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Abstract

Progress in Reinforcement Learning (RL) algorithms goes hand-in-hand with the
development of challenging environments that test the limits of current meth-
ods. While existing RL environments are either sufficiently complex or based on
fast simulation, they are rarely both. Here, we present the NetHack Learning
Environment (NLE), a scalable, procedurally generated, stochastic, rich, and chal-
lenging environment for RL research based on the popular single-player terminal-
based roguelike game, NetHack. We argue that NetHack is sufficiently complex to
drive long-term research on problems such as exploration, planning, skill acquisi-
tion, and language-conditioned RL, while dramatically reducing the computational
resources required to gather a large amount of experience. We compare NLE and
its task suite to existing alternatives, and discuss why it is an ideal medium for
testing the robustness and systematic generalization of RL agents. We demonstrate
empirical success for early stages of the game using a distributed Deep RL baseline
and Random Network Distillation exploration, alongside qualitative analysis of
various agents trained in the environment. NLE is open source and available at
https://github.com/facebookresearch/nle.

1 Introduction

Recent advances in (Deep) Reinforcement Learning (RL) have been driven by the development of
novel simulation environments, such as the Arcade Learning Environment (ALE) [9], StarCraft [64,
69], BabyAlI [16], Obstacle Tower [38], Minecraft [37, 29, 35], and Procgen Benchmark [18]. These
environments introduced new challenges for state-of-the-art methods and demonstrated failure modes
of existing RL approaches. For example, Montezuma’s Revenge highlighted that methods performing
well on other ALE tasks were not able to successfully learn in this sparse-reward environment. This
sparked a long line of research on novel methods for exploration [e.g., 8, 66, 53] and learning from
demonstrations [e.g., 31, 62, 6]. However, this progress has limits: the current best approach on this
environment, Go-Explore [22, 23], overfits to specific properties of ALE and Montezuma’s Revenge.
While Go-Explore is an impressive solution for Montezuma’s Revenge, it exploits the determinism of
environment transitions, allowing it to memorize sequences of actions that lead to previously visited
states from which the agent can continue to explore.

We are interested in surpassing the limits of deterministic or repetitive settings and seek a simulation
environment that is complex and modular enough to test various open research challenges such as
exploration, planning, skill acquisition, memory, and transfer. However, since state-of-the-art RL
approaches still require millions or even billions of samples, simulation environments need to be fast
to allow RL agents to perform many interactions per second. Among attempts to surpass the limits
of deterministic or repetitive settings, procedurally generated environments are a promising path
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towards testing systematic generalization of RL methods [e.g., 39, 38, 60, 18]. Here, the game state
is generated programmatically in every episode, making it extremely unlikely for an agent to visit the
exact state more than once during its lifetime. Existing procedurally generated RL environments are
either costly to run [e.g., 69, 37, 38] or are, as we argue, of limited complexity [e.g., 17, 19, 7].

To address these issues, we present the NetHack Learning Environment (NLE), a procedurally
generated environment that strikes a balance between complexity and speed. It is a fully-featured
Gym environment [11] around the popular open-source terminal-based single-player turn-based
“dungeon-crawler” game, NetHack [43]. Aside from procedurally generated content, NetHack is an
attractive research platform as it contains hundreds of enemy and object types, it has complex and
stochastic environment dynamics, and there is a clearly defined goal (descend the dungeon, retrieve
an amulet, and ascend). Furthermore, NetHack is difficult to master for human players, who often rely
on external knowledge to learn about strategies and NetHack’s complex dynamics and secrets.! Thus,
in addition to a guide book [58, 59] released with NetHack itself, many extensive community-created
documents exist, outlining various strategies for the game [e.g., 50, 25].

In summary, we make the following core contributions: (i) we present NLE, a fast but complex
and feature-rich Gym environment for RL research built around the popular terminal-based game,
NetHack, (ii) we release an initial suite of tasks in the environment and demonstrate that novel tasks
can be added easily, (iii) we introduce baseline models trained using IMPALA [24] and Random
Network Distillation (RND) [13], a popular exploration bonus, resulting in agents that learn diverse
policies for early stages of NetHack, and (iv) we demonstrate the benefit of NetHack’s symbolic
observation space by presenting in-depth qualitative analyses of trained agents.

