Automatic Curriculum Learning through
Value Disagreement

Yunzhi Zhang Pieter Abbeel Lerrel Pinto
UC Berkeley UC Berkeley UC Berkeley, NYU
Abstract

Continually solving new, unsolved tasks is the key to learning diverse behaviors.
Through reinforcement learning (RL), we have made massive strides towards
solving tasks that have a single goal. However, in the multi-task domain, where
an agent needs to reach multiple goals, the choice of training goals can largely
affect sample efficiency. When biological agents learn, there is often an organized
and meaningful order to which learning happens. Inspired by this, we propose
setting up an automatic curriculum for goals that the agent needs to solve. Our
key insight is that if we can sample goals at the frontier of the set of goals that
an agent is able to reach, it will provide a significantly stronger learning signal
compared to randomly sampled goals. To operationalize this idea, we introduce a
goal proposal module that prioritizes goals that maximize the epistemic uncertainty
of the Q-function of the policy. This simple technique samples goals that are neither
too hard nor too easy for the agent to solve, hence enabling continual improvement.
We evaluate our method across 13 multi-goal robotic tasks and 5 navigation tasks,
and demonstrate performance gains over current state-of-the-art methods.

1 Introduction

Model-free reinforcement learning (RL) has achieved remarkable success in games like Go [49],
and control tasks such as flying [26] and dexterous manipulation [4]. However, a key limitation to
these methods is their sample complexity. They often require millions of samples to learn a single
locomotion skill, and sometimes even billions of samples to learn a more complex skill [7]. Creating
general purpose RL agents will necessitate acquiring multiple such skills, which further exacerbates
the sample inefficiency of these algorithms. Humans, on the other hand, are not only able to learn a
multitude of different skills, but are able to do so from orders of magnitude fewer samples [25]. So,
how do we endow RL agents with this ability to learn efficiently?

When human (or biological agents) learn, they do not simply learn from random data or on uniformly
sampled tasks. There is an organized and meaningful order in which the learning is performed. For
instance, when human infants learn to grasp, they follow a strict curriculum of distinct grasping
strategies: palmar-grasp, power-grasp, and fine-grasp [33]. Following this order of tasks from simple
ones to gradually more difficult ones is crucial in acquiring complex skills [38]. This ordered structure
is also crucial to motor learning in animals [50, 28]. In the context of machine learning, a learning
framework that orders data or tasks in a meaningful way is termed ‘curriculum learning’ [12].

Most research into curriculum learning has focused on the order of data that is presented to a
supervised learning algorithm [15]. The key idea is that while training a supervised model, ‘easy’ data
should be presented first, followed by more difficult data. This gradual presentation of data is shown
to improve convergence and predictive performance [12]. However, in the context of reinforcement
learning, how should one present a curriculum of data? The answer depends on what aspect of
complexity needs to addressed. In this work, we focus on the complexity involved in solving new
tasks/goals. Concretely, we operate in the sparse-reward goal-conditioned RL setting [45]. Here, the

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Sampled goal

Unsolvable .
Goal &

Proposal
Module

Executed behavior

Figure 1: In this work we focus on generating automatic curriculums, where we propose goals that are right at
the frontier of the learning process of an agent. Given trajectories of behavior from a goal-conditioned RL policy,
our value disagreement based Goal Proposal Module proposes challenging yet solvable goals for that policy.

sparse-reward setting reflects the inherent difficulty of real-world problems where a positive reward
is only given when the goal is achieved.

To improve the sample efficiency of goal-conditioned RL, a natural framework for using curriculums
is to organize the presentation of goals for the RL algorithm. This goal proposer will need to select
goals that are informative for policy learning. One option for the goal proposer is to sample goals
that have been previously reached [3]. Hence, as the algorithm improves, the sampled goals become
more diverse. However, this technique will also re-sample goals that are too easy to give a useful
training signal. The central question to improving the goal sampler is hence, how do we select the
most useful and informative goals for the learning process?

To sample relevant goals that are maximally informative for the learning process, recent work [51, 39]
focuses on using adversaries to sample goals for the agent at hand. Here, the adversary samples
goals that are just at the horizon of solvability. These goals form a powerful curriculum since they
are neither too easy nor too hard and hence provide a strong learning signal. However, due to the
instability in adversarial learning and extra samples needed with multiple agents, these algorithms do
not scale well to harder problems. Moreover, setting up an explicit two-player game for different
problem settings is not a scalable option.

