
Appendices
A A Rank-2 Model

Consider the case where we the (i, j)-th observation Yi,j is the output of a Ber(pi) random variable
passed through a general binary channel BC(q

(0)
j , q

(1)
j) (see Figure 1(c)). Here q(0)

j is probability of

a 0 being flipped to a 1 and q(1)
j is probability of a 1 being flipped to a 0 on the jth column.

We note that we have n + 2m parameters here, while a rank-one model would admit only n + m
parameters. Hence this is not a rank-one model. However we note that

E[Y] = p(1− q(0))T + (1− p)q(1)T , (18)

where p = [p1, . . . , pn]T , q(0) = [q
(0)
1 , . . . , q

(0)
m]T and q(1) = [q

(1)
1 , . . . , q

(1)
m]T . This shows that,

when the noise in the workers’ responses is modelled by a general binary channel (see Figure 1(c)),
we have a rank-2 model.

B Proof of Lemma 1

We start by using the triangle inequality to obtain
|ûi − ui| ≤ |ûi − E[ûi]|+ |E[ûi]− ui|. (19)

To bound the first term, we first notice that since

ûi = Xi,.
v̂

‖v̂‖‖v‖
=

1

‖v‖

m∑
j=1

(
Xi,j

v̂j
‖v̂‖

)
(20)

and v̂ is independent of Xi,., we have that

ûi − E[ûi] =
1

‖v‖

m∑
j=1

(
Xi,j

v̂j
‖v̂‖

)
− 1

‖v‖

m∑
j=1

(
uiE

[
v̂j
‖v̂‖

])

=
1

‖v‖

m∑
j=1

(
Xi,jE

[
v̂j
‖v̂‖

]
+Xi,j

(
v̂j
‖v̂‖
− E

[
v̂j
‖v̂‖

])
− uiE

[
v̂j
‖v̂‖

])

=
1

‖v‖

m∑
j=1

(Xi,j − ui)E
[
v̂j
‖v̂‖

]
+

1

‖v‖

m∑
j=1

Xi,j

(
v̂j
‖v̂‖
− E

[
v̂j
‖v̂‖

])
. (21)

From the triangle inequality, we then have

|ûi − E[ûi]| ≤
1

‖v‖

∣∣∣∣∣∣
m∑
j=1

(Xi,j − ui)E
[
v̂j
‖v̂‖

]∣∣∣∣∣∣+
1

‖v‖

m∑
j=1

|Xi,j |
∣∣∣∣ v̂j‖v̂‖ − E

[
v̂j
‖v̂‖

]∣∣∣∣
≤ 1

‖v‖

∣∣∣∣∣∣
m∑
j=1

(Xi,j − ui)E
[
v̂j
‖v̂‖

]∣∣∣∣∣∣+
1

‖v‖

∥∥∥∥ v̂

‖v̂‖
− E

[
v̂

‖v̂‖

]∥∥∥∥
1

(22)

From the fact that ‖v‖ ≥ c
√
m and the fact that ‖x‖1 ≤

√
m‖x‖2 for any x ∈ Rm, the second term

can be bounded as
1

‖v‖

∥∥∥∥ v̂

‖v̂‖
− E

[
v̂

‖v̂‖

]∥∥∥∥
1

≤ 1

c

∥∥∥∥ v̂

‖v̂‖
− E

[
v̂

‖v̂‖

]∥∥∥∥
≤ 1

c

∥∥∥∥ v̂

‖v̂‖
− v

‖v‖

∥∥∥∥+
1

c

∥∥∥∥ v

‖v‖
− E

[
v̂

‖v̂‖

]∥∥∥∥
=

1

c

∥∥∥∥ v̂

‖v̂‖
− v

‖v‖

∥∥∥∥+
1

c

∥∥∥∥E [v

‖v‖
− v̂

‖v̂‖

]∥∥∥∥
≤ 1

c

∥∥∥∥ v̂

‖v̂‖
− v

‖v‖

∥∥∥∥+
1

c
E
∥∥∥∥ v

‖v‖
− v̂

‖v̂‖

∥∥∥∥ , (23)

14

where the last step follows from Jensen’s inequality.

Now we consider the second term in (19). We first notice that

ûi = Xi,.
v̂

‖v̂‖‖v‖
=
Xi,.

