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Abstract

We study the eigenvalue distributions of the Conjugate Kernel and Neural Tangent
Kernel associated to multi-layer feedforward neural networks. In an asymptotic
regime where network width is increasing linearly in sample size, under random ini-
tialization of the weights, and for input samples satisfying a notion of approximate
pairwise orthogonality, we show that the eigenvalue distributions of the CK and
NTK converge to deterministic limits. The limit for the CK is described by iterating
the Marcenko-Pastur map across the hidden layers. The limit for the NTK is equiv-
alent to that of a linear combination of the CK matrices across layers, and may be
described by recursive fixed-point equations that extend this Marcenko-Pastur map.
We demonstrate the agreement of these asymptotic predictions with the observed
spectra for both synthetic and CIFAR-10 training data, and we perform a small
simulation to investigate the evolutions of these spectra over training.

1 Introduction

Recent progress in our theoretical understanding of neural networks has connected their training
and generalization to two associated kernel matrices. The first is the Conjugate Kernel (CK) or the
equivalent Gaussian process kernel [43, 56, 12, 14, 48, 52, 33, 41]. This is the gram matrix of the
derived features produced by the final hidden layer of the network. The network predictions are linear
in these derived features, and the CK governs training and generalization in this linear model.

The second is the Neural Tangent Kernel (NTK) [27, 19, 6]. This is the gram matrix of the Jacobian of
in-sample predictions with respect to the network weights, and was introduced to study full network
training. Under gradient-flow training dynamics, the in-sample predictions follow a differential
equation governed by the NTK. We provide a brief review of these matrices in Section 2.1.

The spectral decompositions of these kernel matrices are related to training and generalization
properties of the underlying network. Training occurs most rapidly along the eigenvectors of the
largest eigenvalues [5], and the eigenvalue distribution may determine the trainability of the model
and the extent of implicit bias towards simpler functions [57, 59]. It is thus of interest to understand
the spectral properties of these matrices, both at random initialization and over the course of training.

1.1 Summary of contributions

In this work, we apply techniques of random matrix theory to derive an exact asymptotic characteri-
zation of the eigenvalue distributions of the CK and NTK at random initialization, in a multi-layer
feedforward network architecture. We study a “linear-width” asymptotic regime, where each hidden
layer has width proportional to the training sample size. We impose an assumption of approximate
pairwise orthogonality for the training samples, which encompasses general settings of independent
samples that need not have independent entries.
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We show that the eigenvalue distributions for both the CK and the NTK converge to deterministic
limits, depending on the limiting eigenvalue distribution of the training data. The limit distribution for
the CK at each intermediate hidden layer is a Marcenko-Pastur map of a linear transformation of that
of the previous layer. The NTK can be approximated by a linear combination of CK matrices, and its
limiting eigenvalue distribution can be described by a recursively defined sequence of fixed-point
equations that extend this Marcenko-Pastur map. We demonstrate the agreement of these asymptotic
limits with the observed spectra on both synthetic and CIFAR-10 training data of moderate size.

In this linear-width asymptotic regime, feature learning occurs, and both the CK and NTK evolve
over training. Although our theory pertains only to their spectra at random initialization of the
weights, we conclude with an empirical examination of their spectral evolutions during training,
on simple examples of learning a single neuron and learning a binary classifier for two classes
in CIFAR-10. In these examples, the bulk eigenvalue distributions of the CK and NTK undergo
elongations, and isolated principal components emerge that are highly predictive of the training labels.
Recent theoretical work has studied the evolution of the NTK in an entrywise sense [25, 20], and we
believe it is an interesting open question to translate this understanding to a more spectral perspective.

1.2 Related literature

Many properties of the CK and NTK have been established in the limit of infinite width and fixed
sample size n. In this limit, both the CK [43, 56, 14, 33, 41] and the NTK [27, 34, 58] at random
initialization converge to fixed n × n kernel matrices. The associated random features regression
models converge to kernel linear regression in the RKHS of these limit kernels. Furthermore,
network training occurs in a “lazy” regime [11], where the NTK remains constant throughout training
[27, 19, 18, 6, 34, 7]. Spectral properties of the CK, NTK, and Hessian of the training loss have
been previously studied in this infinite-width limit in [48, 51, 57, 30, 21, 28]. Limitations of lazy
training and these equivalent kernel regression models have been studied theoretically and empirically
in [11, 7, 60, 22, 23, 35], suggesting that trained neural networks of practical width are not fully
described by this type of infinite-width kernel equivalence. The asymptotic behavior is different in
the linear-width regime of this work: For example, for a linear activation σ(x) = x, the infinite-width
limit of the CK for random weights is the input Gram matrix X>X , whereas its limit spectrum under
linear-width asymptotics has an additional noise component from iterating the Marcenko-Pastur map.