In this work, we propose a simple, but powerful technique to propose goals that are right at the
cusp of solvability (see Figure 1). Our key insight is to look a little closer at the value function. In
goal-conditioned settings, the value function of a RL policy outputs the expected rewards of following
that policy from a given start state to reach a given goal. Hence, the function contains information
about what goals are currently solvable and what goals are not, as well as what goals are right at the
cusp of being solved. To retrieve this information, we present Value Disagreement based Sampling
(VDS) as a goal proposer. Concretely, we approximate the epistemic uncertainty of the value function,
and then sample goals from the distribution induced by this uncertainty measure. For goals that are
too easy, the value function will confidently assign high values, while for goals that are too hard,
the value function will confidently assign low values. But more importantly, for the goals right at
the boundary of the policy’s ability, the value function would have high uncertainty and thus sample
them more frequently.

To compute the epistemic uncertainty practically, following recent work in uncertainty mea-
surement [30], we use the disagreement between an ensemble of value functions. For evalu-
ation, we report learning curves on 18 challenging sparse-reward tasks that include maze nav-
igation, robotic manipulation and dexterous in-hand manipulation. Empirically, VDS further
improves sample efficiency compared to standard RL algorithms. Code is publicly available at
https://github.com/zzyunzhi/vds.

2 Background and Preliminaries

Before we describe our framework, we first discuss relevant background on goal-conditioned RL. For
a more in-depth survey, we refer the reader to Sutton et al. [52], Kaelbling et al. [23].

https://github.com/zzyunzhi/vds

2.1 Multi-Goal RL

We are interested in learning policies that can achieve multiple goals (a universal policy). Let
S, A be the state space and action space as in standard RL problems. Let G be the parame-
ter space of goals. An agent is trained to maximize the expected discounted trajectory reward

Esor 1,000 1,r0m—1,9 [ZZ:Ol ’ytrt} , where a goal ¢ is sampled from the parameter space G. Multi-

goal RL problem can be cast as a standard RL problem with a new state space S x G and action
space A. Policy 7 : § x G — A and Q-function S x G x A — R can be trained with standard RL
algorithms, as in [45, 3].

Following UVFA [45], the sparse reward formulation r (s, a,g) = [d(s¢,g) < €] will be used in
this work, where the agent gets a reward of 0 when the distance d(-, -) between the current state and
the goal is less than €, and —1 otherwise. In the context of a robot performing the task of picking
and placing an object, this means that the robot gets a higher reward only if the object is within €
Euclidean distance of the desired goal location of the object. Having a sparse reward overcomes the
limitation of hand engineering the reward function, which often requires extensive domain knowledge.
However, sparse rewards are not very informative and makes optimization difficult. In order to
overcome the difficulties with sparse rewards, we employ Hindsight Experience Replay (HER) [3].

2.2 Hindsight Experience Replay (HER)

HER [3] is a simple method of manipulating the replay buffer used in off-policy RL algorithms that
allows it to learn universal policies more efficiently with sparse rewards. After experiencing some
episode sg, s1, ..., ST—1, every transition s; — sy along with the goal for this episode is usually
stored in the replay buffer. However, with HER, the experienced transitions are also stored in the
replay buffer with different goals. These additional goals are states that were achieved later in the
episode. Since the goal being pursued does not influence the environment dynamics, we can replay
each trajectory using arbitrary goals, assuming we use off-policy optimization [43].

3 Method

We first introduce Goal Proposal Module, a module that generates an automatic curriculum for goals.
Following this, we describe our Value Disagreement Sampling (VDS) based Goal Proposal Module.

3.1 Goal Proposal Module

Let C : G — R be a probability distribution over the goal space G. A goal proposal module samples a
goal g from C at the start of a new episode. In this episode, the agent follows a g-conditioned policy
to perform a trajectory and receives external rewards defined in Section 2.1.

In standard goal-conditioned RL, C reduces to the uniform distribution, where the goals are randomly
sampled. However, sampling goals uniformly is often uninformative for the learning process [3] since
during the early stages of learning, a majority of sampled goals are too hard, while during the later
stages of learning most goals are too easy. Instead of using a uniform distribution over the goals, a
curriculum learning based approach can sample goals in increasing order of difficulty.

To explicitly account for the dependence of C on the current policy 7 as normally in the case of
curriculum learning, we denote the goal distribution as C™. In the case when the starting position
varies, C could also depend on the first state of an episode sg, but s is dropped from notation for
simplicity.