‖v‖

(
v

‖v‖
+

v̂

‖v̂‖
− v

‖v‖

)
=
Xi,.v

‖v‖2
+
Xi,.

‖v‖

(
v̂

‖v̂‖
− v

‖v‖

)
,

where we recognize the first term as the matched filter for estimating ui if v were known. Since
E[Xi,.] = uiv

T and v̂ is independent of Xi,. (due to the splitting of the data matrix X), we have

E[ûi] =
uiv

Tv

‖v‖2
+
uiv

T

‖v‖
E
[

v̂

‖v̂‖
− v

‖v‖

]
= ui +

uiv
T

‖v‖

(
E
[

v̂

‖v̂‖

]
− v

‖v‖

)
.

Using the Cauchy-Schwarz inequality, we have that

|E[ûi]− ui| ≤
ui‖v‖
‖v‖

∥∥∥∥E [v̂

‖v̂‖

]
− v

‖v‖

∥∥∥∥ = ui

∥∥∥∥E [v̂

‖v̂‖

]
− v

‖v‖

∥∥∥∥ ≤ uiE ∥∥∥∥ v̂

‖v̂‖
− v

‖v‖

∥∥∥∥ , (24)

where the last step follows from Jensen’s inequality.

Finally, putting together (19), (22), (23), and (24), and noting that ui < 1, we obtain

|ûi − ui| ≤
1

‖v‖

∣∣∣∣∣∣
m∑
j=1

(Xi,j − ui)E
[
v̂j
‖v̂‖

]∣∣∣∣∣∣+
1

c

∥∥∥∥ v̂

‖v̂‖
− v

‖v‖

∥∥∥∥+

(
1 +

1

c

)
E
∥∥∥∥ v̂

‖v̂‖
− v

‖v‖

∥∥∥∥ .
C Proof of Equation (11)

We claim that for any ε > 0,

P
(∣∣∣∑m

j=1(Xi,j − ui)E[v̂j/‖v̂‖]
∣∣∣ > ‖v‖ε) ≤ 2 exp

(
−2c2mε2

)
. (25)

First we notice that the random variables (Xi,j − ui)E
[
v̂j
‖v̂‖

]
, for j = 1, . . . ,m, are independent and

zero-mean. Moreover, they satisfy

−uiE
[
v̂j
‖v̂‖

]
< (Xi,j − ui)E

[
v̂j
‖v̂‖

]
< (1− ui)E

[
v̂j
‖v̂‖

]
.

Using Hoeffding’s inequality, for any ε > 0 we have that

P

∣∣∣∣∣∣
m∑
j=1

(Xi,j − ui)E
[
v̂j
‖v̂‖

]∣∣∣∣∣∣ > ‖v‖ε
 ≤ 2 exp

(
− 2‖v‖2ε2∑m

j=1 E[v̂j/‖v̂‖]2

)

≤ 2 exp

− 2c2mε2

E
[∑m

j=1 v̂
2
j /‖v̂‖2

]


= 2 exp
(
−2c2mε2

)
,

where in the second step we used Jensen’s inequality.

D Proof of Lemma 2

Let W = X − EX be the “noise” added to EX . In order to prove Lemma 2, our first order of
business is to bound the expectation of ‖W‖op and ‖W‖2op. Then we use these bounds with the
Davis-Kahan theorem of Davis and Kahan [15] to bound the `2 error in v̂. We have the following
lemma.
Lemma 3. The noise matrix W = X − EX satisfies

E [‖W‖op] ≤ 2
√

(m+ n) log(m+ n) (26)

E
[
‖W‖2op

]
≤ 120(m+ n) log(m+ n) (27)

15

Proof. Strictly speaking, due to Jensen’s inequality, (27) implies (26) (with a different constant).
However, to provide intuition and improve the exposition, we provide a standalone proof of (26) first.
We start by noticing that

Wi,j =

{
1− uivj with probability uivj ,
−uivj with probability 1− uivj ,

Hence we have

(E[WTW])i,j =

{
0 if i 6= j,∑n
k=1 ukvi(1− ukvi) if i = j,

which implies that c2(1− C2)n ≤ (E[WTW])i,i ≤ C2(1− c2)n. Thus ‖E[WTW]‖op ∈ [c2(1−
C2)n,C2(1− c2)n]. Similarly one can argue that ‖E[WWT]‖op ∈ [c2(1− C2)m,C2(1− c2)m].
Following the notation of Tropp [43, Theorem 6.1.1], the matrix variance statistic ν(W) is

