
Additional notation

For two matrices A,B we write 〈A,B〉 to denote the matrix inner product tr(ATB). We write |A|
to denote the determinant det(A). Finally, for x, y ∈ R which depend on the problem parameters
we write x . y to denote that x ≤ O(1) · y.

A Initial stabilizing policy

Assumption 4. The learner is initially given a policy K0 ∈ K.

We can replace Assumption 1 with Assumption 4 and get all our results, by making a small change
in our algorithms. The change is that instead of playing the control ut suggested by Algorithms
1,4,5, we play the control ũt = K0xt + ut. We now explain why the same regret bounds for
known cost function and bandit feedback hold for this case too. First, the LDS evolves as xt+1 =

Ã∗xt + B∗ũt + wt, where Ã∗ = A∗ + B∗K0. Assumption 4 implies that Ã∗ is (κ, γ)-strongly
stable. Since Corollary 10 and Theorem 4 hold under Assumption 1, we can bound the regret of our
algorithm with respect to the system (Ã∗ B∗) and the class of (κ, γ)-strongly stable linear policies
for that system. We call this policy class K(Ã∗, B∗), which is defined in the same way as K, after
substituting A∗ with Ã∗. Formally, the regret we described is defined as

R̃stT =

T∑
t=1

c(xt, ut)− T · min
K∈K(Ã∗,B∗)

J̃(K), (15)

where J̃(K) = limT→∞
1
T EK,Ã∗,B∗

[∑T
t=1 c (xt, ut)

]
and EK,Ã∗,B∗ denotes expectation with re-

spect to the system (Ã∗ B∗) and policy K. The fact that we can get the same regret bounds un-
der Assumption 4, follows from the observation that for all K ∈ K, K − K0 ∈ K(Ã∗, B∗) and
J(K) = J̃(K −K0).

B Proofs for known cost function

Theorem 9 follows from Lemmas 11 and 12. We formally prove Lemma 12 in Appendix B.1 and
Lemma 11 in Appendix B.5. For notational convenience, we define Mr,j = Mr,0, for j = d +
1, d + 2, . . . , 2d. In our analysis, we substitute the “Call Execute-Policy(Mr,0, d · Tr)” with “for
j = d + 1, d + 2, . . . 2d do Execute-Policy(Mr,j , Tr) end.” Clearly, these are equivalent, but the
latter will lead to simpler formulas.

B.1 Proof of Lemma 12

To bound RstT , we bound the suboptimality gap, i.e. Rst(M) = C(M | A∗, B∗)− C(M∗ | A∗, B∗),
for all policies inMr+1.

Lemma 18. With high probability, for all epochs r, we have

• M∗ ∈Mr, and

• for all M ∈Mr+1, Rst(M) ≤ 5 · 2−r.

Given Lemma 18, we can conclude the proof of Lemma 12, as we show below.

Proof. RstT =
∑T
t=1R

st(Mt) =
∑q
r=1

∑d
j=0 Tr · Rst(Mr,j), where q is the total number of

epochs. From Definition 7 of 2-approximate affine barycentric spanners, we have that Mr,j ∈ Mr.
Thus, Lemma 18 implies that with high probability, for all r ≥ 2 and for all j, we have
Rst(Mr,j) ≤ 5 · 2−(r−1). We will now bound

∑q
r=1 2r. Observe that Tr = D · 22r,

where D = Θ̃(κ4γ−3) · dxdu(dx + du)2, and T &
∑q
r=1 d · Tr = D · d

∑q
r=1 22r. Thus,
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√
T
Dd &

√∑q
r=1 22r ≥ q−1/2

∑q
r=1 2r, by Cauchy-Schwarz. Using that q ≤ O (log T ),

we get
∑q
r=1 2r ≤ Õ(1) ·

√
T
Dd . Summarizing, by excluding the first epoch, we have

RstT −
2d∑
j=1

T1 ·Rst(Mj,1) ≤
q∑
r=2

d∑
j=0

D · 22r · 5 · 2−(r−1) . D · d ·
q∑
r=1

2r ≤ Õ(1) ·
√
D · d · T .

(16)

In Appendix 66, we show that for all M ∈M, we have Rst(M) ≤ Õ(κ5β2γ−2) ·
√
dx. Thus,

RstT ≤ 2d · 22 ·D · Õ(κ5β2γ−2) ·
√
dx + Õ(1) ·

√
D · d · T . (17)

Since T = Ω̃
(
κ14β4γ−8

)
· dxdu(dx + du)5, by substituting D = Θ̃(κ4γ−3) · dxdu(dx + du)2 and

d = Õ(γ−1) · dxdu, we get that RstT ≤ Õ
(
κ2γ−2

)
· dxdu(dx + du)

√
T .

To prove Lemma 18, we prove Lemma 13 (stated in the main text), which ensures that for all
policies M ∈ Mr, the estimated surrogate cost C(M | Âtr , B̂tr ) is close to the true surrogate cost
C(M | A∗, B∗). Given Lemma 13, we can conclude the proof of Lemma 12, as we show below.

Proof. We condition on the event that for all r,M ∈Mr,∣∣∣C(M | Âtr , B̂tr )− C(M | A∗, B∗)∣∣∣ ≤ 2−r. (18)

For the first bullet of the lemma, suppose that for some r, M∗ ∈Mr and M∗ /∈Mr+1. Thus, there
exists M ∈Mr, such that C(M | Âtr , B̂tr ) < C(M∗ | Âtr , B̂tr )− 3εr. Then, inequality 18 implies
that C(M | A∗, B∗)− εr < C(M∗ | A∗, B∗) + εr − 3εr, which contradicts the optimality of M∗.

For the second bullet, if M ∈ Mr+1, then C(M | Âtr , B̂tr ) − C(M∗ | Âtr , B̂tr ) ≤ 3εr, since we
showed thatM∗ ∈Mr. By applying inequality 18, we get C(M |A∗, B∗)−C(M∗ |A∗, B∗) ≤ 5εr.

It remains to prove Lemma 13. This lemma will follow from the following two lemmas and claim,
where we use the covariance matrices Σ(M), defined in Subsection 3.2.

Lemma 19. Let Â, B̂ be estimates of A∗, B∗, ∆ = (Â B̂) − (A∗ B∗) and ‖∆‖ ≤ γ
2κ2 . For all

M ∈M, we have∣∣∣C(M | Â, B̂)− C(M | A∗, B∗)
∣∣∣ ≤ 6κ2γ−1

(∥∥∆T
∥∥

Σ(M)
+ 1/T

)
. (19)

We can apply this lemma for all ∆t := (At Bt)− (A∗ B∗), because of the following claim proved
in Appendix G.

Claim 20. With high probability, for all t, we have ‖∆t‖ ≤ γ/(2κ2).

Lemma 21. With high probability, we have ‖∆T
tr‖Σ(M) ≤ 2−rγ/(12κ2), for all epochs r and

M ∈Mr.

Given these two lemmas and the claim, it is straightforward to get Lemma 13. Indeed, we get that
with high probability, for all epochs r and M ∈Mr,∣∣∣C(M | Â, B̂)− C(M | A∗, B∗)

∣∣∣ ≤ 2−r/2 + 6κ2γ−1/T. (20)

Since the length of the epochs increases exponentially, we have r = O(log(T )). This, combined
with the assumed lower bound on T in the theorem statement, gives 6κ2γ−1/T ≤ 2−r/2, and we
are done. The proof of Lemma 19 is in Appendix B.2 and the proof of Lemma 21 is in Appendix
B.3.
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B.2 Proof of Lemma 19

We fix a policy M ∈M.∣∣∣C(M | Â, B̂)− C(M | A∗, B∗)
∣∣∣

=

∣∣∣∣∣Eη
[
c
(
x(M | Â, B̂, η), u(M | η)

)]
− Eη

[
c
(
x(M | A∗, B∗, η), u(M | η)

)]∣∣∣∣∣
≤ Eη

∣∣∣∣c(x(M | Â, B̂, η), u(M | η)
)
− c
(
x(M | A∗, B∗, η), u(M | η)

)∣∣∣∣
≤ Eη

∥∥∥x(M | Â, B̂, η)− x(M | A∗, B∗, η)
∥∥∥ , (21)

where we used the fact that c is 1-Lipschitz.

To bound 21, we create two coupled dynamical systems: x(1)
1 = x

(2)
1 = 0,

x
(1)
t+1 = Âx

(1)
t + B̂ut + wt and x

(2)
t+1 = A∗x

(2)
t +B∗ut + wt, (22)

where wt
i.i.d∼ N(0, I) and ut =

∑H
i=1M

[i−1]wt−i (wt = 0 for t ≤ 0). Observe that the coupling

comes from the shared controls and disturbances. Let z(1)
t =

(
x

(1)
t
ut

)
and z(2)

t =

(
x

(2)
t
ut

)
. We prove

the following claim.

Claim 22. The matrix Â is (κ, γ/2)-strongly stable 8. Furthermore, for all t ≥ 2H + 2, we have∣∣∣∣∣Ew ∥∥∥x(1)
t − x

(2)
t

∥∥∥− Eη
∥∥∥x(M | Â, B̂, η)− x(M | A∗, B∗, η)

∥∥∥ ∣∣∣∣∣ ≤ 1/T, (23)

where w denotes the disturbance sequence w1, w2 . . .

