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A Methods

A.1 Network Architecture

Our encoder-decoder architecture for a 3D input is shown in Fig. A.1. The architecture for a 2D
input is the same, only using 2D convolutions and a 2D attribute space. Here, an input image is
encoded using 2 shared networks, the attribute encoder Ea, and the content encoder Ec, and then is
reconstructed or translated (to another class) using the generator, G.

The key components of the attribute encoder include using down ResNet blocks (with average
pooling, and leaky ReLU activation) for encoding the input image into a relatively large 3D latent
space of size 8 × 10 × 8 (in the 3D case), as opposed to a 1D vector, which is commonly seen in
Variational Autoencoders (VAEs). We also added a fully connected layer to the attribute latent space
to enable classification. In early development, we found that using a 1D vector in the latent space was
insufficient for encoding the required class information for brain imaging, and observed that some
class information was instead encoded in the content encoder, which is meant to be class invariant.
Using a sufficiently large 2D or 3D vector (depending on the input) helped with addressing this
problem.

The goal of the content encoder is to encode a class-irrelevant space, which allows translation between
classes. The key components of the content encoder is using 2 down convolutional blocks (with
instance normalisation, and ReLU activation), followed by 4 basic ResNet blocks (with instance
normalisation, and ReLU activation), and finally a Gaussian noise layer. The basic ResNet blocks aids
the encoding of a class-irrelevant space, and the Gaussian layer prevents the space from becoming
zero.

Our generator takes in as input the content and attribute latent spaces. The attribute is first upsampled
(×4, with nearest neighbors) to the same size as the content latent space, concatenated, and then
combined using several basic ResNet blocks. Finally, we use deconvolutional blocks (transpose
convolution with kernel size of 4, followed by average pooling, layer normalisation [2], and a ReLU
activation) to upsample to the original input size.

In addition, not shown in Fig. A.1, our domain discriminator contains 6 convolutional layers with
leaky ReLUs (kernel size = 3, stride = 2), followed by 2 additional convolutional layers (kernel size =
1, stride = 1), and adaptive average pooling for each class output, and real/ fake output. Our content
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Figure A.1: Network Architecture for 3D inputs.

discriminator contains 3 convolutional layers with leaky ReLUs (kernel size = 3, stride = 2), followed
by an additional convolutional layer (kernel size = 4, stride = 1), adaptive average pooling, and a final
fully connected layer for class output.

A.2 The Human Connectome Project (HCP) dataset

Imaging phenotype variability is common in many neurological and psychiatric disorders, and is
an important feature for diagnosis. This type of variation was simulated in Baumgartner et al. [3]
for a simple 2D case where class 0 was simulated with no features and class 1 was simulated as
two sub-types, with one feature in common and then a second feature, which appears in a different
location in each sub-population.

We use the HCP dataset with T2 MRI volumes to take this simulation further, and to create cortical
features or ’lesions’ which appear in the ’disease’ class with different frequencies (Fig. A.2). Specifi-
cally, eight regions were selected from the HCP parcellation [5]. These were defined as binary masks
for cortical surface meshes and then mapped back to the cortical volume (with a 2mm thickness),
using HCP ’workbench’ tools [10], followed by intensity scaling to match intensity of the cortical
spinal fluid, and finally by a Gaussian blur filter.

Every simulated example includes common regions with a further locations were selected as having
lesion or no lesion using a random number generator. The regions selected are; MTR, MTL (medial
temporal area), OP1R, OP1L (posterior opercular cortex), v23abR, v23abL (posterior cingulate
cortex), 9aR, 9aL (medial prefrontal cortex), where R and L are right and left, respectively. MTR
and MTL were selected as common regions, and appear in every subject. To be able to compare
against DRIT, 2D networks were trained on 2D axial slices from the centre of the brain (to which
all regions are constrained by design). Since there is a lot of variability between subjects, not all
the lesions appear in the selected slice for each subject, and so there is further variability in lesion
appearance.
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Prior to training, the T2 images were bias corrected, brain extracted and linearly aligned (for full
details on image acquisition and pre-processing see [4]). Images were normalised in range [0, 1] per
subject, and resized to 128× 160× 128 voxels, and sliced into 2D axial images, of size 128× 160.
Data was randomly split for training, validation and testing using an 80/10/10 ratio (712, 88, 88
subjects each, respectively), consistently for all networks.

Figure A.2: Example of a 2D MRI axial slice from the HCP dataset with and without lesions. We
note that the simulated lesions are of similar pixel intensities to the CSF. This is often observed in
pathological lesions, and can make them challenging to detect.