3.2 Value disagreement

To automatically generate the goal sampling curriculum C™, we propose using the epistemic uncer-
tainty of the Q-function to identify a set of goals with appropriate difficulty. When the uncertainty for
g € G is high, g is likely to lie at the knowledge frontier of policy 7 and thus is neither too easy nor
too difficult to achieve. We defer more detailed reasoning and empirical evidence to Section 4.5.

Algorithm 1 Curriculum Learning with Value Disagreement Sampling

Input: Policy learning algorithm A, goal set G, replay buffer R.
Initialize: Learnable parameters 6 for 7y and ¢1.; for Q1.
for n=1,2,.. Njr do

Sample a set of goals G

Compute Cmo according to equation 2

Sample g ~ C™ (-

Collect a goal-conditioned trajectory 7, (7 | g)

Store transition data into the replay buffer R + 7,

forall € {¢1,..., 1} do
Perform Bellman-update according to equation 1 on samples drawn from R

Update policy parameter 6 using algorithm A
Return: 6

Let Q7 (s, a, g) be the goal-conditioned Q-function of a policy m, where ¢ is a learnable parameter. It
approximates the expected cumulative return By —; 4o —a,r~n(.|g) [ZZ":—O 1 ,ytTt:| . Given a transition

(s,a,r, s, g), this Q-function can be optimized using the Bellman update rule [52]:

Qg(saavg) — r+’yEa’~ﬂ'(-|s,g) [Qg(s/7a/79)] (D

Intuitively, this function tracks the performance of the policy 7.

In practice, to estimate the epistemic uncertainty of Q™, we measure the disagreement across an
ensemble of parametric Q-functions following Lakshminarayanan et al. [30]. Hence, instead of
a single), we maintain K Q-functions (). with independently trained parameters ¢1.x. The
disagreement between value functions for a goal g is computed as a function of the ensemble’s
standard deviation.

Formally, let sg, a be the starting state of a new episode and the agent’s action. The agent’s action is
chosen based on the base policy optimization algorithm. For any given a goal g € G, let 6™ (g) be
the standard deviation of {Q7 (s, a,9), - , Q% (S0, a, g)}. Given any function f : R* — R*, we
define C™(g) = + f(6™(g)), where Z = fg f(0™(g)) dg is the normalization constant.

Since Z is usually intractable, we first uniformly sample a set of goals G = {g}_; C G. Then
we define C™ : G — R as:

Er(g) = %f(ﬁ”(g)) 2)

to approximate C™, where Z = Zgzl F(67(g(™)).

Our method is summarized in Algorithm 1. For our experiments, we use DDPG [31] as our base
RL algorithm to train the policy. We define f to be the identity function for simplicity for all our
experiments. Ablation study on multiple choices of f is deferred to Appendix E.

Note that although we use an off-policy algorithm as our base optimizer, the goal sampler is inde-
pendent of the choice of the base RL optimizer. The base RL algorithm is agnostic of the value
ensemble and receives training goals only via Goal Proposal Module. The value ensemble has access
to transition data collected by the agent, but the base RL algorithm is treated as a black box to
maintain maximum flexibility.

4 Experiments

In this section, we first describe our experimental setup, training details and baseline methods for
comparison. Then, we discuss and answer the following key questions: (i) Does VDS improve
performance?; (ii) Does VDS sample meaningful goals?; (iii) How sensitive is VDS to design
choices?

T

> &

REU DE @M e SN

P e

N

Figure 2: We empirically evaluate on all 13 robotic environments from OpenAl Gym [40], of which we illustrate
8. We also test our method on 3 maze navigation tasks, which serve as simple tasks for investigating VDS. In
order to compare with Goal GAN [16], we evaluate our method on two Ant environments borrowed from their
paper. The red dots, if illustrated, represent goals the robot or the object needs to reach.

4.1 Experimental setup

We test our methods on 13 manipulation goal-conditioned tasks, 3 maze navigation tasks and 2
Ant-embodied navigation tasks, all with sparse reward, as shown in Figure 2. Detailed setup of the
environments is presented in Appendix C.

4.2 Training details

To enable modularity, we treat the value ensemble as a separate module from the policy optimization.
This provides us the flexibility to use VDS alongside any goal-conditioned RL algorithm. In this
work, we use HER with DDPG as our backbone RL algorithm. To collect transition data, the policy
optimizer queries the value ensemble to compute the goal distribution and select training goals
accordingly. In line with standard RL, the policy generates on-policy data with e-greedy strategy. The
obtained transitions data are then fed into the replay buffer of the VDS’s value ensemble along with
the replay buffer of the policy. In each training epoch, each Q-function in the ensemble performs
Bellman updates with independently sampled mini-batches, and the policy is updated with DDPG.
Evaluation goals are randomly selected, and the goal is marked as successfully reached if the agent
reaches the goal at the last timestep of the episode. Detailed hyper-parameter settings are specified in
the Appendix D, while an analysis of combining HER with VDS is provided in Appendix G.