Proof. We use the assumption that ‖∆‖ ≤ γ
2κ2 , which implies that ‖Â−A∗‖ ≤ γ

2κ2 . Also, from
Assumption 1, we have A∗ = QΛQ−1 with ‖Λ‖ ≤ 1− γ, and ‖Q‖, ‖Q−1‖ ≤ κ. So, we get

Â = QΛQ−1 + Â−A∗ = Q
(

Λ +Q−1
(
Â−A∗

)
Q
)
Q−1. (24)

Also,
∥∥∥Λ +Q−1

(
Â−A∗

)
Q
∥∥∥ ≤ 1 − γ + κ2γ/(2κ2) = 1 − γ/2. Thus, we proved that Â is

(κ, γ/2)-strongly stable. Now, we prove 23:

Ew
∥∥∥x(1)

t − x
(2)
t

∥∥∥
= Ew

∥∥∥∥∥ÂH+1x
(1)
t−H−1 +

2H+1∑
i=1

Ψi(M | Â, B̂)wt−i −AH+1
∗ x

(2)
t−H−1 −

2H+1∑
i=1

Ψi(M | A∗, B∗)wt−i

∥∥∥∥∥
≤
∥∥∥ÂH+1

∥∥∥ · Ew ∥∥∥x(1)
t−H−1

∥∥∥+
∥∥AH+1
∗

∥∥ · Ew ∥∥∥x(2)
t−H−1

∥∥∥
+ Ew

∥∥∥∥∥
2H+1∑
i=1

Ψi(M | Â, B̂)wt−i −
2H+1∑
i=1

Ψi(M | A∗, B∗)wt−i

∥∥∥∥∥ .
(25)

Since t ≥ 2H + 2, the third term is exactly Eη
∥∥∥x(M | Â, B̂, η)− x(M | A∗, B∗, η)

∥∥∥. Now, we

show that the first two terms are small. Since A∗ is (κ, γ)-strongly stable and Â is (κ, γ/2)-strongly
stable, we have

∥∥AH+1
∗

∥∥ ≤ κ2(1−γ)H+1 and
∥∥∥ÂH+1

∥∥∥ ≤ κ2(1−γ/2)H+1, whereH is defined

in 2.1.1. In Appendix 56, we show that Ew
∥∥∥x(1)

t−H−1

∥∥∥ ,Ew ∥∥∥x(2)
t−H−1

∥∥∥ ≤ O(κ5β2γ−2) ·
√
dx .

The way we chose H finishes the proof.

8This means that there exists decomposition Â = QΛQ−1 with ‖Λ‖ ≤ 1− γ/2, and ‖Q‖, ‖Q−1‖ ≤ κ.
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Now, we fix a t ≥ 2H + 2 , whose exact value we choose later. We will bound Ew
∥∥∥x(1)

t − x
(2)
t

∥∥∥.

First, we write a recursive formula for x(1)
t − x

(2)
t :

x
(1)
t − x

(2)
t = Âx

(1)
t−1 + B̂ut−1 −A∗x(2)

t−1 −B∗ut−1

= (Â−A∗)x(2)
t−1 + (B̂ −B∗)ut−1 + Â(x

(1)
t−1 − x

(2)
t−1)

= ∆ · z(2)
t−1 + Â(x

(1)
t−1 − x

(2)
t−1). (26)

By repeating 26, we get

x
(1)
t − x

(2)
t =

H−1∑
i=0

Âi ·∆ · z(2)
t−i−1 + ÂH

(
x

(1)
t−H−1 − x

(2)
t−H−1

)
. (27)

We prove a claim that shows that the second term is negligible.

Claim 23. Ew
∥∥∥ÂH (x(1)

t−H−1 − x
(2)
t−H−1

)∥∥∥ ≤ 1/T .

Proof. From Claim 22, we have that Â is (κ, γ/2)-strongly stable. Also, in Appendix 56, we show
that Ew

∥∥∥x(1)
t−H−1

∥∥∥ ,Ew ∥∥∥x(2)
t−H−1

∥∥∥ ≤ O(κ5β2γ−2) ·
√
dx. Thus,

Ew
∥∥∥ÂH (x(1)

t−H−1 − x
(2)
t−H−1

)∥∥∥ ≤ ‖ÂH‖ ·O(κ5β2γ−2) ·
√
dx

≤ κ2(1− γ)H+1 ·O(κ5β2γ−2) ·
√
dx . (28)

The way we chose H finishes the proof.

By applying triangle inequality, we get

Ew‖x(1)
t − x

(2)
t ‖ ≤

H−1∑
i=0

∥∥∥Âi∥∥∥ · Ew ∥∥∥∆ · z(2)
t−i−1

∥∥∥+ 1/T. (29)

Now, we prove a claim which shows that for large t, the term Ew
∥∥∥∆ · z(2)

t−i−1

∥∥∥ is essentially time-
independent, for all i ∈ {0, 1, . . . ,H − 1}.
Claim 24. For all s ≥ 2H + 2, we have∣∣∣Ew ∥∥∥∆ · z(2)

s

∥∥∥− Eη ‖∆ · z(M | A∗, B∗, η)‖
∣∣∣ ≤ 1/T. (30)

Proof. It suffices to show that Ew
∥∥∥∆
(
z

(2)
s − z (M | A∗, B∗, η(w))

)∥∥∥ ≤ 1/T , where we define
η(w) := (ws−1, ws−2, . . . , ws−2H−1). We have

Ew
∥∥∥∆
(
z(2)
s − z (M | A∗, B∗, η(w))

)∥∥∥ ≤ Ew
∥∥∥z(2)
s − z (M | A∗, B∗, η(w))

∥∥∥
≤ Ew

∥∥∥x(2)
s − x (M | A∗, B∗, η(w))

∥∥∥+ Ew ‖us − u (M | η(w))‖

≤ Ew
∥∥AH+1
∗ xs−H−1

∥∥+ 0

≤
∥∥AH+1
∗

∥∥ · Ew‖xs−H−1‖. (31)

Since A∗ is (κ, γ)-strongly stable, Claim 56 and the way we chose H finish the proof.

Now, we choose t = 3H + 2, which gives

Ew‖ x(1)
t − x

(2)
t ‖ ≤ (Eη ‖∆ · z(M | A∗, B∗, η)‖+ 1/T ) ·

H−1∑
i=0

∥∥∥Âi∥∥∥+ 1/T. (32)

Also, we have Eη ‖∆ · z(M | A∗, B∗, η)‖ ≤
(
Eη ‖∆ · z(M | A∗, B∗, η)‖2

)1/2

=
∥∥∆T

∥∥
Σ(M)

.

The following claim concludes the bound on Ew‖ x(1)
t − x

(2)
t ‖.
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Claim 25.
∑H−1
i=0

∥∥∥Âi∥∥∥ ≤ 4κ2γ−1.

Proof. This directly follows from the fact that Â is (κ, γ/2)-strongly stable (Claim 22).

After combining with Claim 22, we get

Eη
∥∥∥x(M | Â, B̂, η)− x(M | A∗, B∗, η)

∥∥∥ ≤ 4κ2γ−1
(∥∥∆T

∥∥
Σ(M)

+ 1/T
)

+ 2/T

≤ 6κ2γ−1
(∥∥∆T

∥∥
Σ(M)

+ 1/T
)
. (33)

B.3 Proof of Lemma 21

We will prove the following two lemmas. The first controls the sum of squared errors ‖∆tr‖2Σ(Mr,j)
,

for the exploratory policies Mr,1, . . . ,Mr,2d, and the second allows us to go from exploratory poli-
cies to all policies inMr.

Lemma 26. With high probability,

2d∑
j=1

‖∆T
tr‖

2
Σ(Mr,j)

≤ 2−2r · γ2

122 · 18 · dκ4
. (34)

Lemma 27. For all M ∈Mr, Σ(M) 4 18d ·
∑d
j=0 Σ(Mr,j).

Given Lemmas 26 and 27, we conclude that with high probability, for all M ∈ Mr, we have
‖∆T

tr‖
2
Σ(M) ≤ 18d ·

∑d
j=0 ‖∆T

tr‖
2
Σ(Mr,j)

≤ 2−2r(γ/(12κ2))2, and we are done. We prove
Lemma 26 in B.3.1 and Lemma 27 in B.3.2.

B.3.1 Proof of Lemma 26

To prove the lemma, we first prove the following two lemmas.

Lemma 28. With high probability, for all t,∥∥∆T
t

∥∥
Vt
≤ Õ(dx + du), (35)

where Vt =
∑t−1
s=1 zsz

T
s + λ · I .

Lemma 29. With high probability, for all epochs r, we have
∑2d
j=1 Σ(Mr,j) 4 O(1/Tr) · Vtr .

Given these two lemmas, we have that with high probability

2d∑
j=1

‖∆T
tr‖

2
Σ(Mr,j)

≤ O(1) ·
‖∆T

tr‖
2
Vtr

Tr
≤ Õ(1) · (dx + du)2

Tr
. (36)

Substituting our choice of Tr gives Lemma 26. We prove Lemma 28 in Appendix E. We now prove
Lemma 29.

Proof. For j = 1, 2, . . . , 2d, let Ir,j ⊆ [T ] be the interval of execution of Mr,j and tr,j ∈ [T ] be the
first step of this interval. Let H ′ := 2H + 1. For all h = 0, 1, . . . ,H ′, we define

Ir,j,h = {t ∈ Ir,j | t = tr,j +H ′ · k + h, k ≥ 1}. (37)

We will show that with high probability, for all r, j, h, we have

|Ir,j,h| · Σ(Mr,j) 4 O(1) ·
∑

t∈Ir,j,h

ztz
T
t +

λ

2dH ′
· I. (38)
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Once we have 38, we can finish the proof of Lemma 29. Indeed, summing over all j, h gives

2d∑
j=1

(|Ir,j | −H ′) · Σ(Mr,j) 4 O(1) ·
2d∑
j=1

H′−1∑
h=0

∑
t∈Ir,j,h

ztz
T
t + λ · I

4 O(1) ·
tr−1∑
t=1

zsz
T
s + λ · I 4 O(1) · Vtr , (39)

where we used that
∑H′−1
h=0 |Ir,j,h| = |Ir,j | −H ′. Now, since |Ir,j | −H ′ = Tr −H ′ ≥ Tr/2, we

get
∑2d
j=1 Σ(Mr,j) 4 O(1/Tr) · Vtr .

We now prove 38. We consider an auxiliary state/control sequence (xt, ut)t∈[T ], defined
as

xt =

H∑
i=0

Ai∗wt−i−1 +

H∑
i=0

Ai∗B∗ut−i−1 (40)

where us =
∑H
i=1M

[i−1]
s ws−i.9 The differences with the actual sequence are 1) we truncated the

time-horizon and 2) here the controls use the true disturbances. We also define zt =

(
xt
ut

)
. We will

prove the following two claims.