ν(W) = max
(
‖E[WTW]‖op, ‖E[WWT]‖op

)
,

∈ [c2(1− C2) max(m,n), C2(1− c2) max(m,n)],

≤ C2(1− c2)(m+ n) ≤ m+ n. (28)

From the Matrix-Bernstein inequality [43, Eq. (6.1.3)], we have that

E‖W‖op ≤
√

2ν(W) log(m+ n) + 1
3 log(m+ n)

=
√

2(m+ n) log(m+ n) + 1
3 log(m+ n)

≤ (
√

2 + 1
3)
√

(m+ n) log(m+ n) ≤ 2
√

(m+ n) log(m+ n),

proving (26). To prove (27), we rely on another inequality by Tropp [43, Eq. (6.1.6)] to state that(
E‖W‖2op

)1/2 ≤√2eν(W) log(m+ n) + 4e log(m+ n)

≤
√

2e(m+ n) log(m+ n) + 4e log(m+ n)

≤ 4e
√

(m+ n) log(m+ n),

which implies that E‖W‖2op ≤ 120(m+ n) log(m+ n), proving (27).

With Lemma 3, we proceed to the proof of Lemma 2. Notice that the leading right singular vector of
X is equivalent to the leading eigenvector of XTX . Also note that

XTX = (EX +W)T (EX +W)

= (uvT +W)T (uvT +W)

= ‖u‖2vvT + vuTW +WTuvT +WTW. (29)

We will use the Davis-Kahan theorem to bound
∥∥∥ v̂
‖v̂‖ −

v
‖v‖

∥∥∥. We begin by bounding the operator
norm of the “error terms” in (29) as

‖vuTW +WTuvT +WTW‖op
(a)

≤ ‖vuTW‖op + ‖WuvT ‖op + ‖WTW‖op,
(b)

≤ ‖vuT ‖op‖W‖op + ‖W‖op‖uvT ‖op + ‖WTW‖op,
= 2‖u‖‖v‖‖W‖op + ‖WTW‖op, (30)

where (a) follows from the triangle inequality, and (b) from the fact that ‖AB‖op ≤ ‖A‖op‖B‖op.
We also note that

c
√
n ≤ ‖u‖ ≤ C

√
n ≤
√
n, (31)

c
√
m ≤ ‖v‖ ≤ C

√
m ≤

√
m. (32)

16

Since ‖u‖2vvT is rank-one with leading eigenvalue ‖u‖2‖v‖2, the spectral gap δ of ‖u‖2vvT is
δ = ‖u‖2‖v‖2 ≥ c4(mn). From the version of the Davis-Kahan Theorem [15] of Mahoney [33,
Theorem 30], we have that∥∥∥∥ v̂

‖v̂‖
− v

‖v‖

∥∥∥∥ ≤ √2
‖vuTW +WTuvT +WTW‖op

δ

≤
√

8mn‖W‖op +
√

2‖WTW‖op
c4(mn)

=

√
8‖W‖op
c4
√
mn

+

√
2‖W‖2op
c4mn

. (33)

Taking the expectation on both sides and using Lemma 3, we obtain

E
∥∥∥∥ v̂

‖v̂‖
− v

‖v‖

∥∥∥∥ ≤
√

16(m+ n) log(m+ n)

c4
√
mn

+
120
√

2(m+ n) log(m+ n)

c4mn

=
4

c4

√(
1

m
+

1

n

)
log(m+ n) +

120
√

2

c4

(
1

m
+

1

n

)
log(m+ n)

≤ 4

c4

√
log(m+ n)

min(m,n)
+

120
√

2

c4
log(m+ n)

min(m,n)
(34)

Notice that v̂/‖v̂‖ and v/‖v‖ are unit vectors, and so their `2 distance can be at most 2. The
right-hand side of (34) can only be less than 2 if

4

c4

√
log(m+ n)

min(m,n)
≤ 1 ⇒ log(m+ n)

min(m,n)
≤ c4

4

√
log(m+ n)

min(m,n)
.