4.3 Baseline Methods

To quantify the contributions of this work, we compare our method with the following baselines:

o HER In HER, the RL agent uses a hindsight replay buffer with DDPG [31] as the base
RL algorithm with goals uniformly sampled from the goal space. The implementation
and hyperparameters is based on the official codebase of HER. We use the same set of
hyperparameters for HER and our method across all environments.

¢ Robust Intelligence Adaptive Curiosity (RIAC) RIAC [9] proposes to sample goals from
a continuous goal space G according to the Absolute Learning Progress (ALP) of the policy.
The policy has large positive learning progress on a region of G when it is making significant
improvement on reaching goals lying within region. It has negative learning progress when
suffering from catastrophic forgetting. RIAC splits G into regions, computes the ALP score
for each region, selects regions with a probability distribution proportional to the ALP score,
and samples goals from the selected regions.

e Covar-GMM Covar-GMM [34] fits a Gaussian Mixture Model (GMM) on the goal param-
eter space G concatenated with the episodic reward and time. At the start of each episode, a
goal is sampled with propability proportional to the covariance of episodic reward and time.

o ALP-GMM ALP-GMM [42] fits a GMM on G concatenated with an ALP score approx-
imated by the absolute reward difference between the current episode conditioned on g
and a previous episode conditioned some goal neighboring g. Our implementation and
hyperparameters of RandomSAC, RIAC, Covar-GMM and ALP-GMM follows the official
codebase of ALP-GMM.

FetchPickAndPlace-vl FetchPush-vl

success rate/%

02 04 0’ 08 10 oo 02 04 s 08 10
timesteps 1e6 timesteps 1e6

FetchReach-v1 FetchSlide-vl

02 04 06 08 10 0o 02 oa o6 0’8
timesteps le6 timesteps

HandManipulateBlock-v0 Har ilateBlocl allel-v0

success rate/%

0o 08 16 24 32 40 oo 08 16 24 32 40
timesteps 1e6 timesteps 16

HandManipulateEgg-v0 HandManipulateEggRotate-v0

success rate/

1 a 32 0.0 0.8 16 24 3.2 4.0
timesteps le timestep: 1es

HandReach-v0 MazeA-v0

oo X

success rate/%

oo 08 32

timesteps e timesteps 1es

ALP-GMM Covar-GMM

Har ipulateBlockRotateXYZ-v0 HandManipulateBlockRotateZ-v0

s 24 3z 40 00 o8 16 24
timesteps 1e timesteps

32 40
6

6
HandManipulatePen-v0 HandManipulatePenRotate-v0
20-
8 15-
6
10-
4
0 | | |] 0 | | | |]
o o 6 24 32 alo oo o8 16 2a 32 o
timesteps le6 timesteps 1e6
MazeB-v0 MazeC-v0
100 80-
70-
80
60-
60 s0-
40~
a0 30
20 207
10-
0o o 16 24 32 40 oo o8 4 32 a0
timesteps 1e5 timesteps les
RIAC —— HER —— VDS+HER (ours)

Figure 3: Here we visualize the learning curves on 16 environments that include all 13 OpenAl Gym robotics
benchmark environment and the 3 Maze environments. The y-axis is the success rate evaluated with the latest
policy. The shaded region represents confidence over 5 random seeds. We notice significant improvements in
sample efficiency of our method compared to baseline algorithms, especially on many challenging manipulation

tasks.

e GoalGAN GoalGAN [16] labels if the goals in the replay buffer are of intermediate difficulty
by the episodic reward, and then feed the labeled goals into a Generative Adversarial Network
(GAN) that outputs goals of intermediate difficulty. In later episodes, the agent is trained on
goals generated by GAN. Our implementation and hyperparameter settings of GoalGAN

follow their official codebase.

4.4 Improvements using VDS

Figure 3 shows that our method achieves better sample efficiency compared to baselines on most of
the 16 environments with 4 FetchArm, 9 HandManipulation and 3 Maze navigation tasks. Uniform
goal sampling (HER) demonstrates competitive performance in some of the reported environments,
which is consistent with previous work in Portelas et al. [42].