Claim 30. With high probability, for all t,

‖zt − zt‖ ≤ O(κ5β2γ−1) ·
2H+1∑
i=1

‖ŵt−i − wt−i‖+ 1/T. (41)

Claim 31. With high probability, for all r, j, h we have

|Ir,j,h| · Σ(Mr,j) 4 O(1) ·
∑

t∈Ir,j,h

ztz
T
t . (42)

We show how to prove 38 using these two claims and then we prove them. Let et = zt − zt and
p = κ5β2γ−1. We condition on the event that the bounds of the two claims and of Lemma 35 hold.
We have

‖et‖2 ≤ 2/T 2 +O(p2)(2H + 1)

2H+1∑
i=1

‖wt−i − ŵt−i‖2, (43)

where we used Claim 30 and Cauchy-Schwarz. We now fix a triple (r, j, h). Summing over all
t ∈ Ir,j,h, ∑

t∈Ir,j,h

‖et‖2 ≤
2

T
+O(p2H) ·

∑
t∈Ir,j,h

2H+1∑
i=1

‖wt−i − ŵt−i‖2

≤ 2

T
+O(p2H) ·

T∑
t=1

‖wt − ŵt‖2, (44)

where we used the definition of Ir,j,h. Lemma 35 implies that with high probability, for all r, j, h,∑
t∈Ir,j,h

‖et‖2 ≤ Õ(κ10β4γ−3) · (dx + du)3. (45)

Moreover, ztzTt = (zt − et)(zt − et)T 4 2ztz
T
t + 2ete

T
t , so

∑
t∈Ir,j,h

ztz
T
t 4 2

∑
t∈Ir,j,h

ztz
T
t + 2

∑
t∈Ir,j,h

ete
T
t 4 2

∑
t∈Ir,j,h

ztz
T
t + 2

 ∑
t∈Ir,j,h

‖et‖2
 · I, (46)

9We set wt = 0, for all t ≤ 0.
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where we used that ‖
∑
t∈Ir,j,h ete

T
t ‖ ≤

∑
t∈Ir,j,h ‖ete

T
t ‖ =

∑
t∈Ir,j,h ‖et‖

2. Now, Claim 31 and
inequalities 45 and 46 give that with high probability, for all r, j, h,

|Ir,j,h| · Σ(Mr,j) 4 O(1) ·

2

 ∑
t∈Ir,j,h

‖et‖2
 · I + 2

∑
t∈Ir,j,h

ztz
T
t


4 Õ(κ10β4γ−3)(dx + du)3 · I +O(1) ·

∑
t∈Ir,j,h

ztz
T
t

4
λ

H ′(d+ 1)
· I +O(1) ·

∑
t∈Ir,j,h

ztz
T
t , (47)

where we used that λ = Θ̃(κ10β4γ−5) · dxdu(dx + du)3. It remains to prove Claims 30 and 31. We
prove Claim 30 in Appendix 67. Now, we prove Claim 31. We use the following lemma, which is
Theorem 1.1 of [18].

Lemma 32 ([18]). There exist positive constants c1, c2, such as the following hold. Let Σ ∈ Rm×m
positive semidefinite and z1, . . . , zn independent random vectors, distributed as N(0,Σ). Let Σ̂ =
1/n ·

∑n
i=1 ziz

T
i . For all δ > 0, there exists c3 = polylog(m, 1/δ), such that if n ≥ c3 ·m, then

with probability at least 1− δ, range(Σ̂) = range(Σ) and ‖Σ1/2Σ̂†Σ1/2‖ ≤ c2. 10

We can immediately get the following corollary.

Corollary 33. For the setting of Lemma 32, with probability at least 1− δ, we have Σ 4 O(1) · Σ̂.

Proof. We have σ̄min((Σ†)1/2Σ̂(Σ†)1/2) ≥ 1/Ω(1), where σ̄min denotes the minimum nonzero
singular value. Let P be the projection matrix on range(Σ). We have

Σ̂ = P Σ̂P = Σ1/2(Σ†)1/2Σ̂(Σ†)1/2Σ1/2. (48)

So, for all x ∈ Rm, we have

xT Σ̂x = xTΣ1/2(Σ†)1/2Σ̂(Σ†)1/2Σ1/2x ≥ σ̄min((Σ†)1/2Σ̂(Σ†)1/2)xTΣx. (49)

Now, we apply Corollary 33 to show Claim 31. We fix a triple (r, j, h). Notice that Mr,j is a
random variable that depends only on the disturbances that took place up to epoch r − 1. On the
other hand, the random vectors (zt)t∈Ir,j,h are independent of each other and independent of all the
disturbances that took place up to epoch r − 1, which follows from the definitions of Ir,j,h and of
the sequence (zt)t. Thus, we have Ew

[
ztz

T
t |Mr,j

]
= Σ(Mr,j), where w denotes the sequence

(wt)t. So, after conditioning on Mr,j , we can apply Corollary 33 with Σ = Σ(Mr,j) and the set
of vectors being (zt)t∈Ir,j,h . Since |Ir,j,h| = Tr/H

′ and Tr is chosen to be large enough, we get
|Ir,j,h| · Σ(Mr,j) 4 O(1) ·

∑
t∈Ir,j,h ztz

T
t . Since, (zt)t∈Ir,j,h are independent of Mr,j , we get that

with high probability, |Ir,j,h| · Σ(Mr,j) 4 O(1) ·
∑
t∈Ir,j,h ztz

T
t . This was for a fixed r, j, h, so

union bound concludes the proof.

The above proof also concluded the proof of 38.

B.3.2 Proof of Lemma 27

We fix an M ∈Mr. Since {Mr,0, . . . ,Mr,d} is a 2-approximate affine barycentric spanner ofMr,
we can write M = Mr,0 +

∑d
j=0 λj · (Mr,j −Mr,0), where λj ∈ [−2, 2]. Since we defined Mr,j =

Mr,0 for all j ∈ {d+ 1, . . . , 2d}, we can write M =
∑2d
j=1 λj ·Mr,j , where λj = −λj−d + 1/d for

all j ≥ d+ 1 (the other λj stay the same). Thus, we have that all λj ∈ [−3, 3] and
∑2d
j=1 λj = 1,

i.e, it is an affine combination. The next claim, takes us from policies to covariances.

10The symbol † denotes the pseudoinverse.
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Claim 34. The exists an affine transformation T , such that for allM ∈M, Σ(M) = T (M)T (M)T .

Proof. Σ(M) = Eη
[
z(M | A∗, B∗, η) · z(M | A∗, B∗, η)T

]
. For this proof, we write Ψ(M), to

denote Ψ(M | A∗, B∗). We define

T (M) :=

(
Ψ0(M) Ψ1(M) . . . ΨH−1(M) ΨH(M) . . . Ψ2H(M)
M [0] M [1] M [H−1] 0 0

)
(50)

and observe that z(M |A∗, B∗, η) = T (M)·η. The transformation T (·) is affine due to the definition
of Ψi(M) (see Subsection 2.1.1). The claim follows from the fact that Eη

[
ηηT

]
= I .

Back to our fixed M ∈Mr, Claim 34 implies that T (M) =
∑d
j=0 λjT (Mr,j). We have

Σ(M) =T (M)T (M)T =

 2d∑
j=1

λjT (Mr,j)

 2d∑
j=1

λjT (Mr,j)

T

4

 2d∑
j=1

λ2
j

 2d∑
j=1

T (Mr,j)T (Mr,j)
T

 4 18d ·
2d∑
j=1

Σ(Mr,j), (51)

where we used a generalized Cauchy-Schwartz that we prove in Appendix 57.

B.4 Estimating the disturbances

We prove a lemma which guarantees that the disturbance estimates ŵt are on average very accurate.

Lemma 35. With high probability, we have
∑T
t=1 ‖ŵt − wt‖2 ≤ Õ(1) · (dx + du)3.

Proof. After playing action ut and then observing xt+1, we record the estimates Ât+1, B̂t+1 and
ŵt = xt+1 − Ât+1xt − B̂t+1ut. Let V0 = λ · I , where λ is defined in Algorithm 3, and Vt =

V0 +
∑t−1
s=1 ztz

T
t . Also, we remind the reader that ∆t = (At Bt)− (A∗ B∗). We have

‖ŵt − wt‖2 =
∥∥∥xt+1 − Ât+1xt − B̂t+1ut − (xt+1 −A∗xt −B∗ut)

∥∥∥2

= ‖∆t+1zt‖2 ≤
∥∥∥∆t+1V

1
2
t+1

∥∥∥2

·
∥∥∥V − 1

2
t+1 zt

∥∥∥2

.

Lemma 28 implies that with high probability
∥∥∥∆t+1V

1
2
t+1

∥∥∥2

≤ Õ(1) · (dx + du)2, for all t. The

bound on
∑T
t=1

∥∥∥V − 1
2

t+1 zt

∥∥∥2

=
∑T
t=1 ‖zt‖

2
V −1
t+1

follows from a linear-algebraic inequality, which has
previously appeared in the context of online optimization [16] and stochastic linear bandits [13]. We
state this inequality below.

Lemma 36 ([20]). Let V0 positive definite and Vt = V0 +
∑t−1
s=1 xsx

T
s , where x1, . . . , xT ∈ Rn is

a sequence of vectors with ‖xt‖ ≤ L, for all t. Then

T∑
t=1

(
1 ∧ ‖xt‖2V −1

t+1

)
≤ 2n log

(
tr(V0) + TL2

ndet1/n(V0)

)
. (52)

We get
∑T
t=1

(
1 ∧ ‖zt‖2V −1

t+1

)
≤ Õ(dx+du), by applying this lemma for our sequence z1, . . . , zT .

The following claim completes the proof.

Claim 37. With high probability, for all t, we have ‖zt‖2V −1
t+1

≤ 1.

Proof. From Claim 60 we have that with high probability, ‖zt‖ ≤ Õ(κ5β2γ−2)
√
dx, for all t. On

the other hand, λI 4 Vt+1. Our choice of λ (Algorithm 3) finishes the proof.
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Remark 38. It is worth noting that the proof of Lemma 35 does not use any information about
the way we choose the controls. On the other hand, the choice of controls matters for obtaining
accurate estimates of A∗, B∗. Thus, the disturbances can be accurately estimated without accurately
estimating A∗, B∗.

B.5 Proof of Lemma 11

In the proof, we use C(M) to refer to C(M |A∗, B∗).

RT −RstT =

T∑
t=1

(c(xt, ut)− C(Mt)) + T min
M∈M

C(M)− T min
K∈K

J(K) (53)

≤
T∑
t=1

(c(xt, ut)− C(Mt)) + 1, (54)

where we used Theorem 5. We proceed with some definitions. We use the intervals Ir,j and Ir,j,h
that we defined in the beginning of proof of Lemma 29. Also, let I ′r,j = {tr,j , tr,j + 1, . . . , tr,j +

H ′ − 1}, i.e. the first H ′ steps of Ir,j . Observe that ∪H
′−1

h=0 Ir,j,h = Ir,j \ I ′r,j . Let q be the total
number of epochs.

