
Technical Contributions (R3, R4). Augmentation plays a key role in many machine learning1

systems. This paper has addressed discriminator overfitting — a fundamental problem in the GAN2

literature — via Differentiable Augmentation, which boosts GANs not only with limited data but3

also on the large-scale datasets. We believe that this is an important algorithmic contribution to the4

ML community. Though not theoretical contribution, many well-known empirical papers were also5

published at ML conferences (e.g., DCGAN in ICLR, and LaplacianGAN in NeurIPS).6

Image Diversity (R1). Our method can improve diversity. As suggested by R1, we use the recall7

metric [1] that estimates the coverage of the generated distribution and hence reflects the diversity.8

Ours with 20% CIFAR-10 data (recall: 0.39) is higher than the StyleGAN2 baseline with 20% data9

(recall: 0.24), even higher than its with 100% data (recall: 0.33). We will include it in our revision.10

Clarification of T across G and D (R3). T is required to be the same random function but11

not necessarily the same random seed across G and D, since G and D are updated in different12

forward-backward iterations. We will clarify this in the revision.13

Results of MineGAN (R3). We rerun MineGAN using their newly released code and will update14

their FID (obama: 50.63; grumpy cat: 34.54; panda: 14.84; cat: 54.45; dog: 93.03) and figures in the15

revision. Ours (StyleGAN2 + DiffAugment) outperforms MineGAN on 4 out of 5 datasets.16

Why 100% Data in Fig. 6? (R3) We show that DiffAugment even works with 100% of CIFAR-1017

data, where the discriminator still severely overfits the training set. This phenomenon is more severe18

with limited data. As the reviewer requests, with 10% CIFAR-10 data, at 10k iterations when the19

BigGAN baseline collapses, its D’s training/validation accuracy is 99%/18% (81% difference, severe20

overfitting), while ours is 90%/41% (49% difference, less overfitting). Ours continues stable training21

for over 60k iterations, considerably alleviating the overfitting problem.22

Naming of “Few-Shot” (R3). Thanks and we are happy to change it to “100-shot” in the revision.23

Application to NLP (R4). Like image inpainting, the masking process in MaskGAN as R4 men-24

tioned is used to construct the conditional input. This is not a form of discriminator augmentation, as25

D is still seeing the unmasked training set. We will cite MaskGAN and discuss its connection to our26

method. DiffAugment for NLP tasks is an interesting direction. We leave this for future work.27

Choices of Augmentations (R1, R3). We mainly investigate the algorithmic perspective — where28

and how to apply augmentations to GANs; exhausting the set of augmentations is beyond the scope of29

this paper. In fact, we have tried many other augmentations like random scaling, rotations, shearing,30

smoothing, sharpening, and Gaussian noise but did not find them helpful. Moreover, when they are31

applied as “Augment reals only” or “Augment D only”, all the results are consistently worse than the32

baseline. Thus we find that Color, Translation, and Cutout are especially effective for GANs. The33

simplicity also makes it easier to be deployed. We will discuss other augmentations in the revision.34

Which Augmentations are Differentiable? (R4) Most existing augmentations could have a35

differentiable implementation, but they are currently absent in the widely used TensorFlow or PyTorch.36

Our code release provides differentiable implementations, which would benefit the community.37

Dataset: FFHQ 256×256 LSUN-Cat 256×256

# Training samples: 30k 10k 5k 1k 30k 10k 5k 1k

StyleGAN2 6.16 14.75 26.60 62.16 10.12 17.93 34.69 182.85
+ DiffAugment 5.05 7.86 10.45 25.66 9.68 12.07 16.11 42.26

Figure 1: FFHQ and LSUN-Cat results with the
fixed Color + Translation + Cutout DiffAugment.

Grid Search (R2). Grid search can further38

optimize the performance, but our fixed Color39

+ Translation + Cutout DiffAugment already40

works fairly well in most limited data settings,41

including CIFAR, few-shot, and our new results42

in Table 1. Although we used Translation +43

Cutout for the BigGAN models in the CIFAR tables, we later find that they can be further improved44

if Color is used as well (e.g., from FID: 22 to 20 with 10% CIFAR-10 data). This combination is45

especially effective for GANs. Besides, we did not tune the level of each individual augmentation,46

which we found little beneficial, so the search space is significantly reduced.47

Results of Baseline for 100-Shot Generation (R3). Although each of our datasets contains only48

1 object, their facial expressions, backgrounds, and poses are fairly diverse. D can easily memorize49

all those 100 training images and that’s why the baseline StyleGAN2 is poor. What Fig. 3 presents is50

already the best training snapshot of the baseline model. It can be even worse if the training is longer.51

Metrics for Overfitting (R3). As suggested by R3, the GAN-train/GAN-test metric is a good52

metric for assessing the generated images of the generator. E.g., the GAN-train/GAN-test of the Big-53

GAN baseline with 10% data is 53.1%/72.4%, while ours achieves significantly better 62.7%/80.9%.54

However, in this paper, we only use the discriminator’s accuracy on the real training/validation set to55

see if the discriminator overfits the real images. We will clarify this in the revision.56

Typos (R1). Thanks for the suggestion. We will revise the paper thoroughly.57
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