 92.3 80.1

26

R3: Comparison to methods designed explicitly for27

OOD detection. Please see table for performance com-28

parison to popular OOD methods evaluated using area29

under precision recall curve (AUPRC) (we will add it to30

Appendix C). We denoted CIFAR-10/-100 as C10/100. As shown, despite not designed explicitly for OOD, SNGP is31

competitive and sometimes outperforms other OOD approaches, especially on difficult near-OOD tasks (e.g, CIFAR 1032

v.s. 100 and vice versa). Mahalanobis = Mahalanobis with feature ensemble and inputprocessing.33

R4: Unclear why the distance to the training data should be used for the uncertainty measure / whether this34

distance awareness property is indeed advantageous. Intuitively, given a testing example that "looks different" from35

the training data (i.e., far from the training data manifold), a model’s uncertainty metric is expected to return a high value36

(see, e.g., Fig 1a). Such definition of model uncertainty (or "epistemic" uncertainty) in terms of distance/dissimilarity37

from observed data has been widely adopted in both the UQ and the ML literature (c.f. Kiureghian and Ditlevsen38

(2009).Aleatory or epistemic? Does it matter? , Kendall and Gal (2017).What Uncertainties Do We Need in BDL for CV?, NeurIPS and the many papers39

citing them), and empirically can be measured by a model’s OOD accuracy (see Table 1-2, and Table 4-6 in Appendix).40

Quoting other reviewers: "Empirical results on benchmark datasets show superior performance in OOD." (R1), "This41

work conducted convincing experiments on various datasets...showed the advantage of the proposed method." (R2), etc.42

R4: Why the special setting in this paper is inevitable...Either the theoretical derivations or the empirical results43

do not support why the practitioners have to use the proposed modification. Contrary to local methods, vanilla44

DNN models tend to have difficulty in achieving the distance-preservation property shown in Eqn (6). For example,45

vanilla DNNs are found to be vulnerable to adversarial examples - they can be sensitive to tiny perturbation in the input46

space, yet sometimes insensitive to semantics-altering edits to the training data - i.e., not input distance aware [33,34].47

To this end, the paper’s theoretical result (Proposition 1) ensures SNGP’s ability in guaranteeing distance preservation,48

and the empirical result (Table 1-2, and Appendix C.2) shows that such modification leads to concrete improvement in49

ECE/OOD performance when compared to an unmodified baseline.50

R4: ...disentanglement...is contrary to the explanation that the distance-preservation matters. Disentanglement51

and distance-preservation (i.e. invariance) are both important properties for a representational learning algorithm, and52

they do not contradict each other (see, e.g., Achille and Soatto (2018).Emergence of Invariance and Disentanglement in Deep Representations, JMLR).53

For a DNN hidden mapping h : X → Rd which is a coordinate transform from the input space to a hidden space54

h(x) ∈ Rd, disentanglement describes h(x)’s ability in separating salient latent features from the noise among its55

d coordinates, while distance preservation describes h(x)’s ability in translating a semantically meaningful (often56

non-Euclidean) measure in the data manifold into that in the Euclidean space [30]. With suitable model specification,57

disentanglement can happen jointly with distance preservation (e.g., see Figure 2 of [30]). There have been many work58

that try to achieve both for the purpose of generalization and adversarial robustness, notably via Lipschitz regularization59

or invertible (i.e. bi-Lipschitz) networks [35, 69] (also, e.g., Engstrom. (2019) Adversarial Robustness as a Prior for Learned Representations)60