T∑
t=1

(c(xt, ut)− C(Mt)) =

q∑
r=1

2d∑
j=1

∑
t∈Ir,j

(c(xt, ut)− C(Mt))

=

q∑
r=1

2d∑
j=1

H′−1∑
h=0

∑
t∈Ir,j,h

(c(xt, ut)− C(Mt)) +

q∑
r=1

2d∑
j=1

∑
t∈I′r,j

(c(xt, ut)− C(Mt)) (55)

We bound these two terms via the following two claims.
Claim 39. With high probability,

q∑
r=1

2d∑
j=1

H′−1∑
h=0

∑
t∈Ir,j,h

(c(xt, ut)− C(Mt)) ≤ Õ(κ5β2γ−2.5) ·
√

(dx + du)3T . (56)

Claim 40. With high probability,
q∑
r=1

2d∑
j=1

∑
t∈I′r,j

(c(xt, ut)− C(Mt)) ≤ Õ(κ5β2γ−4) · d3/2
x du· (57)

These two claims and the fact that we have assumed T ≥ γ−2 conclude the proof of Lemma 11.
We first prove Claim 40.

Proof. We will use the fact that the number of policy switches is small, i.e. logarithmic in T . First,
we will need the following claim, which we prove in Appendix 67.

Claim 41. With high probability, for all t,

c(xt, ut)− C(Mt) ≤ Õ(κ5β2γ−2) ·
√
dx. (58)

Using Claim 41,
q∑
r=1

2d∑
j=1

∑
t∈I′r,j

(c(xt, ut)− C(Mt)) ≤ q · 2d · 3H · Õ(κ5β2γ−2) ·
√
dx

≤ Õ(κ5β2γ−4.) · d3/2
x du. (59)
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Now, we prove Claim 39.

Proof. We break the sum into two terms: the first will be controlled via martingale concentration
and the second will be errors coming from truncation of horizon-type arguments and the fact that
the algorithm uses ŵt instead of wt. We use the auxiliary sequence (zt)t defined in Appendix B.3.1.
From Claim 67, we have that with high probability, for all t,

‖zt − zt‖ ≤ Õ(κ5β2γ−1) ·
2H+1∑
i=1

‖ŵt−i − wt−i‖+ 1/T. (60)

So, we write
q∑
r=1

2d∑
j=1

H′−1∑
h=0

∑
t∈Ir,j,h

(c(xt, ut)− C(Mt))

=

H′−1∑
h=0

q∑
r=1

2d∑
j=1

∑
t∈Ir,j,h

(c(zt)− C(Mr,j)) +

q∑
r=1

2d∑
j=1

H′−1∑
h=0

∑
t∈Ir,j,h

(c(zt)− c(zt)) (61)

For the second sum, we have that with high probability,
q∑
r=1

2d∑
j=1

H′−1∑
h=0

∑
t∈Ir,j,h

(c(zt)− c(zt)) ≤
T∑
t=1

‖zt − zt‖ ≤ Õ(κ5β2γ−1)

T∑
t=1

2H+1∑
i=1

‖ŵt−i − wt−i‖+ 1

≤ Õ(κ5β2γ−2)

T∑
t=1

‖ŵt − wt‖+ 1,

(62)

where we used inequality 60 and the fact that c is 1-Lipschitz. We now apply Lemma 35, followed
by Cauchy-Schwartz, to get

∑T
t=1 ‖ŵt −wt‖ ≤ Õ(1) ·

√
(dx + du)3T . Thus, we showed that the

second sum in 62 is at most Õ(κ5β2γ−2) ·
√

(dx + du)3T .

We will now bound the first sum, i.e.,
∑H′−1
h=0

∑q
r=1

∑2d
j=1

∑
t∈Ir,j,h (c(zt)− C(Mr,j)). We will

bound each
q∑
r=1

2d∑
j=1

∑
t∈Ir,j,h

(c(zt)− C(Mr,j)) (63)

separately. We define the σ-algebra Ft = σ(w1, w2, . . . , wt−H′−1). We also fix a tuple (h, r, j, t),
where h ∈ {0, 1, . . . ,H ′}, r ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , 2d}, and t ∈ Ir,j,h. Now, we focus
on the sum in 63 which corresponds to our fixed h. Observe that for all s < t, if c(zs) − C(Ms)

11

participates in this sum, then it isFt-measurable. This is because of 1) the way the algorithm decides
which policies to execute and 2) the definition of the sequence (zt)t. Moreover, the policy Mr,j is
also Ft-measurable, because at time t we have already spent at least H ′ timesteps in epoch r, so
everything that happened up until the end of epoch r − 1 is Ft-measurable, and so the same is
true for Mr,j . Combining these observations with the definitions of zt and C(Mr,j), we get that
E[c(zt)− C(Mr,j)|Ft] = 0. To apply martingale concentration we will need the following claim.

Claim 42. There exists σ = O(κ5β2γ−2), such that zt is σ-Lipschitz as a function of
(wt−2H−1, . . . , wt−1). Furthermore, conditioned on Ft, the random variable c(zt) − C(Mr,j) is
σ2-subgaussian.

Proof. Since Mr,j ∈ M, for all s ∈ {t − H − 1, t − H, . . . , t}, us is Lu =
∑H
i=1 ‖M

[i−1]
r,j ‖ =

O(κ3βγ−1)-Lipschitz. Thus, the Lipschitz constant of xt is upper-bounded by
H∑
i=0

‖Ai∗‖+

H∑
i=0

‖Ai∗‖ · ‖B∗‖ · Lu ≤ O(κ2γ−1 + κ2γ−1β · Lu), (64)

11Observe that Ms is also random.
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where we used Claim 54. Substituting Lu finishes the proof of the first part. The second part follows
from the fact that c is 1-Lipschitz and from Gaussian concentration [32].

From Azuma’s inequality [31], for our fixed h, the random variable in 63 is σ2 T
3H -subgaussian,

with σ as in Claim 42, and so with high probability it is at most O
(√

σ2T/H
)

. By applying

union bound, we get that with high probability the first sum in 73 is at most O
(√

σ2TH
)

=

Õ(κ5β2γ−2.5) ·
√
T .

C Bandit feedback: Proof of Theorem 17

We will prove the following theorem.

Theorem 43. There exist C1, C2, C3, C4, C5 = poly
(
dx, du, κ, β, γ

−1, log T
)
, such that after ini-

tializing the SBCO algorithm with d = dx ·du ·H ,D = C1, L = C2, σ2 = C3 and n = T/(2H+2),
the following holds. If T ≥ C4, the intial state ‖x1‖ ≤ Õ(κ2βγ−1/2) ·

√
dx, and the initial esti-

mation error bound ‖(A0 B0) − (A∗ B∗)‖F ≤ ε satisfies ε2 ≤ (C6 · dxdu(dx + du))
−1, where

C6 = κ10β4γ−5, then with high probability, Algorithm 4 satisfies RT ≤ C5 ·
√
T .

Given the above theorem, Theorem 17 follows from the analysis of warmup exploration given in
Appendix F (specifically Lemma 63). Theorem 43 follows from the following two lemmas (similarly
to the case of known cost function).

Lemma 44. With high probability, RT −RstT ≤ poly
(
dx, du, κ, β, γ

−1, log T
)
·
√
T .

Lemma 45. With high probability, RstT ≤ poly
(
dx, du, κ, β, γ

−1, log T
)
·
√
T .

To prove these lemmas, we will first need a bound for
∑T
t=1 ‖ŵt − wt‖2.

Lemma 46. With high probability, Algorithm 4 satisfies
∑T
t=1 ‖ŵt − wt‖2 ≤ Õ(1) · (dx + du)3.

The proof of the lemma is exactly the same with the proof of Lemma 35, so we do not repeat it
here. Second, we require a generalization of the SBCO setup (Appendix C.1). After this, we prove
Lemma 44 in Appendix C.2 and Lemma 45 in Appendix C.3.

C.1 SBCO: robustness to small adversarial perturbations and low number of swtiches

We consider a small generalization of the SBCO setup, where the learner observes the function
values under the sum of a stochastic and a small (on average) adversarial corruption. We will show
that we can properly set the hyperparameters of the SBCO algorithm from [3], to get

√
n regret

efficiently (n is the time horizon), in this more general setting. We will also note some useful
properties of that algorithm and we will finally give some preliminaries related to its application in
Algorithm 4.

Setting

Let X be a convex subset of Rd, for which we have a separation oracle and has diameter bounded
by D. Let f : X → R be an L-Lipschitz convex function on X . We have noisy black-box access to
f . Specifically, we are allowed to do n queries: at time t we query xt and the response is

yt = f(xt) + ζt + ξt (65)

where ζt conditioned on (ζ1, . . . , ζt−1) is σ2
ζ -subgaussian with mean 0 12. The sequence ξ1, . . . , ξn

can be completely adversarial and can even depend on {ζt}t∈[n]. However, the magnitude of this

12In [3] they consider ζt independent but the analysis easily generalizes to the martingale condition that we
use.
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adversarial noise satisfies the following constraint: with probability at least 1− 1/nc,
n∑
t=1

ξ2
t ≤ σ2

ξ , (66)

for some parameters c 13, σξ ≥ 0. The algorithm incurs a cost f(xt) for the query xt. The goal is
to minimize regret:

n∑
t=1

(f(xt)− f(x∗)) , (67)

where x∗ is a minimizer of f over X . Clearly, the standard SBCO setting [3] is recovered when
ξt = 0 for all t. The algorithm in [3] uses a hyperparameter σ, which is set to be σζ . We will show
that for this more general setting that we described, we can get the same regret guarantee (up to a
factor depending on σξ), by setting σ :=

√
c+ 1 ·max(σζ , σξ) and running the same algorithm.

Regret bound

Theorem 47. With probability at least 1 − O(n−c), the algorithm in [3] (page 11) initialized with
hyperparameter σ =

√
c+ 1 ·max(σζ , σξ) has regret

T∑
t=1

(f(xt)− f(x∗)) ≤ poly (σ, d, L, log n, logD) ·
√
n. (68)

Proof. Every time this algorithm queries a new point x, it queries it multiple times and takes the
average of the responses to reduce the variance. More specifically, the algorithm maintains a param-
eter γ which is the desired estimation accuracy. If at time t, the point to be queried is new (different
than the one at time t − 1), then it queries it s = 4 · σ

2

γ2 log n times14) and receives yt, . . . , yt+s−1.