2 NetHack: a Frontier for Reinforcement Learning Research

In traditional so-called roguelike games (e.g., Rogue, Hack, NetHack, and Dungeon Crawl Stone
Soup) the player acts turn-by-turn in a procedurally generated grid-world environment, with game
dynamics strongly focused on exploration, resource management, and continuous discovery of entities
and game mechanics [IRDC, 2008]. These games are designed to provide a steep learning curve and
a constant level of challenge and surprise to the player. They are generally extremely difficult to win
even once, let alone to master, i.e., win regularly and multiple times in a row.

As advocated by [39, 38, 18], procedurally generated environments are a promising direction for
testing systematic generalization of RL agents. We argue that such environments need to be both
sufficiently complex and fast to run to serve as a challenging long-term research testbed. In Section 2.1,
we illustrate that NetHack contains many desirable properties, making it an excellent candidate for
driving long-term research in RL. We introduce NLE in Section 2.2, an initial suite of tasks in
Section 2.3, an evaluation protocol for measuring progress towards solving NetHack in Section 2.4,
as well as baseline models in Section 2.5.

2.1 NetHack

NetHack is one of the oldest and most popular roguelikes, originally released in 1987 as a successor
to Hack, an open-source implementation of the original Rogue game. At the beginning of the game,
the player takes the role of a hero who is placed into a dungeon and tasked with finding the Amulet
of Yendor to offer it to an in-game deity. To do so, the player has to descend to the bottom of over
50 procedurally generated levels to retrieve the amulet and then subsequently escape the dungeon,
unlocking five extremely challenging final levels (the four Elemental Planes and the Astral Plane).

Many aspects of the game are procedurally generated and follow stochastic dynamics. For example,
the overall structure of the dungeon is somewhat linear, but the exact location of places of interest (e.g.,
the Oracle) and the structure of branching sub-dungeons (e.g., the Gnomish Mines) are determined
randomly. The procedurally generated content of each level makes it highly unlikely that a player
will ever experience the exact same situation more than once. This provides a fundamental challenge
to learning systems and a degree of complexity that enables us to more effectively evaluate an
agent’s ability to generalize. It also disqualifies current state-of-the-art exploration methods such as
Go-Explore [22, 23] that are based on a goal-conditioned policy to navigate to previously visited

1“NetHack is largely based on discovering secrets and tricks during gameplay. It can take years for one to
become well-versed in them, and even experienced players routinely discover new ones.” [26]
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Figure 1: Annotated example of an agent at two different stages in NetHack (Left: a procedurally
generated first level of the Dungeons of Doom, right: Gnomish Mines). A larger version of this figure
is displayed in Figure 11 in the appendix.

states. Moreover, states in NetHack are composed of hundreds of possible symbols, resulting in an
enormous combinatorial observation space.? It is an open question how to best project this symbolic
space to a low-dimensional representation appropriate for methods like Go-Explore. For example,
Ecoffet et al.’s heuristic of downsampling images of states to measure their similarity to be used as an
exploration bonus will likely not work for large symbolic and procedurally generated environments.
NetHack provides further variation by different hero roles (e.g., monk, valkyrie, wizard, tourist),
races (human, elf, dwarf, gnome, orc) and random starting inventories (see Appendix A for details).
Consequently, NetHack poses unique challenges to the research community and requires novel ways
to determine state similarity and, likely, entirely new exploration frameworks.

To provide a glimpse into the complexity of
NetHack’s environment dynamics, we closely
follow the educational example given by “Mr
Wendal” on YouTube.® At a specific point in
the game, the hero has to get past Medusa’s Is-
land (see Figure 2 for an example). Medusa’s
Island is surrounded by water [ that the agent
has to cross. Water can rust and corrode the
hero’s metallic weapons ] and armor i Ap-
plying a can of grease [§ prevents rusting and
corrosion. Furthermore, going into water will
make a hero’s inventory wet, erasing scrolls
and spellbooks [ that they carry. Applying a can the 7 1§10 Ch:10 Neutral §
of grease to a bag or sack [§ will make it a water- ——
proof container for items. But the sea can also
contain a kraken [ that can grab and drown the
hero, leading to instant death. Applying a can
of grease to a hero’s armor prevents the kraken
from grabbing the hero. However, a cursed can
of grease will grease the hero’s hands instead and they will drop their weapon and rings. One can
use a towel [§ to wipe off grease. To reach Medusa [@, the hero can alternatively use magic to freeze
the water and turn it into walkable ice [} Wearing snow boots [| will help the hero not to slip. When
Medusa is in the hero’s line of sight, her gaze will petrify and instantly kill—the hero should use a
towel to cover their eyes to fight Medusa, or even apply a mirror [{ to petrify her with her own gaze.