A.3 Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset

Used also in Baumgartner et al. [3] the longitudinal ADNI dataset [6] supports ground-truth evaluation
of the feature attribution (FA) maps as it contains a subset of paired examples for which images
are acquired before and after conversion to full a AD state; where the intermediate state between
healthy cognition and full dementia is known as mild cognitive impairment (MCI). The age average
and standard deviation for AD subjects is 74.95 ± 8.1, for MCI subjects is 72.26 ± 7.9, and for
test subjects is 73.47± 7.2. The 3T acquired T1 MRI volumes were N4 bias corrected [19] using
simpleitk, brain extracted using freesurfer [14] and rigidly registered to the MNI space using Niftyreg
[12]. Images were normalised in range [−1, 1] per subject, and resized to 128× 160× 128 voxels.
We split the dataset into AD and MCI classes, with 257 and 674 volumes used in training, respectively.
For testing, 61 subjects which convert from MCI to AD (i.e. paired subjects) are used. A further
61 conversion subjects are used for validation. To compute the disease maps, these paired subjects
were in addition rigidly aligned to each other, and the difference between them was the disease map
for that pair. Finally, all disease and FA maps were masked to ensure that the returned NCC values
reference brain tissue only.

A.4 UK Biobank dataset

UK Biobank data included [1, 11] 11,735 T1 3D MRI volumes, selected from two age bins 45-60
years (class 0, on average 54.6± 3.4 years) and 70-80 years (class 1, on average 73.0± 2.2 years).
T1 image processing (see also [1]) involved bias correction using FAST [21], brain extraction using
BET [16] and linear registration to MNI space, using the FLIRT toolbox [7]. Our young subjects are
separated into training, validation, and testing sets with 6706, 373 and 372 in each, respectively. Our
older subjects are separated into training, validation, and testing sets with 3856, 214 and 214 in each,
respectively. The input into the networks is resized to 128× 160× 128 voxels, and normalised in
range [0, 1], per subject.

A.5 Comparison methods

We compare our proposed approach against a range of baselines in our experiments. For a fair
comparison, we train and test all methods on the same training, validation and testing datasets.

Grad-CAM, guided Grad-CAM [15], guided backpropagation (backprop) [17], integrated gra-
dients [18] and occlusion [20]. We trained a simple 3D ResNet with 4 down ResNet blocks, and
a fully connected layer for classification. We then used the captum library [8] implementation of
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Grad-CAM, guided Grad-CAM, guided backprop, integrated gradients and occlusion to generate the
feature attribution maps for each method.

Guided backprop [17] is a gradient-based method that computes the gradients with respect to an input
image. More specifically it determines which pixels affect the prediction the most, by propagating
only positive error signals (i.e. by applying ReLU to to the error during the backward pass).

Grad-CAM [15] is gradient-based saliency method that computes the gradients of the target output
with respect to the final convolutional layer of a network. The layer activations are weighted by the
average gradient for each output channel and the results are summed over all channels to produce a
coarse heatmap of prediction importance for each class. Guided Grad-CAM is simply the combination
of the results of Grad-CAM and guided backprop.

Integrated gradients [18] is another method of analysing the gradient of the prediction output with
respect to features of the input. It is defined as the integral of the gradients along the straight line path
from a given baseline to the input image. A series of images are interpolated between the baseline
(e.g. matrix of 0s) and the original image, and the integrated gradients are given by the integration of
the computed gradients for all the images in the series.

Occlusion [20] is a perturbation-based method that involves replacing portions of an image with
a block of a given baseline value (e.g. 0), and computing the difference in output. A heatmap is
formed using the difference between the output probability attributed to the original volume and the
probability computed for the occluded volume, for different positions of the occlusion block across
the input image.

Grad-CAM was implemented on the last convolutional block of the ResNet, with a size of 4× 5× 4,
and was up-sampled to the input size for visualization. For the implementation of integrated gradients
we considered a baseline volume with constant value of 0, and the integral was computed using 200
steps. Occlusion was implemented using occlusion blocks with value 0, size 10× 10× 10 and stride
5.

FA methods on the attribute encoder of ICAM (Ea). We further performed guided backprop
[17], occlusion [20] and integrated gradients [18] on the attribute encoder of ICAM (Ea).

DRIT [9]. In our ablation experiments, we use the 2D network DRIT++ described in Lee et al.
[9]. Because we aim to use the network for feature attribution, instead of its original goal of domain
translation, we had to make some changes to the original network. The aim of the ablation experiments
were to assess the different components of ICAM, so we used the most comparable version of DRIT.
In particular, we use the DRIT++ network, which has a shared generator, but use an unconditional
version (i.e. without the input of class label) of the network, so that it is comparable to ICAM. We
also generate the FA map in the same way.

VA-GAN [3]. We used the VA-GAN network for feature attribution, as described in the original
paper.