We compare with Goal GAN in the Ant environ-
ments as reported in their original paper [16].
Figure 4 shows that our method obtains signif-
icant sample efficiency gain compared to Goal-
GAN. One difference of the environment is that
our method and HER perform fixed-length tra-
jectories, and episodic success is measured as
whether the goal is reached in the final timestep
of the episode; in contrast, in GoalGAN, when-
ever the agent achieves the goal, the goal is
marked as reachable and the episode terminates
before reaching maximal episode length. This is
consistent with the original implementation and
works in favor of Goal GAN. Also note that the
curve does not take into account timesteps used
to label the difficulty of goals, again in favor of

Ant-v0 . AntMaze-v0

success r:

04 3 s 2 04 3 o8
timesteps a7 timesteps do7
GoalGAN HER VDS+HER (ours)

Figure 4: We compare VDS+HER, HER and Goal GAN
on two ant environments. All curves are averaged over
5 seeds, with the shaded area representing confidence.
y-axis is the evaluation success rate of the latest policy,
and z-axis is timesteps. We show that both our method
and RandomDDPG achieves better sample efficiency
compared to Goal GAN.

MazeA-v0 MazeB-v0

policy evaluation Q-values goal sampling distribution policy evaluation Q-values goal sampling distribution

itr0

policy evaluation Q-values policy evaluation Q-values goal sampling distribution

itr 15

policy evaluation Q-values policy evaluation Q-values goal sampling distribution

itr 30

=
B

Figure 5: We illustrate the goal-conditioned episodic rewards of the latest policy, Q-values averaged over
the ensemble, and finally the goal sampling distribution with sampled training goals (red dots) for two Maze
environments shown in Figure 2. The agent starts from the bottom-left corner in MazeA and top-left for MazeB.
We note that the disagreement produces a higher density of samples on regions at the frontier of learning. Over
iterations, we also see the sampled goals move away from the starting state and towards harder goals. A complete
illustration is available at https://sites.google.com/berkeley.edu/vds.

GoalGAN. We conclude from these two environments that our method is more sample efficient than
GoalGAN, self-play [51], SAGG-RIAC [10], uniform sampling and uniform sampling with L2 loss
in these two environments. We refer the readers to Florensa et al. [16] for performance curves of
these baselines.

Learning in these environments, with the absence of strong learning signals, typically requires
effective exploration. Our results demonstrate that VDS in combination with hindsight data sets up
an informative course of exploration.

4.5 Does VDS sample meaningful goals?

To have an intuitive understanding of the goal sampling process and how VDS helps with setting up
learning curriculum, we visualize in Figure 5 the followings: (i) the evaluated trajectory returns of
the policy conditioned on goals varying over the maze world, (ii) Q-value predictions averaged over
the ensemble, and (iii) goal distribution with VDS and the most recent 50 training goals.

In (i) and (ii), visualization of reward and Q-value landscape shows that the policy gradually expands
its knowledge boundary throughout the training process. Darker region indicates areas that the
policy achieves higher trajectory rewards or higher Q-values. In (iii), darker region indicates higher
uncertainty of the ensemble prediction, which matches the boundary of (i) and (ii).

At the start of training, goal sampling distribution is close to uniform due to random initialization.
Then, as the policy learns to reach goals neighboring to the starting position, it is also possible to
reach goals residing close to the learning frontier, as minor disturbance with e-greedy strategy could
lead the policy to hit the goal and obtain the corresponding reward signal. These goals are not yet
mastered by the policy but could happen to be reached by policy exploration, and therefore have
higher Q-value prediction variance. With VDS, they are more likely to be selected.

These goals at the frontier are ideal candidates to train the policy, because they are nontrivial to
solve, but are also not as hard compared to goals lying far away from the policy’s mastered region.
Consequently, VDS improves sample efficiency by setting up an automatic learning curriculum.
Figure 5 indeed suggests so, as we notice a clear sign of a goal distribution shift over iterations, with
harder and harder goals getting sampled.

https://sites.google.com/berkeley.edu/vds

4.6 Ablations on VDS

To understand the effects of various design choices in implementing VDS (see Section 3.2), we run
ablation studies. Specifically, we study the effects of (i) choice of sampling function f, (ii) choice of
ensemble size for value uncertainty estimation, and (iii) options of combination with HER [3]. While
details of these ablations are deferred to Appendix E, F, G, we highlight key findings here. First,
for sampling functions, we find that our method is insensitive to the choice of sampling function f.
Second, VDS is not sensitive to ensemble size. In fact, performance when using an ensemble size
of 10 is the same as using an ensemble size of 3. Finally, we show that without using HER, VDS
still improves the performance of vanilla DDPG. Combining with results in more environments from
Section 4.4, we conclude that VDS is complementary with HER and provides the best result when
used together.