Figure 2: The hero (§) has to cross water () to
get past Medusa (@, out of the hero’s line of sight)
down the staircase () to the next level.

There are many other entities a hero must learn to face, many of which appear rarely even across
multiple games, especially the most powerful monsters. These entities are often compositional, for
example a monster might be a wolf f§], which shares some characteristics with other in-game canines
such as coyotes f§] or hell hounds [f To help a player learn, NetHack provides in-game messages

Information about the over 450 items and 580 monster types, as well as environment dynamics involving
these entities can be found in the NetHack Wiki [50] and to some extent in the NetHack Guidebook [59].
3youtube .com/watch?v=SjuTyJ1lgLJ8
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describing many of the hero’s interactions (see the top of Figure 1).* Learning to capture these
interesting and somewhat realistic albeit abstract dynamics poses challenges for multi-modal and
language-conditioned RL [46].

NetHack is an extremely long game. Successful expert episodes usually last tens of thousands of
turns, while average successful runs can easily last hundreds of thousands of turns, spawning multiple
days of play-time. Compared to testbeds with long episode horizons such as StarCraft and Dota 2,
NetHack’s “episodes” are one or two orders of magnitude longer, and they wildly vary depending
on the policy. Moreover, several official conducts exist in NetHack that make the game even more
challenging, e.g., by not wearing any armor throughout the game (see Appendix A for more).

Finally, in comparison to other classic roguelike games, NetHack’s popularity has attracted a larger
number of contributors to its community. Consequently, there exists a comprehensive game wiki [50]
and many so-called spoilers [25] that provide advice to players. Due to the randomized nature of
NetHack, this advice is general in nature (e.g., explaining the behavior of various entities) and not
a step-by-step guide. These texts could be used for language-assisted RL along the lines of [72].
Lastly, there is also a large public repository of human replay data (over five million games) hosted
on the NetHack Alt.org (NAO) servers, with hundreds of finished games per day on average [47].
This extensive dataset could spur research advances in imitation learning, inverse RL, and learning
from demonstrations [1, 3].

2.2 The NetHack Learning Environment

The NetHack Learning Environment (NLE) is built on NetHack 3.6.6, the 36th public release of
NetHack, which was released on March 8th, 2020 and is the latest available version of the game
at the time of publication of this paper. NLE is designed to provide a common, turn-based (i.e.,
synchronous) RL interface around the standard terminal interface of NetHack. We use the game as-is
as the backend for our NLE environment, leaving the game dynamics unchanged. We added to the
source code more control over the random number generator for seeding the environment, as well as
various modifications to expose the game’s internal state to our Python frontend.

By default, the observation space consists of the elements glyphs, chars, colors, specials, blstats,
message, inv_glyphs, inv_strs, inv_letters, as well as inv_oclasses. The elements glyphs, chars, colors,
and specials are tensors representing the (batched) 2D symbolic observation of the dungeon; blstats
is a vector of agent coordinates and other character attributes (“bottom-line stats”, e.g., health points,
strength, dexterity, hunger level; normally displayed in the bottom area of the GUI), message is a
tensor representing the current message shown to the player (normally displayed in the top area of
the GUI), and the inv_* elements are padded tensors representing the hero’s inventory items. More
details about the default observation space and possible extensions can be found in Appendix B.