Model selection. For VA-GAN, ICAMDRIT and ICAM , the last model is selected in the Biobank
experiments. In all other experiments, the models selected are based on the best model result on
the validation dataset, using the NCC score. For Grad-CAM, guided Grad-CAM, guided backprop,
integrated gradients and occlusion, as the FA maps are only generated after a network is trained, we
could not select a model based on its performance with the NCC score, during training/ validation.
We instead selected the best model based on the accuracy classification score on the validation dataset,
to prevent the effect of overfitting.

A.6 Training details

We used PyTorch [13] Python package in all of our deep learning experiments, and trained using
NVIDIA TITAN GPUs. We trained our networks in a similar fashion to Lee et al. [9]. During training
in each iteration, the content discriminator is updated twice, followed by the update of the encoders,
generators, and domain discriminators (i.e. each training iteration uses 3 batches to perform these
updates). For each update of the generator, an input is selected for each class (e.g. 2 inputs including
class 0 and 1) to achieve translation. In addition, each input is encoded and translated to the opposite
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class by randomly sampling the attribute latent space, and obtaining an appropriate class, using the
classifier.

In all experiments, unless otherwise stated, we used the following hyperparameters during training of
ICAM networks: learning rate for content discriminator = 0.00004, learning rate for the rest = 0.0001,
Adam optimiser with betas = (0.5, 0.999), λDc = 1, λD = 1, λBCE = 10, λKL = 0.01, λM =
10, λza = 1, λrec = 100, λDBCE

= 1 for discriminator optimisation, and λDBCE
= 5 for generator

optimisation. We do not use augmentation techniques in any of our experiments.

In the UK Biobank experiments, we trained all networks for 50 epochs. In the HCP 2D ablation and
ADNI experiments, all networks (including VA-GAN and DRIT) were trained for 300 epochs. In the
ADNI experiments, because we had a limited dataset, we further refined ICAM with updated lambdas
(λrec = 10, and λBCE = 20) for another 200 epochs. We could not refine VA-GAN any further
because generator and discriminator losses went to zero during training, often after 150 epochs.

Baseline methods. For training VA-GAN, and DRIT, we used the default parameters as provided
in the original papers and publicly released code repositories. For Grad-CAM, integrated gradients,
and occlusion, the classifier network was trained with learning rate of 0.0001, SGD with momentum
of 0.9, for 50 epochs, and using a weighted BCE loss to account for class-unbalanced training data.
Since the model converged by 50 epochs, we did not train for any longer.

B Results

B.1 HCP experiments

In our additional HCP experiments (see section A.2 for dataset details), we show that ICAM can
interpolate between classes (Fig. B.2, left), showing a smooth interpolated result, as well as capturing
the large majority of the lesions in both addition and removal, whereas DRIT does not visibly
demonstrate smooth interpolation, and is only able to do removal of lesions effectively. This suggests
that the content latent space has not been completely disentangled, and that it might encode some
class information (about the lesions). That is most likely caused by the network architecture, as

Figure B.1: tSNE plots for ICAM and DRIT methods using the HCP test dataset.
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Figure B.2: Interpolation between classes 0 (no lesions) and 1 (lesions), and within class 1. Red,
addition of lesions; blue, removal of lesions.
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encoding the attribute latent space as a 1D vector, instead of a 2D vector as with ICAM, might not be
sufficient to encode spatial information about the lesions. In addition, ICAM shows visibly better
interpolation within class 1 in the latent space (Fig. B.2, right). ICAM is able to both add and remove
lesions simultaneously during interpolation, while DRIT is only able to remove lesions.

Finally, ICAM demonstrates clear separation between class 0 (no lesions) and 1 (lesions) in its latent
space (Fig. B.1, top, left). In addition, without explicitly giving information about the different
lesions, ICAM is able to cluster several of the lesions in the latent space (shown via the circles),
when encoding tSNE for class 1 (lesions with 8 different locations) examples (Fig. B.1, bottom, left).
DRIT is also very separable between classes 0 and 1 (Fig. B.1, top, right), but does not demonstrate
separation within class 1 (Fig. B.1, bottom, right).

B.2 ADNI experiments

We show additional examples (see section A.3 for dataset details) of comparisons between ICAM
and baseline methods in Fig. B.3. In general, we observe ICAM achieves visibly better detection
compared to baseline methods, with the variance map of ICAM most sensitive to variability in the
cortex (green arrows), ventricles (blue arrows), and hippocampus (pink arrows), and appeared to be
the most similar to the real disease maps (e.g. rows 3-4).

We note that ICAM and VA-GAN seem to detect some differences which do not appear in the ground
truth disease map (e.g. hippocampal atrophy, pink arrows, row 5). Some of this may relate to
measurement noise, for example motion is known to be a significant challenge in dementia datasets,
and ADNI scans are acquired with variable acquisition parameter. Overall ICAM variance maps
flag up more evidence of disease than VA-GAN; however it is important to stress that MCI-AD
conversion is not a binary process. These maps are therefore likely picking up heterogeneity in the
relative timing and disease progression in these subjects.