Then, the algorithm computes the average avgt = 1/s ·
∑s−1
i=0 yt+i. In [3], the proof of the regret

bound (which is the same as the RHS of 68) uses the fact that the noise is stochastic only in order to
argue that with probability at least 1 − δ, the error |avgt − f(xt)| ≤ γ, for all t. Once they have
this, their analysis implies that the regret bound holds with probability at least 1 − δ. The proof of
our theorem is essentially that this condition also holds in our setting (for δ = 1 − O(n−c)), if we
set σ =

√
c+ 1 ·max(σζ , σξ). Indeed, we have

avgt = f(xt) +

∑s−1
i=0 ζt+i
s

+

∑s−1
i=0 ξt+i
s

. (69)

• Stochastic component: s = 4 · σ
2

γ2 log n ≥ (c + 1) · σ2
ζ

(γ/2)2 log n, so from Azuma’s

inequality:
∣∣∣∑s−1

i=0 ζt+i−1

s

∣∣∣ ≤ γ/2, with probability at least 1 − O(n−(c+1)). A union

bound implies that the bound holds for all t, with probability at least 1−O(n−c).

• Adversarial component: by applying Cauchy-Schwarz, we get that with probability at least
1−O(n−c), for all t,∣∣∣∣∣

∑s−1
i=0 ξt+i
s

∣∣∣∣∣ ≤
√
s
√∑s−1

i=0 ξ
2
t+i

s
≤ σξ√

s
≤ γ/2. (70)

Other than the regret guarantee, we will also need some other properties of the SBCO algorithm. To
present these, we need a high level description of this algorithm, which we now provide.

13This of c as a large constant.
14In [3], there is a typo, because they write s = 2 · σ

γ2
logn. However, they fixed it in the journal version

[2], where the formula for s is the one we give here.
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High level description of the SBCO algorithm

Let Ht = (xi, yi)
t
i=1

15, i.e., the history up to time t. There exists a function g that is polynomial-
time computable and takes as input Ht (for any t) and outputs a pair (x, s), which indicates that the
algorithm will query x for the timesteps t+1, t+2, . . . , t+s. More specifically, given this function
g, the SBCO algorithm has the following form.

Set t = 1.
Set r = 1.
while t ≤ n do

Set jr = t (switching time).
Set (x, s) = g(Ht−1).
Query x for the timesteps t, t+ 1, . . . , t+ s− 1.
Set t = t+ s.
Set r = r + 1.

end

The way the function g is constructed makes sure that the above algorithm queries exactly n points.
We now state two facts about this algorithm, the first follows from the above description and the
second from inspecting the full algorithm (page 11 of [3]).
Fact 48. If t ∈ [jr, jr+1), then xt (point queried at time t) is σ(Hjr−1)-measurable.
Fact 49. At the end of the algorithm, the index r ≤ poly(log n, d, σ, logD,L).

Note that Fact 49 says that the number of point-switches is only logarithmic in n.

SBCO algorithm in Algorithm 4: preliminaries

Let H ′ = 2H + 1, n = bT/H ′c and M(1),M(2), . . . ,M(n) be the points/policies queried by
the SBCO algorithm in Algorithm 4. Observe that for all t, if t = (j − 1)H ′ + h for some h ∈
{1, . . . ,H ′}, then the executed policy at time t is Mt = M(j). Also, let j1 ≤ j2 ≤ . . . ≤ jk
be the switching timesteps of the SBCO algorithm (as in the high-level description of Section C.1).
We define tr = (jr − 1)H ′ + 1 and tk+1 = T + 1. Observe that the executed policy Mt remains
constant for all t ∈ [tr, tr+1). Also, Fact 48 directly implies the following claim that we will use
later.
Claim 50. If t ∈ [tr, tr+1), then Mt is σ((xs, us)

tr−1
s=1 )-measurable.

C.2 Proof of Lemma 44

The proof is similar to the proof of Lemma 11. We use C(M) to denote C(M | A∗, B∗).

RT −RstT =

T∑
t=1

(c(zt)− C(Mt)) + T min
M∈M

C(M)− T min
K∈K

J(K)

≤
T∑
t=1

(c(zt)− C(Mt)) +O(1), (71)

where we used Theorems 5, 6. We proceed with some definitions. For all r ∈ {1, . . . , k}, h ∈
{0, 1, . . . ,H ′−1}, we define the intervals Ir = [tr, tr+1), Ir,h = {t ∈ Ir | t = tr+H

′·j+h, j ≥ 1}
and I ′r = {tr, tr + 1, . . . , tr +H ′ − 1} = Ir \ (∪H

′−1
h=0 Ir,h). We have

T∑
t=1

(c(zt)− C(Mt)) =

k∑
r=1

∑
t∈Ir

(c(zt)− C(Mt))

=

k∑
r=1

H′−1∑
h=0

∑
t∈Ir,h

(c(zt)− C(Mt)) +

k∑
r=1

∑
t∈I′r

(c(zt)− C(Mt)) (72)

15We define H0 = ∅.
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We call the first sum S1 and the second S2. In Appendix G (Claim 69), we show that with high
probability, c(zt) − C(Mt) ≤ Õ(κ5β2γ−2) ·

√
dx, for all t. Combining with Fact 49, we get that

with high probability, S2 ≤ k ·H ′ · Õ(κ5β2γ−2) ·
√
dx = poly(dx, du, κ, β, γ

−1, log T ). To bound
S1, we use the auxiliary sequence (zt)t, defined in Appendix B.5.

S1 =

H′−1∑
h=0

k∑
r=1

∑
t∈Ir,h

(c(zt)− C(Mt)) +

k∑
r=1

H′−1∑
h=0

∑
t∈Ir,h

(c(zt)− c(zt)) (73)

We call the first sum S3 and the second S4. We first bound S4. In Appendix G (Claim 67), we show
that with high probability, for all t,

‖zt − zt‖ . κ5β2γ−1 ·
2H+1∑
i=1

‖ŵt−i − wt−i‖+ 1/T. (74)

So, we have that with high probability,

S4 ≤
T∑
t=1

‖zt − zt‖ ≤ Õ(κ5β2γ−2)

T∑
t=1

‖ŵt − wt‖+ 1 (75)

We now apply Lemma 46, followed by Cauchy-Schwartz, to get that with high prob-
ability,

∑T
t=1 ‖ŵt − wt‖ ≤ Õ(1) ·

√
(dx + du)3T . Thus, we showed that

S4 ≤ poly(dx, du, κ, β, γ
−1, log T ) ·

√
T . The final step is to bound S3 =

∑H′−1
h=0 S3,h,

where S3,h =
∑k
r=1

∑
t∈Ir,h (c(zt)− C(Mt)). We will show that with high probability, for all

h, S3,h ≤ poly(dx, du, κ, β, γ
−1, log T ) ·

√
T , which will conclude the proof. We will prove the

following claim.

Claim 51. Let Ft = σ(w1, w2, . . . , wt−H′−1). Let r ∈ {1, . . . , k}, h ∈ {0, . . . ,H ′ − 1}, t ∈ Ir,h.
The following hold.

• If t′ ≤ t−H ′, then c(zt′)− C(Mt′) is Ft-measurable.

• E[c(zt)− C(Mt) | Ft] = 0.

• Conditioned on Ft, c(zt)− C(Mt) is poly(κ, β, γ−1, log T )-subgaussian.

Given this claim, we can apply Azuma’s inequality and a union bound to bound S3,h, for all h. It
remains to prove the claim.

Proof. First, we show that if t′ ≤ t, thenMt′ is Ft-measurable. Indeed, from Claim 50, we get that
Mt′ is σ((xs, us)

tr−1
s=1 )-measurable. Also, we have σ((xs, us)

tr−1
s=1 ) ⊆ σ(w1, w2, . . . , wtr′−2) ⊆ Ft,

since t ≥ tr +H ′.

Now, we show the first bullet. Let t′ ≤ t − H ′. Then, from the argument above, Mt′ is Ft-
measurable. Also, zt′ is σ(w1, w2, . . . , wt′−1)-measurable and σ(w1, w2, . . . , wt′−1) ⊆ Ft, since
t ≥ t′ +H ′.

For the second bullet, notice that conditioned onFt, the only source of randomness in c(zt)−C(Mt)
are the wt−H′ , . . . , wt−1. Since t ∈ Ir,h, at time t the policy Mt has already been executed for the
last H ′ steps. Thus, E[c(zt)− C(Mt) | Ft] = 0.

For the third bullet, it is easy to see that zt is poly(κ, β, γ−1)-Lipschitz as a function of
(wt−H′ , . . . , wt−1). This, combined with gaussian concentration [32] completes the proof.

C.3 Proof of Lemma 45

We first prove the following lemma.
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Lemma 52. Under the conditions of Theorem 43, we have
n∑
j=1

(C(M(j))− C(M∗)) ≤ poly(dx, du, κ, β, γ
−1, log T ) ·

√
n. (76)

Given this lemma, Lemma 45 immediately follows, since RT = H ′ ·
∑n
j=1(C(M(j)) − C(M∗)).

We now give the proof of Lemma 52.

Proof. Clearly, there exist C1, C2 ≤ poly(dx, du, κ, β, γ
−1, log T ), such that C(M) is C1-

Lipschitz and the diameter ofM is at most C2. It suffices to show that when the SBCO algorithm
queries M(j) = Mt, where t = (j − 1)H ′ + 1, the response c(zt+H′−1) can be written as

c(zt+H′−1) = C(M(j)) + ζ(j) + ξ(j), (77)
where

• conditioned on ζ(1), . . . , ζ(j − 1), the noise ζ(j) is poly(dx, du, κ, β, γ
−1, log T )-

subgaussian, and

• with high probability,
∑n
j=1 ξ(j)

2 ≤ poly(dx, du, κ, β, γ
−1, log T ).