The environment has 93 available actions, corresponding to all the actions a human player can take in
NetHack. More precisely, the action space is composed of 77 command actions and 16 movement
actions. The movement actions are split into eight “one-step” compass directions (i.e., the agent
moves a single step in a given direction) and eight “move far” compass directions (i.e., the agent
moves in the specified direction until it runs into some entity). The 77 command actions include
eating, opening, kicking, reading, praying as well as many others. We refer the reader to Appendix C
as well as to the NetHack Guidebook [59] for the full table of actions and NetHack commands.

NLE comes with a Gym interface [11] and includes multiple pre-defined tasks with different reward
functions and action spaces (see next section and Appendix E for details). We designed the interface
to be lightweight, achieving competitive speeds with Gym-based ALE (see Appendix D for a rough
comparison). Finally, NLE also includes a dashboard to analyze NetHack runs recorded as terminal
tty recordings. This allows NLE users to analyze replays of the agent’s behavior at an arbitrary speed
and provides an interface to visualize action distributions and game events (see Appendix H for details).
NLE is available under an open source license at https://github.com/facebookresearch/nle.

* An example interaction after applying a figurine of an Archon: “You set the figurine on the ground and
it transforms. You get a bad feeling about this. The Archon hits! You are blinded by the Archon’s radiance!
You stagger. .. It hits! You die... But wait... Your medallion feels warm! You feel much better! The medallion
crumbles to dust! You survived that attempt on your life.”
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Figure 3: Overview of the core architecture of the
baseline models released with NLE. A larger version Figure 4: Training and test performance
of this figure is displayed in Figure 12 in the appendix. ~ when training on restricted sets of seeds.

2.3 Tasks

NLE aims to make it easy for researchers to probe the behavior of their agents by defining new tasks
with only a few lines of code, enabled by NetHack’s symbolic observation space as well as its rich
entities and environment dynamics. To demonstrate that NetHack is a suitable testbed for advancing
RL, we release a set of initial tasks for tractable subgoals in the game: navigating to a staircase
down to the next level, navigating to a staircase while being accompanied by a pet, locating and
eating edibles, collecting gold, maximizing in-game score, scouting to discover unseen parts of
the dungeon, and finding the oracle. These tasks are described in detail in Appendix E, and, as we
demonstrate in our experiments, lead to unique challenges and diverse behaviors of trained agents.

2.4 Evaluation Protocol

We lay out a protocol and provide guidance for evaluating future work on NLE in a reproducible
manner. The overall goal of NLE is to train agents that can solve NetHack. An episode in the full
game of NetHack is considered solved if the agent retrieves the Amulet of Yendor and offers it to its
co-aligned deity in the Astral Plane, thereby ascending to demigodhood. We declare NLE to be solved
once agents can be trained to consecutively ascend (ten episodes without retry) to demigodhood on
unseen seeds given a random role, race, alignment, and gender combination. Since the environment is
procedurally generated and stochastic, evaluating on held-out unseen seeds ensures we test systematic
generalization of agents. As of October 2020, NAO reports the longest streak of human ascensions on
NetHack 3.6.x to be 61; the role, race, etc. are not necessarily randomized for these ascension streaks.
Since we believe that this goal is out of reach for machine learning approaches in the foreseeable
future, we recommend comparing models on the score task in the meantime. Using NetHack’s
in-game score as the measure for progress has caveats. For example, expert human players can solve
NetHack while minimizing the score [see 50, “Score” entry, for details]. NAO reports ascension
scores for NetHack 3.6.z ranging from the low hundreds of thousands to tens of millions. Although
we believe training agents to maximize the in-game score is likely insufficient for solving the game,
the in-game score is still a sensible proxy for incremental progress on NLE as it is a function of,
among other things, the dungeon depth that the agent reached, the number of enemies it killed, the
amount of gold it collected, as well as the knowledge it gathered about potions, scrolls, and wands.

When reporting results on NLE, we require future work to state the full character specifica-
tion (e.g., mon-hum-neu-mal), all NetHack options that were used (e.g., whether or not autopickup
was used), which actions were allowed (see Table 1), which actions or action-sequences were hard-
coded (e.g., engraving [see 50, “Elbereth” as an example]) and how many different seeds were used
during training. We ask to report the average score obtained on 1000 episodes of randomly sampled
and previously unseen seeds. We do not impose any restrictions during training, but at test time any
save scumming (i.e., saving and loading previous checkpoints of the episode) or manipulation of the
random number generator [e.g., 2] is forbidden.