Hence,

E
∥∥∥∥ v̂

‖v̂‖
− v

‖v‖

∥∥∥∥ ≤ min

[
2,

4

c4

√
log(m+ n)

min(m,n)
+

120
√

2

c4
log(m+ n)

min(m,n)

]

≤
(

4

c4
+ 30

√
2

)√
log(m+ n)

min(m,n)
. (35)

This proves Statement (b) in Lemma 2, where we can take C3 = 4/c4 + 30
√

2. To prove Statement
(a), we note that from (33), ∥∥∥∥ v̂

‖v̂‖
− v

‖v‖

∥∥∥∥ ≤ √8‖W‖op
‖u‖‖v‖

+

√
2‖W‖2op
‖u‖2‖v‖2

(36)

Next we notice that, if ‖W‖op‖u‖‖v‖ < ε/4, then∥∥∥∥ v̂

‖v̂‖
− v

‖v‖

∥∥∥∥ < ε√
2

+
ε2

8
√

2
< ε,

for 0 < ε < 1. Therefore, we have that

P
(∥∥∥∥ v̂

‖v̂‖
− v

‖v‖

∥∥∥∥ ≥ ε) ≤ P
(
‖W‖op > 1

4ε‖u‖‖v‖
)

≤ P
(
‖W‖op > 1

4εc
2
√
mn
)

≤ (m+ n) exp

(
− 1

32

c4ε2mn

m+ n+ 1
12c

2ε
√
mn

)
(37)

≤ (m+ n) exp

(
− 1

32

c4ε2mn

(2 + 1
12) max(m,n)

)
(38)

≤ (m+ n) exp

(
−c

4ε2

48
min(m,n)

)
where (37) follows by the Matrix-Bernstein inequality [43, Eq. (6.1.4)] using the computation of the
matrix variance statistic from (28), and (38) follows since c < 1 and ε < 1. This means we can take
C2 = c4/48.

17

E Thresholding Bandits

In this section, we develop a bandit algorithm to return a set of coordinates in {1, . . . , n} such that
with high probability all coordinates with ui ≥ β are returned and no coordinates with ui ≤ α are

returned, for some β > α. We assume that β − α >
√

12 logn
C4n

. The algorithm and analysis follows
Locatelli et al. [32].

Lemma 4. For any Γ ∈ R, our estimates ûi from Algorithm 1 run with an n×m matrix with m,n
such that

min(m,n) ≥
log
(

1
δ

)
+ log(m+ n+ 2)

Γ2C4
, (39)

will have |ûi − ui| ≤ Γ with probability at least 1− δ. Thus, if

min(m,n) ≥ 3 log n+ 2 log(m+ n)

Γ2C4
(40)

then with probability 1− 1
n2 , |ûi − ui| ≤ Γ for all i ∈ {1, . . . , n}.

Proof. Eq. (39) follows by inverting the error bound from Eq. (12). Eq. (40) follows by just substitut-
ing δ = 1

n3 and noting that log(m+ n+ 2) ≤ 2 log(m+ n) as long as m+ n ≥ 4.

Notice that a naive non-adaptive approach to this thresholding problem would consist of applying
Algorithm 1 to the entire observation matrix, with enough enough workers such that the confidence
intervals are smaller than β−α

2 and return coordinates with value more than α+β
2 . In that case, Lemma

4 implies that 12
C4

n logn
(β−α)2 workers’ responses are enough to succeed with probability at least 1− 1

n .
In Algorithm 3, we propose an adaptive way of performing the same task.

Algorithm 3 Adaptive Spectral Thresholding Algorithm

1: Input: Range [α, β].
2: Initialise S0 ← {1, . . . , n} . Set of coordinates initially under consideration
3: Initialise A← ∅ . Set of coordinates initially accepted
4: t−1 ← 12 logn

C4
. Initial number of workers recruited. C4 from Eq. (39)

5: for r = 0 to dlog2
1

β−αe − 1 do
6: tr = 4tr−1 . Number of workers to be recruited
7: Obtain a binary response matrix X(r) ∈ {0, 1}|Sr|×tr and corresponding ‖v(r)‖
8: Use Algorithm 1 to compute estimates û(r) for X(r)

9: Construct confidence intervals C(tr) (same for every question)
10: Construct accepted set Cacc = {i ∈ Sr : û

(r)
i − C(tr) > α}

11: Construct rejected set Crej = {i ∈ Sr : û
(r)
i + C(tr) < β}

12: Set Sr+1 = Sr \ {Crej ∪ Cacc}
13: if |Sr+1| < 12

(β−α)2C4
log n then

14: Let I be 12
(β−α)2C4

log n−|Sr+1| coordinates of Crej∪Cacc picked uniformly at random.