We will use the auxiliary sequence (zt)t defined in Appendix B.5, to write
c(zt+H′−1) = C(Mt) + (c(zt+H′−1)− C(Mt)) + (c(zt+H′−1)− c(zt+H′−1)). (78)

The second term is ζ(j) and the third is ξ(j). The guarantee on ζ(j) follows from Claim 51. For
the guarantee on

∑n
j=1 ξ(j)

2, we have
∑n
j=1 ξ(j)

2 ≤
∑T
t=1 ‖zt − zt‖2. By Claim 67, we have∑T

t=1 ‖zt − zt‖2 ≤ O(1) + poly(κ, β, γ−1) ·
∑T
t=1 ‖wt − ŵt‖2. Lemma 46 concludes the proof.

D Auxiliary claims

Claim 53. With high probability, for all t,

‖wt‖ ≤ Õ(
√
dx). (79)

Proof. This follows from standard concentration of the norm of gaussian random vectors [32].

Claim 54. For all i ∈ N, ‖Ai∗‖ ≤ κ2(1− γ)i.

Proof. Using Assumption 1, we have ‖Ai∗‖ = ‖QΛiQ−1‖ ≤ κ2(1− γ)i.

Claim 55. There exists a Z = Õ(κ5β2γ−2) ·
√
dx, such that the following hold. For any policy

M ∈M, we have Eη‖z(M |A∗, B∗, η)‖ ≤ Z. Furthermore, suppose that ‖x1‖ ≤ Õ(κ2βγ−1/2) ·√
dx

16, and that instead of executing our algorithms, we play ut =
∑H
i=1M

[i−1]
t wt−i for all t,

where (Mt)t is an arbitrary policy sequence. Then, with high probability, we have ‖zt‖ ≤ Z.

Proof. First, we fix a policy M ∈ M. For this proof, we write u(M | ηi:i+H−1) =∑H
j=1M

[j−1]ηi+j−1, where ηi:i+H−1 denotes the sequence ηi, ηi+1, . . . , ηi+H−1. So, we have
Eη‖z(M | A∗, B∗, η)‖ ≤ Eη‖x(M | A∗, B∗, η)‖ + Eη‖u(M | η0:H−1)‖. Now, for all i =
{0, 1, . . . ,H + 1}, we have(

Eη ‖u(M | ηi:i+H−1)‖
)2

≤ Eη ‖u(M | ηi:i+H−1)‖2 = tr

 H∑
j=1

(
M [j−1]

)T
·M [j−1]


≤ dx

H∑
j=1

(
κ3β(1− γ)j

)2
. κ6β2γ−1 · dx . (80)

16This is guaranteed to hold after the warm-up exploration (Lemma 63).
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Thus, we bounded Eη‖u(M | η0:H−1)‖ . κ3βγ−1/2 ·
√
dx. Now, we write

x(M | A∗, B∗η) =

H∑
i=0

Ai∗ · ηi +

H∑
i=0

Ai∗B∗u(M | ηi+1:i+H) (81)

By triangle inequality,

Eη‖x(M | A∗, B∗η)‖ ≤
H∑
i=0

‖Ai∗‖ · Eη‖ηi‖+

H∑
i=0

‖Ai∗‖ · ‖B∗‖ · Eη ‖u(M | ηi+1:i+H)‖

.
√
dxκ

2
H∑
i=0

(1− γ)i + κ2β

H∑
i=0

(1− γ)i · κ3βγ−1/2 ·
√
dx, (82)

where we used inequality 80. Thus, we get Eη‖x(M | A∗, B∗η)‖ . κ5β2γ−3/2 ·
√
dx.

Now, we will bound ‖zt‖. First, we assumed that ‖x1‖ ≤ Õ(βκ2γ−1/2) ·
√
dx. Also, the

disturbance bound from Claim 53 and the spectral bounds on M
[i]
t , imply that with high prob-

ability, for all t, we have ‖ut‖ ≤ Õ(κ3βγ−1) ·
√
dx. We now show that for large enough

Z = Õ(κ5β2γ−2) ·
√
dx, after conditioning on ‖x1‖ ≤ Õ(βκ2γ−1/2) ·

√
dx and wt ≤ Õ(

√
dx)

and ‖ut‖ ≤ Õ(κ3βγ−1) ·
√
dx for all t, we have ‖xt‖ ≤ Z/2, for all t.

‖xt+1‖ ≤ ‖At∗x1‖+

t−1∑
i=0

‖Ai∗‖ · ‖wt−i‖+

t−1∑
i=0

‖Ai∗‖ · ‖B∗‖ · ‖ut−i‖ (83)

Using the bounds on disturbances, controls and ‖x1‖, we get that ‖xt+1‖ is at most

Õ(βκ2γ−1/2) ·
√
dx · κ2 +

√
dx · κ2 ·

∞∑
i=0

(1− γ)i + κ2β ·
∞∑
i=0

(1− γ)i · Õ(κ3βγ−1) ·
√
dx,

(84)

which is at most Z/2.

Claim 56. For all t ≥ H + 2, Ew
∥∥∥x(1)

t−H−1

∥∥∥ ,Ew ∥∥∥x(2)
t−H−1

∥∥∥ ≤ O(κ5β2γ−2) ·
√
dx .

Proof. First, for all t, Ew‖ut‖ ≤
∑H
i=1 ‖M [i−1]‖ · Ew‖wt−i‖ ≤ κ3βγ−1 ·

√
dx . We have

x
(1)
t−H−1 =

t−H−3∑
i=1

Âiwt−H−2−i +

t−H−3∑
i=1

ÂiB̂ut−H−2−i. (85)

Also, in Claim 22 we proved that Â is (κ, γ/2)-stronlgy stable. Also, we have ‖B̂ −
B∗‖ ≤ γ/(2κ2), so ‖B̂‖ ≤ β + 1. Thus, we get

Ew‖x(1)
t−H−1‖ ≤

t−H−3∑
i=1

‖Âi‖ · Ew‖wt−H−2−i‖+

t−H−3∑
i=1

‖Âi‖ · ‖B̂‖ · Ew‖ut−H−2−i‖

≤
√
dxκ

2
∞∑
i=0

(1− γ/2)i + κ2(β + 1)

∞∑
i=0

(1− γ/2)i · κ3βγ−1 ·
√
dx

. κ5β2γ−2 ·
√
dx . (86)

Since A∗ is (κ, γ)-stronlgy stable and ‖B∗‖ ≤ β, the same calculation gives Ew‖x(2)
t−H−1‖ .

κ5β2γ−2 ·
√
dx .

Claim 57. Let λ1, . . . , λn ∈ R and A1, . . . , An matrices with compatible dimensions. Then, n∑
j=1

λjAj

 n∑
j=1

λjAj

T

4

 n∑
j=1

λ2
j

 n∑
j=1

AjA
T
j

 (87)
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Proof. Without loss of generality, it suffices to prove the result for the case where Aj have each one
column. Then, for all vectors x,

xT

 n∑
j=1

λjAj

 n∑
j=1

λjAj

T

x =

 n∑
j=1

λjA
T
j x

 ·
 n∑
j=1

λjA
T
j x


≤

 n∑
j=1

λ2
j

 n∑
j=1

(ATj x)2


= xT

 n∑
j=1

λ2
j

 n∑
j=1

AjA
T
j

x. (88)

E Proof of Lemma 28

We use |Q| to denote the determinant of matrix Q. We first state Lemma 6 of [12].
Lemma 58. Let V0 = λ · I . With high probability, for all t,

‖∆T
t ‖2Vt ≤ Õ(1) · (dx + du) log

|Vt|
|V0|

+ T0‖∆0‖2F . (89)

Since |V0| = λdx+du , ‖∆0‖F ≤ ε ≤ (dx + du) (condition of Theorem 9) and λ = T0, we get
that with high probability, for all t,

‖∆T
t ‖2Vt ≤ Õ(1) · (dx + du)2

(
1 + log |Vt|(dx+du)−1

)
. (90)

The following claim helps control |V t|.
Claim 59. For all t,

|Vt|(dx+du)−1

≤ 1

dx + du
·
t−1∑
s=1

‖zs‖2 + λ
√
T . (91)

Proof. From AMGM,

|Vt|(dx+du)−1

≤ 1

dx + du
· tr(Vt) =

1

dx + du
· tr

(
t−1∑
s=1

zsz
T
s + λ

√
T

)

=
1

dx + du
·
t−1∑
s=1

‖zs‖2 + λ
√
T .

So, it remains to control the magnitude of zt.

Lemma 60. Suppose ‖x1‖ ≤ Õ(κ2βγ−1/2) ·
√
dx

17. Then, with high probability, both Algorithms
1 and 4 satisfy for all t,

‖zt‖ ≤ Õ(κ5β2γ−2) ·
√
dx. (92)

Proof. It suffices to show that if both 90 and 79 hold for all t, then 92 holds. We prove this by
induction on t. For t = 1, we have u1 = 0 (for both algorithms) and ‖x1‖ is bounded by assumption.
Suppose that zs satisfies 92 for all s < t. Then, Claim 59 implies that for all s < t,

log |Vs+1|(dx+du)−1

≤ Õ(1) (93)

17This is guaranteed to hold after the warm-up exploration (Lemma 63).

28



and so by 90 we have ∥∥∆T
s+1

∥∥2

Vs+1
≤ Õ(1) · (dx + du)2. (94)

We now bound us for s ≤ t. Fix an s ≤ t. We have

us =

H∑
i=1

M [i−1]
s ŵs−i =

H∑
i=1

M [i−1]
s ws−i +

H∑
i=1

M [i−1]
s (ŵs−i − ws−i) . (95)

We show the following claim.

Claim 61. For all τ < t, we have ‖ŵτ − wτ‖ ≤ Õ(1).

Proof. We have

‖ŵτ − wτ‖2 = ‖∆τ+1 · zτ‖2 ≤ Õ(κ10β4γ−4) · dx · ‖∆τ+1‖. (96)

From inequality 94 and the fact that λ · I 4 Vs+1, we get that ‖∆τ+1‖ ≤ Õ(1) · (dx + du)2/T0.
The claim follows from our choice of λ.

Back to our fixed s ≤ t, using Claim 61 and Claim 53, we get

‖us‖ ≤ Õ(1) ·
√
dx ·

H∑
i=1

‖M [i−1]
s ‖ ≤ Õ(κ3βγ−1) ·

√
dx . (97)

We will now bound ‖xt‖.