2.5 Baseline Models

For our baseline models, we encode the multi-modal observation o; as follows. Let the observation
oy at time step ¢ be a tuple (g;, z;) consisting of the 21 x 79 matrix of glyph identifiers and a 21-
dimensional vector containing agent stats such as its (z, y)-coordinate, health points, experience
level, and so on. We produce three dense representations based on the observation (see Figure 3). For



every of the 5991 possible glyphs in NetHack (monsters, items, dungeon features, etc.), we learn a
k-dimensional vector embedding. We apply a ConvNet (red) to all visible glyph embeddings as well
as another ConvNet (blue) to the 9 x 9 crop of glyphs around the agent to create a dedicated egocentric
representation for improved generalization [32, 71]. We found this egocentric representation to be
an important component during preliminary experiments. Furthermore, we use an MLP to encode
the hero’s stats (green). These vectors are concatenated and processed by another MLP to produce a
low-dimensional latent representation o; of the observation. Finally, we employ a recurrent policy
parameterized by an LSTM [33] to obtain the action distribution. For baseline results on the tasks
above, we use a reduced action space that includes the movement, search, kick, and eat actions.

For the main experiments, we train the agent’s policy for 1B steps in the environment using IM-
PALA [24] as implemented in TorchBeast [44]. Throughout training, we change NetHack’s seed for
procedurally generating the environment after every episode. To demonstrate NetHack’s variability
based on the character configuration, we train with four different agent characters: a neutral human
male monk (mon-hum-neu-mal), a lawful dwarf female valkyrie (val-dwa-law-fem), a chaotic elf
male wizard (wiz-elf-cha-mal), and a neutral human female tourist (tou-hum-neu-fem). More
implementation details can be found in Appendix F.

In addition, we present results using Random Network Distillation (RND) [13], a popular exploration
technique for Deep RL. As previously discussed, exploration techniques which require returning
to previously visited states such as Go-Explore are not suitable for use in NLE, but RND does not
have this restriction. RND encourages agents to visit unfamiliar states by using the prediction error
of a fixed random network as an intrinsic exploration reward, which has proven effective for hard
exploration games such as Montezuma’s Revenge [12]. The intrinsic reward obtained from RND
can create “reward bridges” between states which provide sparse extrinsic environmental rewards,
thereby enabling the agent to discover new sources of extrinsic reward that it otherwise would not
have reached. We replace the baseline network’s pixel-based feature extractor with the symbolic
feature extractor described above for the baseline model, and use the best configuration of other RND
hyperparameters documented by the authors (see Appendix G for full details).

3 Experiments and Results

We present quantitative results on the suite of tasks included in NLE using a standard distributed
Deep RL baseline and a popular exploration method, before additionally analyzing agent behavior
qualitatively. For each model and character combination, we present results of the mean episode
return over the last 100 episodes averaged for five runs in Figure 5. We discuss results for individual
tasks below (see Table 5 in the appendix for full details).

Staircase: Our agents learning to navigate the dungeon to the staircase ff with a success rate of
77.26% for the monk, 50.42% for the tourist, 74.62% for the valkyrie, and 80.42% for the wizard.
What surprised us is that agents learn to reliably kick in locked doors. This is a costly action to
explore as the agent loses health points and might even die when accidentally kicking against walls.
Similarly, the agent has to learn to reliably search for hidden passages and secret doors. Often, this
involves using the search action many times in a row, sometimes even at many locations on the map
(e.g., around all walls inside a room). Since NLE is procedurally generated, during training agents
might encounter easier environment instances and use the acquired skills to accelerate learning on the
harder ones [60, 18]. With a small probability, the staircase down might be generated near the agent’s
starting position. Using RND exploration, we observe substantial gains in the success rate for the
monk (+13.58pp), tourist (+-6.52pp) and valkyrie (+16.34pp) roles, while lower results for wizard
roles (—12.96pp).