B.3 Biobank experiments

In our additional Biobank experiments (see section A.4 for dataset details), we performed translation
with very old (> 79 years), and young (< 50 years) subjects (Fig. B.5). VA-GAN is not a cyclic
network and therefore does not have an example for young to old translation. We found very high
detection in relevant brain regions for both ICAM and VA-GAN for translation of old subjects to
young. VA-GAN appeared to detect more hippocampal differences than ICAM when comparing to
ICAM’s FA mean maps, but appeared similar when comparing to the variance maps (rows 1 and
3). In addition, ICAM was able to detect much higher variability in the ventricles and was able to
change the shape of the brain, while VA-GAN was only able to make minor adjustments in pixel
intensities. While we found weaker detection in our young to old translation (Fig. B.5, bottom), many
of the expected regions were still highlighted in the FA maps, and we even observed changes in brain
shape, including enlargement of the ventricles (blue arrows) and decrease in cortical thickness (green
arrows).

To demonstrate the effectiveness of the added components in ICAM , we compared against a baseline
version of our network, ICAMDRIT , as DRIT cannot scale to 3D. We performed interpolation
between old and young subjects (Fig. B.6), and found that with ICAMDRIT , the FA maps are similar
across the interpolation. It is possible that the attribute and content spaces have not been disentangled,
and that some class relevant information was encoded in the content space. In contrast, ICAM
demonstrates smooth interpolation between the classes, and thus is likely to have disentangled age in
the attribute latent space. Additional evidence for this is the tSNE plots of ICAM , and ICAMDRIT

(Fig. B.4), where we see separation between old and young subjects for ICAM , but no separation
for ICAMDRIT .

Finally, we report image generation quality for Biobank; although we stress that the objectives of this
model was generation of disease maps (for which we show clear improvements) rather than image
generation. Nevertheless, the Fréchet Inception Distance (FID) score (which measures the similarity
between two datasets) indicates that VA-GAN outperforms ICAM (with respective scores 14.01 and
38.05; lower is better). A better result for VA-GAN is to be expected as VA-GAN is a U-Net style
network, with high level skip connections, whereas ICAM receives much more downsampled features
that support the learning of a meaningful latent space for improved disease map generation.
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Figure B.3: Additional AD to MCI ADNI comparisons for FA map generation in 3 subjects. Blue
arrows, ventricles; green arrows, cortex; pink arrows, hippocampus.

Figure B.4: tSNE plots for Biobank on age classification.
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Figure B.5: Biobank translation results for translation of old to young (top) and translation of young to
old (bottom) in 4 subjects. Blue arrows, ventricles; green arrows, cortex; pink arrows, hippocampus.
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Figure B.6: Biobank interpolation between class 0 (young) and 1 (old) for ICAM and ICAMDRIT .
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B.4 Yosemite weather experiments

To demonstrate that the method can generalise across domains, and specifically to natural image
datasets, we performed further experiments on the Yosemite dataset [22], a natural image dataset
with summer and winter weather scenes. We aimed to show that while ICAM was optimised for 3D
medical image datasets, it can still be applied to natural image datasets and produce realistic results.
We found that ICAM translated the images reasonably well (Fig. B.7), by for example adding snow
in the summer to winter translation, or by adding more green to the trees in the winter to summer
translation. However, we note that ICAM does not generate images that are as crisp as in DRIT++
[9]. ICAM produced images are blurrier and contained checkerboard artifacts on certain objects.
Since we used the default parameters for training on Yosemite, the quality of generations could be
improved with hyperparameter turning.

Figure B.7: Yosemite dataset translation results with ICAM.
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B.5 ICAM reproducibility experiments

The reproducibility of ICAM’s FA maps must be validated for ICAM to have clinical potential.
Indeed, to demonstrate that ICAM produces consistent results across the same or similar inputs, we
ran two experiments. 1) We applied ICAM on (unseen) images acquired at multiple time points for
one subject with AD diagnosis, and compared the outputs. Fig. B.8a shows that ICAM generates
very similar FA maps for all images (despite them being independently acquired and processed)
suggesting the method is reproducible, consistent, and that anatomy is preserved. Further evidence is
provided by Fig. B.8b, which shows that repeat runs of ICAM on Biobank data generate very similar
FA mean and variance maps despite taking different samples from the latent space, producing low
variance (≤ 0.0003) across ×10 experiments.

Figure B.8: ICAM reproducibility experiments. (a) ICAM was applied to images of the same ADNI
subject at multiple time-points. We show that the mean FA maps are similar across all inputs. (b)
ICAM was applied to the same Biobank subject 10 times. We display one example of the mean and
variance FA map (column 2), and the variance across the 10 experiments (column 3).
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