‖xt‖ =

∥∥∥∥∥At−1
∗ x1 +

t−1∑
i=1

Ai−1
∗ (wt−i +B∗ut−i)

∥∥∥∥∥
≤ ‖At−1

∗ ‖‖x1‖+

t−1∑
i=1

‖Ai−1
∗ ‖ (‖wt−i‖+ ‖B∗‖‖ut−i‖)

≤ Õ(βκ2γ−1/2) ·
√
dx · ‖At−1

∗ ‖+ Õ(κ3β2γ−1) ·
∞∑
i=0

‖Ai∗‖

≤ Õ(κ5β2γ−2) ·
√
dx,

where the last step follows from (κ, γ)-strong stability of A∗. The fact that ‖zt‖ ≤ ‖xt‖ + ‖ut‖
finishes the proof.

We can now finish the proof of Lemma 28. With high probability, both 90 and 92 hold for all t, so
log |V t|(dx+du)−1 ≤ Õ(1), which after being plugged-in inequality 90 completes the proof.

F Warm-up

Algorithm 5: Warm-up exploration
Set T0 = λ, where λ is defined in Algorithm 3.
for t = 1, 2, . . . , T0 do

Observe xt.
Play ut ∼ N(0, I).

end
Set V =

∑T0

t=1 ztz
T
t + (κ2 + β)−2 · I . a

Compute (A0 B0) =
∑T0

t=1 xt+1z
T
t V
−1.

azt is defined as in Algorithm 3.

To get the initial estimates A0, B0 we conduct the warm-up exploration given in Algorithm 6. In the
main text we use x1 to denote the state after the warm-up period (i.e., xT0+1). This ”reset” of time
is done for simplifying the presentation in the main text. From Theorem 20 and Appendix B.2 in
[12], we automatically get the following lemma.
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Lemma 62. Let ∆0 = (A0 B0)− (A∗ B∗). With high probability,

‖∆0‖2F ≤ Õ(1) · (dx + du)2

T0
= (C1dxdu(dx + du))−1, (98)

where C1 = κ10β4γ−5.

Now, we bound the regret overhead caused by the above process.

Lemma 63. Let C = κ13β5γ−5.5. With high probability, the regret incurred during warm-up
exploration is at most

Õ(C) · d3/2
x du(dx + du)3 ≤ Õ(C) · dxdu(dx + du)

√
T , (99)

and the state at the end of it, i.e, xT0+1 has norm ‖xT0+1‖ ≤ Õ(κ2βγ−1/2) ·
√
dx.

Proof. We define the regret at step t to be c(zt) − J(K∗), where K∗ ∈ arg minK∈K J(K). We
prove the following claim.

Claim 64. During warm-up period, the regret at step t is at most ‖zt‖+O(κ3γ−1/2
√
dx).

Proof. Let K∗ ∈ arg minK∈ J(K). For all t, we have

c(xt, ut)− J(K∗) = c(xt, ut)− lim
T→∞

1

T
· EK∗

T∑
t=1

c(xK∗t , uK∗t )

= lim
T→∞

1

T
·
T∑
t=1

EK∗
[
c(xt, ut)− c(xK∗t , uK∗t )

]
≤ lim

T→∞

1

T
·
T∑
t=1

EK∗
[
‖zt‖+ ‖xK∗t ‖+ ‖uK∗t ‖

]
≤ ‖zt‖+Q,

where Q is such that EK∗ [‖x
K∗
t ‖ + ‖uK∗t ‖] ≤ Q, for all t. Claim 65 shows that Q can be chosen

to be at most O(κ3γ−1/2
√
dx), which finishes the proof.

Now we use that ‖zt‖ ≤ ‖xt‖+ ‖ut‖, and we bound ‖xt‖ and ‖ut‖.

• With high probability, ‖ut‖ ≤ Õ(
√
dx), for all t ∈ [T0]. Indeed, for t ∈ [T0] we have

ut ∼ N(0, I), so the bound on ‖ut‖ follows as in the proof of Claim 53.

• Now, we bound ‖xt‖. For all t ∈ [T0 + 1], xt ∼ N (0,Σ), where

Σ =

t−2∑
i=0

Ai∗(I +B∗B
T
∗ )
(
AT∗
)i

(100)

From Claim 54, we have
∥∥∥(AT∗ )iAi∗∥∥∥ ≤

∥∥Ai∗∥∥2 ≤ κ4(1 − γ)2i. Also, ‖I +

B∗B
T
∗ ‖ ≤ 1 + ‖B∗‖2 ≤ 1 + β2. We conclude that

‖Σ‖ ≤ (1 + β2)κ4
∞∑
i=0

(1− γ)2i . β2κ4γ−1. (101)

Now, xt ∼ Σ1/2z, where z ∼ N(0, I). Thus, with high probability, for all t ∈ [T0 + 1],
‖xt‖ ≤ Õ(βκ2γ−1/2) ·

√
dx.

Since at each step we suffer regret at most Õ(κ3βγ−1/2
√
dx) and the warm-up period is the interval

{1, 2, . . . , T0} and T0 = Θ̃(κ10β4γ−5) · dxdu(dx + du)3, we are done.
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G Auxiliary Claims

Claim 65. For all K ∈ K, EK [‖xKt ‖+ ‖uKt ‖] ≤ Õ(κ3γ−1/2
√
dx).

Proof. We have xKt = (A∗ +B∗K)xKt−1 + wt−1 =
∑t−1
i=0(A∗ +B∗K)iwt−i. Thus,

(E‖xt‖)2 ≤ E‖xt‖2 = tr

(
t−1∑
i=0

((A∗ +B∗K)T )i(A∗ +B∗K)i

)

≤ dx

t−1∑
i=0

‖A∗ +B∗K‖2i

≤ dxκ
4
∞∑
i=0

(1− γ)2i ≤ O(dxκ
4γ−1). (102)

Thus, E‖xt‖ ≤ Õ(κ2γ−1/2
√
dx).

Finally, we have E‖ut‖ = E‖Kxt‖ ≤ κE‖xt‖ ≤ Õ(κ3γ−1/2
√
dx).

Claim 66. For all M ∈M, Rst(M) ≤ Õ(κ5θ2γ−2) ·
√
dx.

Proof. We use the quantity z(M | A∗, B∗, η) that we define in 13.
Rst(M) = C(M | A∗, B∗)− C(M∗ | A∗, B∗)

≤ Eη‖z(M | A∗, B∗, η)− z(M∗ | A∗, B∗, η)‖
≤ Eη‖z(M | A∗, B∗, η)‖+ Eη‖z(M∗ | A∗, B∗, η)‖

≤ Õ(κ5β2γ−2) ·
√
dx, (103)

where we used the definition of C, that c is 1-Lipschitz and Claim 55.

Claim 67. With high probability, for all t,

‖zt − zt‖ . κ5β2γ−1 ·
2H+1∑
i=1

‖ŵt−i − wt−i‖+ 1/T. (104)

Proof. First, for all t,

‖ut − ut‖ =

∥∥∥∥∥
H∑
i=1

M
[i−1]
t (wt−i − ŵt−i)

∥∥∥∥∥ ≤
H∑
i=1

κ3β(1− γ)i‖wt−i − ŵt−i‖. (105)

Furthermore, ‖xt − xt‖ ≤
∑H
i=0 ‖Ai∗‖‖B∗‖‖ut−i−1 − u′t−i−1‖ + ‖AH+1

∗ xt−H−1‖. Claims
54 and 55 imply that with high probability we have ‖AH+1

∗ xt−H−1‖ ≤ κ2(1 − γ)H+1 ·
Õ(κ5β2γ−2)

√
dx ≤ 1/T . Using the bound 105, we get

‖xt − xt‖ ≤
H∑
i=0

κ2β(1− γ)i
H∑
j=1

κ3β(1− γ)j‖wt−i−j−1 − ŵt−i−j−1‖+ 1/T

≤ κ5β2H

2H+1∑
i=1

‖wt−i − ŵt−i‖+ 1/T. (106)

Finally,
‖zt − zt‖ ≤ ‖xt − xt‖+ ‖ut − ut‖

≤ · κ5β2H

2H+1∑
i=1

‖wt−i − ŵt−i‖+ 1/T + κ3β

H∑
i=1

‖wt−i − ŵt−i‖

≤ Õ(κ5β2γ−1) ·
2H+1∑
i=1

‖wt−i − ŵt−i‖+ 1/T. (107)
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Claim 68. With high probability, for all t, we have ‖∆t‖ ≤ γ/(2κ2).

Proof. The proof follows from Lemma 28, along with our choice of T0.

Claim 69. For both Algorithms 1 and 4, we have that with high probability, for all t,

c(xt, ut)− C(Mt) ≤ Õ(κ5β2γ−2) ·
√
dx. (108)

Proof.

c(xt, ut)− C(Mt) = c(zt)− Eη [c (z(M | A∗, B∗, η))]

= Eη [c(zt)− c (z(M | A∗, B∗, η))]

≤ Eη ‖zt − z(M | A∗, B∗, η)‖
≤ ‖zt‖+ Eη‖z(M | A∗, B∗, η)‖. (109)

Lemma 60 and Claim 55 complete the proof.

G.1 Proof of Theorem 5

We will use P1, P2, P3 to denote large polynomials in T, dx, κ, β, γ−1. Fix a K ∈ K and consider
the corresponing dynamics xKt+1 = (A∗ + B∗K)xKt + wt, xK1 = 0. Also, uKt+1 = KxKt+1. By
unrolling the dynamics, we get xKt+1 =

∑t−1
i=0(A∗ +B∗K)iwt−i. Thus,

uKt+1 = K

t−1∑
i=0

(A∗ +B∗K)iwt−i. (110)

Let M [i] = K(A∗ + B∗K)i, for i = 0, 1, . . . ,H − 1. Also, consider the dynamics ut+1(M) =∑H−1
i=0 M [i]wt−i and xt+1(M) = A∗xt(M)+B∗ut(M)+wt, x1(M) = 0. We prove the following

claim.
Claim 70. For all t, Ew‖uKt+1 − ut+1(M)‖ ≤ 1/P1, where c1 is a large constant and w denotes
the sequence (wt)t.

Proof.

Ew‖uKt+1 − ut+1(M)‖ ≤ Ew‖K
t−1∑
i=H

(A∗ +B∗K)iwt−i‖ ≤
√
dx

t−1∑
i=H

‖K‖ · ‖(A∗ +B∗K)i‖

≤ κ
√
dx

t−1∑
i=H

κ2(1− γ)i ≤ κ3
√
dx(1− γ)H/γ ≤ 1/P1, (111)

because of the way we choose H .