Pet: Finding the staircase while taking care of the hero’s pet (e.g., the starting kitten i or little
dog [8]) is a harder task as the pet might get killed or fall into a trap door, making it impossible for the
agent to successfully complete the episode. Compared to the staircase task, the agent success rates
are generally lower (62.02% for monk, 25.66% for tourist, 63.30% for valkyrie, and wizard 66.80%).
Again, RND exploration provides consistent and substantial gains.

Eat: This tasks highlights the importance of testing with different character classes in NetHack.
The monk and tourist start with a number edible items (e.g., food rations i, apples f and oranges fi). A
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Figure 5: Mean return of the last 100 episodes averaged over five runs.

sub-optimal strategy is to consume all of these comestibles right at the start of the episode, potentially
risking choking to death. In contrast, the other roles have to hunt for food, which our agents learn
to do slowly over time for the valkyrie and wizard roles. By having more pressure to quickly learn
a sustainable food strategy, the valkyrie learns to outlast other roles and survives the longest in the
game (on average 1713 time steps). Interestingly, RND exploration leads to consistently worse results
for this task.

Gold: Locating gold [§ in NetHack provides a relatively sparse reward signal. Still, our agents learn
to collect decent amounts during training and learn to descend to deeper dungeon levels in search for
more. For example, monk agents reach dungeon level 4.2 on average for the CNN baseline and even
5.0 using RND exploration.

Score: As discussed in Section 2.4, we believe this task is the best candidate for comparing future
methods regarding progress on NetHack. However, it is questionable whether a reward function
based on NetHack’s in-game score is sufficient for training agents to solve the game. Our agents
average at a score of 748 for monk, 11 for tourist, 573 for valkyrie, and 314 for wizard, with RND
exploration again providing substantial gains (e.g. increasing the average score to 780 for monk). The
resulting agents explore much of the early stages of the game, reaching dungeon level 5.4 on average
for the monk with the deepest descent to level 11 achieving a high score of 4260 while leveling up to
experience level 7 (see Table 6 in the appendix).

Scout: The scout task shows a trend that is similar to the score task. Interestingly, we observe a
lower experience level and in-game score, but agents descend, on average, similarly deep into the
dungeon (e.g. level 5.5 for monk). This is sensible, since a policy that avoids to fight monsters,
thereby lowering the chances of premature death, will not increase the in-game score as fast or
level up the character as quickly, thus keeping the difficulty of spawned monsters low. We note that
delaying to level up in order to avoid encountering stronger enemies early in the game is a known
strategy human players adopt in NetHack [e.g. 50, “Why do I keep dying?” entry, January 2019
version].

Oracle: None of our agents find the Oracle [§ (except for one lucky valkyrie episode). Locating
the Oracle is a difficult exploration task. Even if the agent learns to make its way down the dungeon
levels, it needs to search many, potentially branching, levels of the dungeon. Thus, we believe this task
serves as a challenging benchmark for exploration methods in procedurally generated environments
in the short term. Long term, many tasks harder than this (e.g., reaching Minetown, Mines’ End,
Medusa’s Island, The Castle, Vliad’s Tower, Moloch’s Sanctum etc.) can be easily defined in NLE with
very few lines of code.

3.1 Generalization Analysis

Akin to [18], we evaluate agents trained on a limited set of seeds while still testing on 100 held-out
seeds. We find that test performance increases monotonically with the size of the set of seeds that the
agent is trained on. Figure 4 shows this effect for the score and staircase tasks. Training only on a
limited number of seeds leads to high training performance, but poor generalization. The gap between
training and test performance becomes narrow when training with at least 1000 seeds, indicating



that at that point agents are exposed to sufficient variation during training to make memorization
infeasible. We also investigate how model capacity affects performance by comparing agents with
five different hidden sizes for the final layer (of the architecture described in Section 2.5). Figure 7 in
the appendix shows that increasing the model capacity improves results on the score but not on the
staircase task, indicating that it is an important hyperparameter to consider, as also noted by [18].

3.2 Qualitative Analysis

We analyse the cause for death of our agents during training and present results in Figure 9 in the
appendix. We notice that starvation and traps become a less prominent cause of death over time, most
likely because our agents, when starting to learn to descend dungeon levels and fight monsters, are
more likely to die in combat before they starve or get killed by a trap. In the score and scout tasks,
our agents quickly learn to avoid eating rotten corpses, but food poisoning becomes again prominent
towards the end of training.