15: SC = Sr+1 ∪ I
16: A = A ∪ (Cacc)
17: break
18: else
19: Set A = A ∪ Cacc

20: Clean up: Use tC = 12 logn
(β−α)2C4

workers with set SC of questions to obtain estimates û(C).

Construct confidence intervals C(tC) and accepted set CA = {i ∈ SC : û
(C)
i − C(tC) > α}

21: return A ∪ CA.

18

Let κ ,
⌊

12
(β−α)2C4

log n
⌋

. Define

Γi =


ui − α if β < ui,

β − α if α ≤ ui ≤ β,
β − ui if ui < α.

(41)

See Figure 3 for an illustration. Further let Γ(1) ≤ Γ(2) ≤ · · · ≤ Γ(n) be the sorted list of the Γi.

ui

coordinates of u
1 2 3

u1

u2

u3

𝛽

𝛼

Γ$

Γ%

Γ&

Figure 3: An illustration of Γi of Eq. (41)

Theorem 4 (Restatement of Theorem 3). Given parameters β and α such that β − α >
√

12 logn
C4n

,
Algorithm 3 will output a set of reads R such that {i : ui > β} ⊆ R ⊆ {i : ui > α} with probability
at least 1− 2

n , requiring a budget of at most

T = 2

(
12

C4

log n

(β − α)2

)2

+

n∑
`=κ+1

32

C4

log n

(Γ(`))2
(42)

on this success event.

Proof. We note that while in the elimination stage, we always have tr ≤ |Sr| by construction, as
t0 ≤ |S0| and tr is an increasing sequence while |Sr| is a decreasing one, and we break when
|Sr| < 12

(β−α)2C4
log n, while the maximum tr achieved in the for loop of line r is 12

(β−α)2C4
log n

because of the limits of the for loop. Further tr is picked so that in round r, with probability 1− 1
n2 ,

|û(r)
i −ui| ≤ 2−r for all i ∈ {1, . . . , n}. Notice that there are at most dlog2

1
β−αe iterations and, since

β − α is assumed to be a constant, dlog2
1

β−αe ≤ n for large enough n. Hence, with probability at

least 1− 1
n , we have that over all rounds, û(r)

i are within their confidence intervals for all coordinates
i. Similarly the clean up stage is constructed so that |û(r)

i − ui| ≤ β − α with probability at least
1 − 1

n2 . Thus with probability at least 1 − 2
n all our estimates are within the confidence intervals

constructed throughout the algorithm.

Notice that if the confidence interval of question i (with parameter ui) is reduced to less than Γi/2
in the r-th iteration, at that point (or previously) the algorithm must either accept or reject ui. This
is because any ui > β will have û(r)

i − Γi/2 > α, any ui < α will have û(r)
i + Γi/2 < β, and any

ui ∈ [α, β] will have a confidence interval of total length at most Γi = β − α, which cannot include
both α and β. Hence, for each question i of the n− κ questions eliminated before the clean up stage,
the total number of workers used at its last iteration before elimination is, by Lemma 4, at most

3 log n+ 2 log(2n)

C4(Γi/2)2
≤ 24 log n

C4Γ2
i

,

19

where we upper bound 2 log(2n) by 3 log(n) for n > 4. Since the number of workers used at each
iteration grows as a geometric progression, the total number of questions answered for all the n− κ
questions that are eliminated before the clean up stage is at most

n∑
`=κ+1

32

C4

log n

(Γ(`))2
.

Similarly for each question resolved in the clean up stage of κ workers, we need at most 24
C4

logn
(β−α)2

total worker responses. Since

κ
24

C4

log n

(β − α)2
≤ 2

(
12

C4

log n

(β − α)2

)2

,

the result follows.

Remark 1. Line 3 is simply to make sure that we have n > m in the clean up stage. Selecting I
uniformly at random from Crej ∪ Cacc is simply given as a concrete way for the algorithm to run.

Remark 2. Theorem 4 basically enables us to construct confidence intervals of β−α2 for only the
“hardest” κ questions and near optimal confidence intervals for the rest, while the non-adaptive
algorithm would need to construct confidence intervals of β−α2 for all.