5 Related Work

Our work is inspired from and builds on top of a broad range of topics across curriculum learning
and goal-conditioned reinforcement learning. In this section, we overview the most relevant ones.

5.1 Curriculum Learning

Automatic curriculum generation has a rich history in the context of supervised learning. Bengio
et al. [12] demonstrates how gradually increasing the complexity of training samples to a supervised
learning algorithm leads to accelerated learning and better prediction quality. Kumar et al. [29] then
proposed ‘self-paced learning’ in the context of non-convex optimization, where the order of training
examples is automatically chosen. Murali et al. [35] demonstrates how automated curriulums on
the control space can improve performance of robotic grasping. In all of these works, the focus is
on supervised learning problems, where the curriculum is over training examples that are fed to the
learning algorithm. Our work builds on top of this idea to creating curriculums over tasks/goals that a
RL algorithm needs to solve.

In the context of decision making problems, several techniques to generate curriculums have been
proposed. Graves et al. [19] demonstrates that having a curriculum accelerates learning in multi-
armed bandit settings, and Matiisen et al. [32] proposes a Teacher-Student Curriculum Learning
(TSCL) framework. Both works focus on discrete goal space instead of continuous goal space in most
standard goal-conditioned RL environments. Pong et al. [41], Racaniere et al. [44] propose curriculum
learning algorithms for pixel-based environments with no prior access to uniform sampling in the
goal space due to high dimension of visual inputs, while in this work we focus on environments with
state-based observations.

Florensa et al. [17] has a problem setting more similar with ours. It proposes reverse curriculums,
where given a specific goal to solve, the agent is reset to a states closer to the goal and then over time
expanded. However, this assumes easy reset to arbitrary states, which is not practical for general
purpose RL. To alleviate this, HER [3, 1] samples goals based on states previously reached by the
agent using ‘hindsight’. As the agent improves performance, the state footprint of the policy increases
and hence more complex goals are sampled. However, using this strategy a large portion of the
sampled goals are too easy to provide useful signal. In our work, we combine VDS with HER
and show significant improvements over vanilla HER. Several recent works have looked at creating
curriculums by explicitly modelling the difficulty of the goal space [9, 34, 42, 16]. Again, we show
empirically that VDS obtains substantial performance gains over previous automatic curriculum
techniques (see Section 4.4 and Figure 3).

5.2 Self-Play based curriculums

Sampling tasks/goals that are useful for RL has also been studied in the context of ‘self-play’ [14],
where a two-player competitive game is setup in which different player policies are pitted against
each other. This technique has seen success in challenging games like GO [49] and DOTA [13].
In the context of robotic control problems, Bansal et al. [8] demonstrates how self-play can assist
in the development of locomotion behaviors. Instead of a symmetric game setting, Pinto et al.
[39], Sukhbaatar et al. [51] propose setting up asymmetric two-player games, where one agent
focuses on proposing goals without having to explicitly solve that goal. These self-play setting create

an automated curriculum that improves learning. However, applying these ideas to arbitrary control
problems, where a natural game formulation is not present, is challenging. Recently, Goal GAN [16]
has shown superior performance to such asymmetric game settings. Empirically, both VDS and HER
perform significantly better than GoalGAN on Ant-navigation tasks (see Section 4.4 and Figure 4).

5.3 Uncertainty estimation

Uncertainty estimation has been widely used for exploration in decision making problems such as
multi-armed bandits and active learning[47], with classic approaches including Thompson Sampling
[53] and UCB algorithm[5]. More recent works have looked at estimating uncertainty of a function
approximator [6, 27, 18, 30, 36, 11], which is a key component in our method. Since we are looking
to estimate the epistemic uncertainty, i.e. the prediction uncertainty of a model, we use an ensemble
of neural networks inspired from Lakshminarayanan et al. [30]. This use of uncertainty has been
previously applied for exploration [21, 37], and although we draw architectural inspiration from these
works, we note that our problem setting is different.

6 Conclusion

In this work we present a technique for automatic curriculum generation of goals that relies on the
epistemic uncertainty of value functions. Through experiments on a suite of 18 sparse-reward tasks,
we demonstrate substantial improvements in performance compared to HER and other standard
RL algorithms. Through further analysis, we demonstrate that our method is robust to different
hyperparameters while being able to sample goals at the frontier of the learning process. Finally,
we believe that this simple technique can be extended to other domains like real-world robotics and
visual reinforcement learning.