We can see that gnome lords [, gnome kings [§, chameleons [, and even mind flayers [ become a
more prominent cause of death over time, which can be explained with our agents leveling up and
descending deeper into the dungeon. Chameleons are a particularly interesting entity in NetHack as
they regularly change their form to a random animal or monster, thereby adversarially confusing our
agent with rarely seen symbols for which it has not yet learned a meaningful representation (similar
to unknown words in natural language processing). We release a set of high-score recordings of our
agents (see Appendix J on how to view them via a browser or terminal).

4 Related Work

Progress in RL has historically been achieved both by algorithmic innovations as well as development
of novel environments to train and evaluate agents. Below, we review recent RL environments and
delineate their strengths and weaknesses as testbeds for current methods and future research.

Recent Game-Based Environments: Retro video games have been a major catalyst for Deep RL
research. ALE [9] provides a unified interface to Atari 2600 games, which enables testing of RL
algorithms on high-dimensional visual observations quickly and cheaply, resulting in numerous Deep
RL publications over the years [4]. The Gym Retro environment [51] expands the list of classic
games, but focuses on evaluating visual generalization and transfer learning on a single game, Sonic
The Hedgehog.

Both StarCraft: BroodWar and StarCraft Il have been successfully employed as RL environ-
ments [64, 69] for research on, for example, planning [52, 49], multi-agent systems [27, 63], imitation
learning [70], and model-free reinforcement learning [70]. However, the complexity of these games
creates a high entry barrier both in terms of computational resources required as well as intricate
baseline models that require a high degree of domain knowledge to be extended.

3D games have proven to be useful testbeds for tasks such as navigation and embodied reasoning.
Vizdoom [42] modifies the classic first-person shooter game Doom to construct an API for visual
control; DeepMind Lab [7] presents a game engine based on Quake Il Arena to allow for the
creation of tasks based on the dynamics of the original game; Project Malmo [37], MineRL [29]
and CraftAssist [35] provide visual and symbolic interfaces to the popular Minecraft game. While
Minecraft is also procedurally generated and has complex environment dynamics that an agent
needs to learn about, it is much more computationally demanding than NetHack (see Table 4 in the
appendix). As a consequence, the focus has been on learning from demonstrations [29].

More recent work has produced game-like environments with procedurally generated elements, such
as the Procgen Benchmark [18], MazeExplorer [30], and the Obstacle Tower environment [38].
However, we argue that, compared to NetHack or Minecraft, these environments do not provide
the depth likely necessary to serve as long-term RL testbeds due to limited number of entities and
environment interactions that agents have to learn to master. In contrast, NetHack agents have to
acquire knowledge about complex environment dynamics of hundreds of entities (dungeon features,
items, monsters etc.) to do well in a game that humans often take years of practice to solve.

In conclusion, none of the current benchmarks combine a fast simulator with a procedurally generated
environment, a hard exploration problem, a wide variety of complex environment dynamics, and



numerous types of static and interactive entities. The unique combination of challenges present in
NetHack makes NLE well-suited for driving research towards more general and robust RL algorithms.

Roguelikes as Reinforcement Learning Testbeds: We are not the first to argue for roguelike
games to be used as testbeds for RL. Asperti et al. [5] present an interface to Rogue, the very
first roguelike game and one of the simplest roguelikes in terms of game dynamics and difficulty.
They show that policies trained with model-free RL algorithms can successfully learn rudimentary
navigation. Similarly, Kanagawa and Kaneko [41] present an environment inspired by Rogue that
provides a parameterizable generation of Rogue levels. Like us, Dannenhauer et al. [20] argue that
roguelike games could be a useful RL testbed. They discuss the roguelike game Dungeon Crawl
Stone Soup, but their position paper provides neither an RL environment nor experiments to validate
their claims.