We have

xKt+1 =

t−1∑
i=0

Ai∗wt−i +

t−1∑
i=0

Ai∗B∗u
K
t−i (112)

and

xt+1(M) =

t−1∑
i=0

Ai∗wt−i +

t−1∑
i=0

Ai∗B∗ut−i(M) (113)

By subtracting, we get

‖xKt+1 − xt+1(M)‖ ≤
t−1∑
i=0

‖Ai∗‖ · ‖B∗‖ · ‖uKt−i − ut−i(M)‖

≤ 1/P1 ·
t−1∑
i=0

‖Ai∗‖ · ‖B∗‖ ≤ 1/P2, (114)

32



Now, let t ≥ 2H + 2, let η(w) = (wt−1, wt−1, . . . , wt−2H−1) and observe that u(M | η(w)) =
ut(M) and x(M | A∗, B∗, η(w)) = xt(M)−AH+1

∗ xt−1−H(M). Thus,

Ew‖x(M | A∗, B∗, η(w))− xt(M)‖ ≤ ‖AH+1
∗ ‖ · Ew‖xt−1−H(M)‖ ≤ 1/P3, (115)

since Ew‖xt−1−H(M)‖ ≤ 1/P2 +Ew‖xKt−1−H‖ ≤ Õ(κ3γ−1/2
√
dx), by Claim 65. Overall, we

have shown that for all t ≥ 2H + 2,

Ew‖u(M | η(w))− uKt ‖+ Ew‖x(M | A∗, B∗, η(w))− xKt ‖ ≤ 1/P1 + 1/P2 + 1/P3. (116)

Using the above, we get

|J(K)− C(M | A∗, B∗)|

=

∣∣∣∣∣ lim
T→∞

1

T
· Ew

T∑
t=1

c(xKt , u
K
t )− Ewc (x (M | A∗, B∗, η(w)) , u (M | η(w))))

∣∣∣∣∣
≤ lim

T→∞

1

T
·
T∑
t=1

Ew
(
‖xKt − x(M | A∗, B∗, η(w))‖+ ‖uKt − u(M | η(w))‖

)
≤ 1/P1 + 1/P2 + 1/P3 ≤ 1/T. (117)

G.2 Proof of Theorem 8

We first define C-approximate barycentric spanners and cite a theorem that says that they can be
computed in polynomial time given a linear optimization oracle. Given that theorem, it is easy to
get the same result for the affine case, i.e., C-approximate affine barycentric spanners.

Definition 71 ([5]). Let K be a compact set in Rd. A set X = {x1, . . . , xd} ⊆ K is a C-
approximate barycentric spanner for K if every x ∈ K can be expressed as a linear combination of
elements of X using coefficients in [−C,C].

Theorem 72 (Proposition 2.5. in [5]). SupposeK ⊆ Rd is compact and not contained in any proper
linear subspace. Given an oracle for optimizing linear functions over K, for any C > 1 we can
compute aC-approximate barycentric spanner forK in polynomial time, usingO(d2 logC(d)) calls
to the oracle.

Let x0 an arbitrary point in K (we can get one with one call to the oracle). Let K − x0 := {x −
x0 | x ∈ K}. Since K is not contained in any proper affine subspace, K − x0 is not contained
in any proper linear subspace. Furthermore, the linear optimization oracle for K is also a linear
optimization oracle for K − x0. Thus, Theorem 75 implies that for any C > 1 we can compute a
C-approximate barycentric spanner for K − x0 in polynomial time, using O(d2 logC(d)) calls to
the oracle, which finishes the proof.

G.3 Proof of Theorem 5

We will use P1, P2, P3 to denote large polynomials in T, dx, κ, β, γ−1. Fix a K ∈ K and consider
the corresponding dynamics xKt+1 = (A∗ + B∗K)xKt + wt, xK1 = 0. Also, uKt+1 = KxKt+1. By
unrolling the dynamics, we get xKt+1 =

∑t−1
i=0(A∗ +B∗K)iwt−i. Thus,

uKt+1 = K

t−1∑
i=0

(A∗ +B∗K)iwt−i. (118)

Let M [i] = K(A∗ + B∗K)i, for i = 0, 1, . . . ,H − 1. Also, consider the dynamics ut+1(M) =∑H−1
i=0 M [i]wt−i and xt+1(M) = A∗xt(M)+B∗ut(M)+wt, x1(M) = 0. We prove the following

claim.

Claim 73. For all t, Ew‖uKt+1 − ut+1(M)‖ ≤ 1/P1, where c1 is a large constant and w denotes
the sequence (wt)t.
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Proof.

Ew‖uKt+1 − ut+1(M)‖ ≤ Ew‖K
t−1∑
i=H

(A∗ +B∗K)iwt−i‖ ≤
√
dx

t−1∑
i=H

‖K‖ · ‖(A∗ +B∗K)i‖

≤ κ
√
dx

t−1∑
i=H

κ2(1− γ)i ≤ κ3
√
dx(1− γ)H/γ ≤ 1/P1, (119)

because of the way we choose H .

We have

xKt+1 =

t−1∑
i=0

Ai∗wt−i +

t−1∑
i=0

Ai∗B∗u
K
t−i (120)

and

xt+1(M) =
t−1∑
i=0

Ai∗wt−i +

t−1∑
i=0

Ai∗B∗ut−i(M) (121)

By subtracting, we get

Ew‖xKt+1 − xt+1(M)‖ ≤
t−1∑
i=0

‖Ai∗‖ · ‖B∗‖ · Ew‖uKt−i − ut−i(M)‖

≤ 1/P1 ·
t−1∑
i=0

‖Ai∗‖ · ‖B∗‖ ≤ 1/P2, (122)

Now, we have

|J(K)− J(M)| =

∣∣∣∣∣ lim
T→∞

1

T
· Ew

T∑
t=1

(
c(xKt , u

K
t )− c(xt(M), ut(M)

)∣∣∣∣∣ (123)

≤ lim
T→∞

1

T
· Ew

(
‖xKt − xt(M)‖+ ‖uKt − ut(M)‖

)
(124)

≤ 1/P1 + 1/P2 ≤ 1/T. (125)

G.4 Proof of Theorem 6

We consider the dynamics ut+1(M) =
∑H−1
i=0 M [i]wt−i and xt+1(M) = A∗xt(M) +B∗ut(M) +

wt, x1(M) = 0. Now, let t ≥ 2H + 2, η(w) = (wt−1, wt−1, . . . , wt−2H−1), and observe that
u(M | η(w)) = ut(M) and x(M | A∗, B∗, η(w)) = xt(M)−AH+1

∗ xt−1−H(M). Thus,

Ew‖x(M | A∗, B∗, η(w))− xt(M)‖ ≤ ‖AH+1
∗ ‖ · Ew‖xt−1−H(M)‖. (126)

Now, in the proof of Theorem 5 (Appendix G.3), we showed that Ew‖xt−1−H(M) −
xKt−1−H‖ ≤ 1/P2, and in Appendix G (Claim 65), that Ew‖xKt−1−H‖ ≤ Õ(κ3γ−1/2

√
dx).

So, we get that Ew‖x(M | A∗, B∗, η(w))− xt(M)‖ ≤ 1/P3. Using this bound, we get

|J(M)− C(M | A∗, B∗)|

=

∣∣∣∣∣ lim
T→∞

1

T
· Ew

T∑
t=1

c(xt(M), ut(M))− Ewc (x (M | A∗, B∗, η(w)) , u (M | η(w))))

∣∣∣∣∣
≤ lim

T→∞

1

T
·
T∑
t=1

Ew (‖xt(M)− x(M | A∗, B∗, η(w))‖+ ‖ut(M)− u(M | η(w))‖)

≤ 1/P3 ≤ 1/T. (127)
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G.5 Proof of Theorem 8

We first define C-approximate barycentric spanners and cite a theorem that says that they can be
computed in polynomial time given a linear optimization oracle. Given that theorem, it is easy to
get the same result for the affine case, i.e., C-approximate affine barycentric spanners.
Definition 74 ([5]). Let K be a compact set in Rd. A set X = {x1, . . . , xd} ⊆ K is a C-
approximate barycentric spanner for K if every x ∈ K can be expressed as a linear combination of
elements of X using coefficients in [−C,C].

Theorem 75 (Proposition 2.5. in [5]). SupposeK ⊆ Rd is compact and not contained in any proper
linear subspace. Given an oracle for optimizing linear functions over K, for any C > 1 we can
compute aC-approximate barycentric spanner forK in polynomial time, usingO(d2 logC(d)) calls
to the oracle.

Let x0 an arbitrary point in K (we can get one with one call to the oracle). Let K − x0 := {x −
x0 | x ∈ K}. Since K is not contained in any proper affine subspace, K − x0 is not contained
in any proper linear subspace. Furthermore, the linear optimization oracle for K is also a linear
optimization oracle for K − x0. Thus, Theorem 75 implies that for any C > 1 we can compute a
C-approximate barycentric spanner for K − x0 in polynomial time, using O(d2 logC(d)) calls to
the oracle, which finishes the proof.

H Disturbance-based policies

We show that under the execution of disturbance-based policy M , we have

xt+1 = AH+1
∗ xt−H +

2H∑
i=0

Ψi(M | A∗, B∗)wt−i, (128)

where

Ψi(M | A∗, B∗) = Ai∗ 1i ≤ H +

H∑
j=0

Aj∗B∗M
[i−j−1] 1i−j∈[1,H] . (129)

This formula was derived in [4] and we rederive it here for completeness.

xt+1 =

H∑
i=0

Ai∗(wt−i +B∗ut−i) +AH+1
∗ xt−H

=

H∑
i=0

Ai∗wt−i +

H∑
i=0

Ai∗B∗

H∑
j=1

M [j−1]wt−i−j +AH+1
∗ xt−H

=

H∑
i=0

Ai∗wt−i +

2H∑
`=0

H∑
i=0

Ai∗B∗M
[`−i−1]wt−` 1`−i∈[1,H] +AH+1

∗ xt−H

= AH+1
∗ xt−H +

2H∑
i=0

Ψi(M | A∗, B∗)wt−i.
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