Broader Impact

While recent advancements in Artificial Intelligence (Al) provide a lot of potential opportunities to
create products such as in elderly care, medical consultant and surgery assistant, autonomous devices
that keep the supply chain sustainable under extreme working conditions or during pandemic, etc. It
also provides tools that utilize the availability of large amount of data today, with the end-goal of
improving our quality of life. There are however multiple possible negative consequences that we
must be aware of: (i) training neural networks is typically associated with large energy consumption
that is harmful to the environment, (ii) the significant computation resource requirement prevents
many researchers from accessing state-of-the-art research, and (iii) in the field of RL in particular,
algorithms typically require a long duration of interaction with the environments, which could further
introduce a prohibitive monetary cost when deployed on physical robotic environments. In this paper,
we focus on improving sample efficiency when training a universal agent that can perform a range of
tasks. Furthermore, VDS is accessible to a broad range of researchers (even those without access
to GPUs) and leaves a much smaller carbon footprint than competing methods. In fact, all of our
experiments using VDS are run on a single CPU.

It is fair to say that even with the result of this paper, Deep RL agents are far from being applicable to
complex problems in real life and being widely accessible to the public. Regardless, we believe this
paper provides progress and contributes to the goal of making reliable robotic applications. Along
this process we are aware that evaluating robot safety is a crucial part of the consideration. Therefore
rather than exclusively focusing on developing state-of-the-art algorithms, we draw attention to
complementary research on safety [2, 22].

Acknowledgments and Disclosure of Funding

We gratefully acknowledge the support Berkeley DeepDrive, NSF, and the ONR Pecase award. We
also thank AWS for computational resources.

References

[1] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019. 8

[2] D. Amodei, C. Olah, J. Steinhardt, P. F. Christiano, J. Schulman, and D. Mané. Concrete
problems in Al safety. CoRR, abs/1606.06565, 2016. URL http://arxiv.org/abs/1606.
06565. 9

[3] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
P. Abbeel, and W. Zaremba. Hindsight experience replay. NIPS, 2017. 2, 3, 8

[4] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation. The Interna-
tional Journal of Robotics Research, 39(1):3-20, 2020. 1

[5] P. Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397-422, 2002. 9

[6] T. Auld, A. W. Moore, and S. F. Gull. Bayesian neural networks for internet traffic classification.
IEEE Transactions on neural networks, 18(1):223-239, 2007. 9

[7] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, and 1. Mordatch. Emergent
tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528, 2019. 1

[8] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch. Emergent complexity via
multi-agent competition. arXiv preprint arXiv:1710.03748, 2017. 8

[9] A. Baranes and P.-Y. Oudeyer. R-iac: Robust intrinsically motivated exploration and active
learning. IEEE Transactions on Autonomous Mental Development, 1(3):155-169, 2009. 5, 8

[10] A. Baranes and P.-Y. Oudeyer. Active learning of inverse models with intrinsically motivated
goal exploration in robots. Robotics and Autonomous Systems, 61(1):49-73,2013. 7

[11] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
count-based exploration and intrinsic motivation. arXiv preprintarXiv:1606.01868, 2016. 9

[12] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In ICML, 2009. 1, 8

[13] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dgbiak, C. Dennison, D. Farhi, Q. Fischer,
S. Hashme, C. Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680, 2019. 8

[14] P. Campos and T. Langlois. Abalearn: Efficient self-play learning of the game abalone. INESC-
ID, neural networks and signal processing group, 2003. 8

[15] J. L. Elman. Learning and development in neural networks: The importance of starting small.
Cognition, 48(1):71-99, 1993. 1

[16] C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic goal generation for reinforcement
learning agents. arXiv preprint arXiv:1705.06366, 2017. 5, 6,7, 8,9

[17] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel. Reverse curriculum generation
for reinforcement learning. arXiv preprint arXiv:1707.05300, 2017. 8

[18] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference on machine learning, pages 1050-1059,
2016. 9, 15

[19] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K. Kavukcuoglu. Automated curriculum
learning for neural networks. arXiv preprint arXiv:1704.03003, 2017. 8

[20] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018. 13

10

http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565

[21] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel. Vime: Variational
information maximizing exploration. In Advances in Neural Information Processing Systems,

pages 1109-1117, 2016. 9

[22] G. Irving and A. Askell. Ai safety needs social scientists. Distill, 2019. doi: 10.23915/distill.
00014. 9