F Proof of Theorem 2

The proof at a high level proceeds by showing that the probability we eliminate any of the top k arms
is low in our halving stages, and then that uniformly sampling the

√
T remaining arms allows us to

identify the top k correctly. Note that coordinates, items, and arms will be used interchangeably. For
the sake of notational simplicity, we assume that the arms are sorted by mean, in that µ1 ≥ . . . ≥ µn,
and that µk > µk+1, i.e. the top-k are well defined. We begin by observing that we do not exceed
our allotted budget.
Lemma 5. Algorithm 2 does not exceed the budget T .

Proof. At the r-th stage we have |Ir| questions and tr workers. Hence,

rmax∑
r=0

|Ir|tr ≤
rmax∑
r=0

T

2
⌈
log2

n√
T

⌉ =
T (rmax + 1)

2
⌈
log2

n√
T

⌉ =
T
⌈
log2

n√
T

⌉
2
⌈
log2

n√
T

⌉ =
T

2

Since the clean up stage uses at most T2 pulls, the algorithm does not exceed its budget of T pulls.

We now examine one round of our adaptive spectral algorithm and bound the probability that the
algorithm eliminates one of the top-k arms in round r, recalling that

tr =

⌊
T

2|Ir|dlog2
n√
T
e

⌋
.

In standard bandit analyses, we obtain concentration of our estimated arm means via Hoeffding’s
inequality, which we are unable to utilize here. Theorem 1 states that

P(|ûi − ui| ≥ ε) ≤ 3n exp
(
−C1ε

2m
)
,

providing a Hoeffding-like bound that allows us to eliminate suboptimal arms with good probability.
Lemma 6. The probability that one of the top k arms is eliminated in round r is at most

18kn exp

(
−C5

∆2
ir

ir

T

log n√
T

)
for ir = |Ir|/4 = n

2r+2 , and C5 = C1

64 .

20

Proof. The proof follows similarly to that of [28]. To begin, define I ′r as the set of coordinates in Ir
excluding the ir = 1

4 |Ir| coordinates i with largest ui. Let û(r)
i be the estimator of ui in round r. We

define the random variable Nr as the number of arms in I ′r whose û(r)
i in round r is larger than that

of any of the top-k ui. We begin by showing that E[Nr] is small. We bound E[Nr] as

E[Nr] =
∑
i∈I′r

P

 ⋃
`∈[k]

{
û

(r)
i ≥ û

(r)
`

} ≤ k∑
i∈I′r

P
(
û

(r)
i ≥ û

(r)
k

)
≤ k

∑
i∈I′r

P
(
û

(r)
i ≥ ui + ∆i/2

)
+ P

(
û

(r)
k < uk −∆i/2

)
≤ k|I ′r|

(
P
(
û

(r)
ir
≥ uir + ∆ir/2

)
+ P

(
û

(r)
k < uk −∆ir/2

))
≤ 6k|I ′r||Ir| exp

(
−C1

4
∆2
ir tr

)
≤ 6k|I ′r|n exp

(
−C1

64

∆2
ir

ir

T

log n√
T

)
,

We note that since the ir largest entries of I are not present in I ′r, we have that maxi∈I′r ui ≤ uir .
We now see that in order for one of the top k arms to be eliminated in round r, at least |Ir|/2 arms
must have had higher empirical scores in round r than it. This means that at least |Ir|/4 arms from
I ′r must outperform the top k arms, i.e., Nr ≥ |Ir|/4 = |I ′r|/3. Note that this analysis only holds
when |Ir| ≥ 4k. We can then bound this probability with Markov’s inequality as

P
(

At least one of top-k arms None of the top k arms
eliminated in round r eliminated till round r

)
≤ P

(
Nr ≥

1

3
|I ′r|
)
≤ 3E[Nr]/|I ′r|

≤ 18kn exp

(
−C1

64

∆2
ir

ir

T

log n√
T

)
,

concluding the proof of the lemma.