Most similar to our work is gym_nethack [14, 15], which offers a Gym environment based on
NetHack 3.6.0. We commend the authors for introducing NetHack as an RL environment, and
to the best of our knowledge they were the first to suggest the idea. However, there are several
design choices that limit the impact and longevity of their version as a research testbed. First, they
heavily modified NetHack to enable agent interaction. In the process, gym_nethack disables various
crucial game mechanics to simplify the game, its environment dynamics, and the resulting optimal
policies. This includes removing obstacles like boulders, traps, and locked doors as well as all item
identification mechanics, making items much easier to employ and the overall environment much
closer to its simpler predecessor, Rogue. Additionally, these modifications tie the environment to
a particular version of the game. This is not ideal as (i) players tend to use new versions of the
game as they are released, hence, publicly available human data becomes progressively incompatible,
thereby limiting the amount of data that can be used for learning from demonstrations; (ii) older
versions of NetHack tend to include well-documented exploits which may be discovered by agents
(see Appendix I for exploits used in programmatic bots). In contrast, NLE is designed to make the
interaction with NetHack as close as possible to the one experienced by humans playing the full game.
NLE is the only environment exposing the entire game in all its complexity, allowing for larger-scale
experimentation to push the boundaries of RL research.

5 Conclusion and Future Work

The NetHack Learning Environment is a fast, complex, procedurally generated environment for
advancing research in RL. We demonstrate that current state-of-the-art model-free RL serves as a
sensible baseline, and we provide an in-depth analysis of learned agent behaviors.

NetHack provides interesting challenges for exploration methods given the extremely large number
of possible states and wide variety of environment dynamics to discover. Previously proposed
formulations of intrinsic motivation based on seeking novelty [8, 53, 13] or maximizing surprise
[56, 12, 57] are likely insufficient to make progress on NetHack given that an agent will constantly
find itself in novel states or observe unexpected environment dynamics. NetHack poses further
challenges since, in order to win, an agent needs to acquire a wide range of skills such as collecting
resources, fighting monsters, eating, manipulating objects, casting spells, or taking care of their
pet, to name just a few. The multilevel dependencies present in NetHack could inspire progress
in hierarchical RL and long-term planning [21, 40, 55, 68]. Transfer to unseen game characters,
environment dynamics, or level layouts can be evaluated [67]. Furthermore, its richness and constant
challenge make NetHack an interesting benchmark for lifelong learning [45, 54, 61, 48]. In addition,
the extensive documentation about NetHack can enable research on using prior (natural language)
knowledge for learning, which could lead to improvements in generalization and sample efficiency
[10, 46, 72, 36]. Lastly, NetHack can also drive research on learning from demonstrations [1, 3]
since a large collection of replay data is available. In sum, we argue that the NetHack Learning
Environment strikes an excellent balance between complexity and speed while encompassing a
variety of challenges for the research community.

For future versions of the environment, we plan to support NetHack 3.7 once it is released, as it will
further increase the variability of observations via Themed Rooms. This version will also introduce
scripting in the Lua language, which we will leverage to enable users to create their custom sandbox
tasks, directly tapping into NetHack and its rich universe of entities and their complex interactions to
define custom RL tasks.



6 Broader Impact

To bridge the gap between the constrained world of video and board games, and the open and
unpredictable real world, there is a need for environments and tasks which challenge the limits of
current Reinforcement Learning (RL) approaches. Some excellent challenges have been put forth
over the years, demanding increases in the complexity of policies needed to solve a problem or scale
needed to deal with increasingly photorealistic, complex environments. In contrast, our work seeks to
be extremely fast to run while still testing the generalization and exploration abilities of agents in
an environment which is rich, procedurally generated, and in which reward is sparse. The impact
of solving these problems with minimal environment-specific heuristics lies in the development of
RL algorithms which produce sample efficient, robust, and general policies capable of more readily
dealing with the uncertain and changing dynamics of “real world” environments. We do not solve
these problems here, but rather provide the challenge and the testbed against such improvements can
be produced and evaluated.

Auxiliary to this, and in line with growing concerns that progress in Deep RL is more the result of
industrial labs having privileged access to the resources required to run environments and agents on a
massive scale, the environment presented here is computationally cheap to run and to collect data in.
This democratizes access for researchers in more resource-constrained labs, while not sacrificing the
difficulty and richness of the environment. We hope that as a result of this, and of the more general
need to develop sample-efficient agents with fewer data, the environmental impact of research using
our environment will be reduced compared to more visually sophisticated ones.
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