[23] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal
of artificial intelligence research, 4:237-285, 1996. 2

[24] S. M. Kakade. A natural policy gradient. In Advances in neural information processing systems,
pages 1531-1538, 2002. 13

[25] A.Karni, G. Meyer, C. Rey-Hipolito, P. Jezzard, M. M. Adams, R. Turner, and L. G. Ungerleider.
The acquisition of skilled motor performance: fast and slow experience-driven changes in

primary motor cortex. Proceedings of the National Academy of Sciences, 95(3):861-868, 1998.
1

[26] E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza. Deep
drone racing: Learning agile flight in dynamic environments. arXiv preprint arXiv:1806.08548,
2018. 1

[27] A. Kendall and Y. Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In Advances in neural information processing systems, pages 5574-5584, 2017. 9

[28] K. A. Krueger and P. Dayan. Flexible shaping: How learning in small steps helps. Cognition,
110(3):380-394, 2009. 1

[29] M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In
Advances in Neural Information Processing Systems, pages 1189-1197, 2010. 8

[30] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. In Advances in neural information processing systems, pages
6402-6413, 2017. 2, 4,9

[31] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.
4,5,13

[32] T. Matiisen, A. Oliver, T. Cohen, and J. Schulman. Teacher-student curriculum learning. /EEE
transactions on neural networks and learning systems, 2019. 8

[33] M. Molina and F. Jouen. Modulation of the palmar grasp behavior in neonates according to
texture property. Infant Behavior and Development, 21(4):659-666, 1998. 1

[34] C.Moulin-Frier, S. M. Nguyen, and P.-Y. Oudeyer. Self-organization of early vocal development
in infants and machines: the role of intrinsic motivation. Frontiers in psychology, 4:1006, 2014.
5,8

[35] A. Murali, L. Pinto, D. Gandhi, and A. Gupta. Cassl: Curriculum accelerated self-supervised
learning. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages
6453-6460. IEEE, 2018. 8

[36] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped dqn.
arXiv preprint arXiv:1602.04621, 2016. 9

[37] D. Pathak, D. Gandhi, and A. Gupta. Self-supervised exploration via disagreement. arXiv
preprint arXiv:1906.04161, 2019. 9

[38] G. B. Peterson. A day of great illumination: Bf skinner’s discovery of shaping. Journal of the
experimental analysis of behavior, 82(3):317-328, 2004. 1

[39] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta. Robust adversarial reinforcement learning.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
2817-2826. JIMLR. org, 2017. 2, 8

11

[40] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell, J. Schneider, J. Tobin,
M. Chociej, P. Welinder, et al. Multi-goal reinforcement learning: Challenging robotics
environments and request for research. arXiv preprint arXiv:1802.09464, 2018. 5

[41] V. H. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine. Skew-fit: State-covering
self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019. 8

[42] R. Portelas, C. Colas, K. Hofmann, and P.-Y. Oudeyer. Teacher algorithms for curriculum learn-
ing of deep 1l in continuously parameterized environments. arXiv preprint arXiv:1910.07224,
2019. 5,6, 8

[43] D. Precup, R. S. Sutton, and S. Dasgupta. Off-policy temporal-difference learning with function
approximation. In ICML, 2001. 3

[44] S. Racaniere, A. K. Lampinen, A. Santoro, D. P. Reichert, V. Firoiu, and T. P. Lillicrap.
Automated curricula through setter-solver interactions. arXiv preprint arXiv:1909.12892, 2019.
8

[45] T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approximators. In
ICML 2015. 1,3

[46] J. Schulman, S. Levine, P. Abbeel, M. 1. Jordan, and P. Moritz. Trust region policy optimization.
In ICML, pages 1889-1897, 2015. 13

[47] B. Settles. Active learning literature survey. Technical report, University of Wisconsin-Madison
Department of Computer Sciences, 2009. 9

[48] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy
gradient algorithms. In ICML 2014. 13

[49] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. Nature, 550
(7676):354-359, 2017. 1, 8

[50] B.F. Skinner. Teaching machines. Science, 128(3330):969-977, 1958. 1

[51] S. Sukhbaatar, Z. Lin, L. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus. Intrinsic motivation
and automatic curricula via asymmetric self-play. arXiv preprint arXiv:1703.05407, 2017. 2,7,
8

[52] R. S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning, volume 2. MIT press
Cambridge, 1998. 2, 4

[53] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285-294, 1933. 9

[54] R.J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229-256, 1992. 13

12