Lemma 7. The total probability of failure during the elimination stages, Pe, is bounded as

Pe ≤ 18kn log
n√
T

exp

(
−C5

∆2
ir

ir

T

log n√
T

)

Proof. We see by a union bound over the stages that the probability that the algorithm fails (it
eliminates one of the top k arms) in any of the log n√

T
halving stages is at most

Pe1 =

log n√
T
−1∑

r=0

P
(

At least one of top-k arms None of the top k arms
eliminated in round r eliminated till round r

)
P
(

None of the top k arms
eliminated till round r

)

≤
log n√

T
−1∑

r=0

P
(

At least one of top-k arms None of the top k arms
eliminated in round r eliminated till round r

)

≤
log n√

T
−1∑

r=0

18kn exp

(
−C5

∆2
ir

ir

T

log n√
T

)

≤
log n√

T
−1∑

r=0

18kn exp

−C5
T

log n√
T
·maxs

is
∆2
is


≤ 18kn log

n√
T

exp

(
−C5

T

log n√
T
·maxi≥

√
T

i
∆2
i

)

≤ 18kn log
n√
T

exp

(
−C5

T

H2 log n√
T

)
,

21

as H2 , maxi
i

∆2
i

. This concludes the proof of the lemma.

Lemma 8. The total probability of failure during the clean up stage, Pf , is upper bounded as

Pf ≤ 12T exp

(
−C1

16
∆2
k+1

√
T

)
Proof. Through our halving stages, we are left with at most 2

√
T active coordinates. We now use a

budget of T/2, i.e. m ≥
√
T/4 columns to estimate their means. Then, the probability that the top k

are not the true top k entries (given that none of the top k were eliminated previously) is:

Pf ≤
∑

i∈Irmax+1

P (|ûi − ui)| > ∆k+1/2)

≤ 2
√
T · P (|û1 − u1)| > ∆k+1/2)

≤ 12T exp

(
−C1

16
∆2
k+1

√
T

)

Thus, our overall error probability is at most

P(failure) ≤ Pe + Pf

≤ 18kn log
n√
T

exp

(
−C5

T

H2 log n√
T

)
+ 12T exp

(
−C1

16
∆2
k+1

√
T

)
≤ 18kn log n exp

(
−C5

T

H2 log n

)
+ 12n2 exp

(
−C1

16
∆2
k+1

√
T

)
with budget no more than T.

Inverting this, we have that for a probability of error δ, one needs T =

O
(
H2 log n log

(
kn logn

δ

)
+ ∆−4

k+1 log2
(
n2

δ

))
, giving us the result claimed.

G Constants

The results in Section 3 are stated in terms of several constants. We assume that there is some c > 0
such that pi > c , qj > c for all i, j. Following the derivations in their respective proofs, these
constants are given by

C1 = min(C4, (6C3/c)
−2)

C2 = c4/48

C3 = 4/c4 + 30
√

2

C4 = c2 min(1/18, C2/9)

C5 =
C1

64
.

We present these constants here for the sake of completeness, noting that several of the bounding
steps in the derivations could be loose, and these constants are not expected to be tight. One way to
improve algorithm performance in practice is to first run the algorithm in Section 3 on a dataset with
known ground truth, and empirically estimate the true constants.

H Comparison with other methods

In this section, we discuss an alternative way to construct estimators to be used with the bandit
algorithms. We consider row averages as an estimator for the bandit algorithms and show that we
could run a top-k algorithm with row averages as the estimators, but would not be able to run the
thresholding bandits algorithm as we do not obtain unbiased estimates.

22

We can construct estimators based off of row sums. For X with EX = uvT , we estimate ui with

û
(m)
i =

1

m

m∑
j=1

Xi,j . (43)

Notice that this is similar in spirit to the Jaccard similarity estimator described in (3) and, in practice,
provides a worse estimator to the overlap sizes than the estimators based on a rank-one model [5].
However, these estimators can theoretically still be used to find the reads with the largest overlaps, as
we describe next. Considering that Xi,j has expectation uivj , we note that

û
(m)
i − û(m)

k =
1

m

m∑
j=1

(Xi,j −Xk,j)

=
1

m

m∑
j=1

((Xi,j − uivj) + uivj − (Xk,j − ukvj)− ukvj)

=
1

m

m∑
j=1

(Xi,j − uivj − (Xk,j − ukvj)) +
1

m

m∑
j=1

vj(ui − uk)

Hence, for ui > uk,

P
(
û

(m)
i < û

(m)
k

)
≤ P

 1

m

m∑
j=1

(Xi,j − uivj − (Xk,j − ukvj)) <
1

m

m∑
j=1

vj(uk − ui)


≤ P

 1

2m

m∑
j=1

(Xi,j − uivj − (Xk,j − ukvj)) <

 1

m

m∑
j=1

vj

 uk − ui
2


≤ 2 exp

−m
4

 1

m

m∑
j=1

vj

2

(uk − ui)2

 ,

= 2 exp

(
−mv̄

2(uk − ui)2

4

)
,

where v̄ = 1
m

∑m
j=1 vj .

This follows since Xi,j − uivj is a zero-mean bounded random variable. This bound implies that

m =
4 log(2n

δ)
v̄2ε2 yields the desired result, that P

(
argmaxi∈[n] û

(m)
i = argmaxi∈[n] ui

)
≥ 1− δ. and

so for the top-k scenario we have that a budget of

T = n
log
(

2n
δ

)
v̄2∆2

k+1

(44)

is required by the uniform sampling row sum algorithm. We note that this concentration analysis is for
uniform sampling, but it shows us that we could do sequential halving on the row sums to adaptively
find the maximal ui, with a similar analysis to [4]. Note that this is critically using the fact that the
estimators for ui and uk are taken across the same vj , and that we are not able to generate unbiased
estimates of the ui with this method, only to preserve ordering. Hence while such an estimator can
be used with a top-k bandits algorithm, we are unable to use it with a thresholding bandit algorithm.
Remark 3. To provide some intuition, we remark that the row averages estimator has an advantage,
in that for an n×m matrix X the error of û(m)

i − û(m)
k decays roughly as 1√

m
(when v̄ is O(1)). On

the other hand, with the spectral estimator we use, the error of the estimator of ui only decays as
roughly 1√

min(n,m)
.

I Implementation Details for Algorithm 2

While in theory we stop at
√
T arms remaining, in practice we continue halving until there are fewer

than 2k remaining arms, at which point we output the k arms with largest ûi. While theoretically we

23

are unable to take advantage of the scenario m > n (due to the constraint in Theorem 1), in practice,
increasing m beyond n still improves the estimates ûi, and we do not need to perform the clean up
stage with

√
T arms remaining.

In the practical implementation of Algorithm 2, we also impose a maximum number of measurements
per item (finite number of workers), and so terminate our algorithm and return the top k if tr = mmax

for some a priori fixed quantity mmax.

While Algorithm 2 requires “oracle knowledge” of ‖v(r)‖, in practice that cannot be obtained and we
use ‖v̂(r)‖ instead. Notice that knowledge of the exact value of ‖v‖ would only provide a rescaling
of our estimates, and so relative ordering is preserved in our û(r) if we use ‖v̂(r)‖, which is sufficient
for top-k identification. Notice that this is not the case for the thresholding bandits considered in
Appendix E. For the E. coli dataset, we obtain v̂(r) in Algorithm 1 using the scheme proposed in
Baharav et al. [5], that is by taking column sums of X(r). We run our simulations on reference read 1
of their dataset, as reference read 0 has 10 non-trivial alignments, whereas reference read 1 has 5 as
desired.

While in theory we do not reuse old samples to maintain independence, in our algorithm we do. This
is done naturally by running Algorithm 1 on the {0, 1}|Ir|×

∑r
i=0 tr matrix of responses on all the

previously asked questions (not just those in the current round). Similarly, we do not split our matrix
in 2 for Algorithm 1; we estimate v̂(r) from the entirety of X(r), and compute û(r) = X(r)v̂(r).

For top 2k, we ran both algorithms to return their estimated top 2k, which we denote as the set
Top-2k, then evaluated the performance as 1

k

∑k
i=1 1{(i) ∈ Top-2k}. For the error probability

plot, we evaluated the performance by running the algorithms to return their estimated top k, Top-k,
and computing 1 {Top-k ≡ {(i) : i ∈ [k]}}. For each simulation, we run 100 trials and report the
mean of our performance metric as well as its standard deviation (shaded in).

For the controlled experiments, pi’s are generated according to a Beta(1, 5) distribution and qi are
generated according to a uniform(0, 1) distribution.

I.1 Computing architecture and runtime

Min-hashes took 18 hours to generate on 50 cores of an AMD Opteron Processor 6378 with 500GB
memory. Generating the empirical results for uniform and adaptive on the E. coli dataset took took 36
minutes on one core. Generating the empirical results for the synthetic crowdsourcing experiments
took 3 hours on one core, due to the fact that there is no efficient approximation for the right singular
vector, and so one needs to compute the actual SVD of X(r) in every iteration.

24