Under linear-width asymptotics, the limit CK spectrum for one hidden layer was characterized in
[46] for training data with i.i.d. Gaussian entries. For activations satisfying Eξ∼N (0,1)[σ

′(ξ)] = 0,
[46] conjectured that this limit is a Marcenko-Pastur law also in multi-layer networks, and this was
proven under a subgaussian assumption as part of the results of [9]. [39] studied the one-hidden-layer
CK with general training data, and [37] specialized this to Gaussian mixture models. These works
[39, 37] showed that the limit spectrum is a Marcenko-Pastur map of the inter-neuron covariance.
We build on this insight by analyzing this covariance across multiple layers, under approximate
orthogonality of the training samples. This orthogonality condition is similar to that of [3], which
recently studied the one-hidden-layer CK with a bias term. This condition is also more general than
the assumption of i.i.d. entries, and we describe in Appendix I the reduction to the one-hidden-layer
result of [46] for i.i.d. Gaussian inputs, as this reduction is not immediately clear. [44] provides
another form of the limit distribution in [46], which is equivalent to our form in Appendix I via the
relation described in [8].

The limit NTK spectrum for a one-hidden-layer network with i.i.d. Gaussian inputs was recently
characterized in parallel work of [4]. In particular, [4] applied the same idea as in Lemma 3.5 below to
study the Hadamard product arising in the NTK. [45, 47] previously studied the equivalent spectrum
of a sample covariance matrix derived from the network Jacobian, which is one of two components
of the Hessian of the training loss, in a slightly different setting and also for one hidden layer.

The spectra of the kernel matrices X>X that we study are equivalent (up to the addition/removal
of 0’s) to the spectra of the sample covariance matrices in linear regression using the features
X . As developed in a line of recent literature including [16, 46, 17, 39, 36, 24, 42, 4, 15], this
spectrum and the associated Stieltjes transform and resolvent are closely related to the training
and generalization errors in this linear regression model. These works have collectively provided
an asymptotic understanding of training and generalization error for random features regression
models derived from the CK and NTK of one-hidden-layer neural networks, and related qualitative
phenomena of double and multiple descent in the generalization error curves.
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2 Background

2.1 Neural network model and kernel matrices

We consider a fully-connected, feedforward neural network with input dimension d0, hidden layers
of dimensions d1, . . . , dL, and a scalar output. For an input x ∈ Rd0 , we parametrize the network as

fθ(x) = w>
1√
dL
σ

(
WL

1√
dL−1

σ
(
. . .

1√
d2

σ
(
W2

1√
d1

σ(W1x)
)))

∈ R. (1)

Here, σ : R→ R is the activation function (applied entrywise) and

W` ∈ Rd`×d`−1 for 1 ≤ ` ≤ L, w ∈ RdL

are the network weights. We denote by θ = (vec(W1), . . . , vec(WL),w) the weights across all
layers. The scalings by 1/

√
d` reflect the “NTK-parametrization” of the network [27]. We discuss

alternative scalings and an extension to multi-dimensional outputs in Section 3.4.

Given n training samples x1, . . . ,xn ∈ Rd0 , we denote the matrices of inputs and post-activations by

X ≡ X0 = (x1 . . . xn) ∈ Rd0×n, X` =
1√
d`
σ (W`X`−1) ∈ Rd`×n for 1 ≤ ` ≤ L.

Then the in-sample predictions of the network are given by fθ(X) = (fθ(x1), . . . , fθ(xn)) =
w>XL ∈ R1×n. The Conjugate Kernel (CK) is the matrix

KCK = X>LXL ∈ Rn×n.

More generally, we will call X>` X` the conjugate kernel at the intermediate layer `. Fixing the matrix
XL, the CK governs training and generalization in the linear regression model y = w>XL. For very
wide networks, KCK may be viewed as an approximation of its infinite-width limit,1 and regression
using XL is an approximation of regression in the RKHS defined by this limit kernel [49].

We denote the Jacobian matrix of the network predictions with respect to the weights θ as

J = ∇θfθ(X) = (∇θf(x1) · · · ∇θf(xn)) ∈ Rdim(θ)×n.

The Neural Tangent Kernel (NTK) is the matrix

KNTK = J>J =
(
∇θfθ(X)

)>(∇θfθ(X)
)
∈ Rn×n. (2)

Under gradient-flow training of the network weights θ with training loss ‖y − fθ(X)‖2/2, the time
evolutions of residual errors and in-sample predictions are given by

d

dt

(
y−fθ(t)(X)

)
= −KNTK(t)·

(
y−fθ(t)(X)

)
,

d

dt
fθ(t)(X) = KNTK(t)·

(
y−fθ(t)(X)

)
(3)

where θ(t) and KNTK(t) are the parameters and NTK at training time t [27, 19]. Denoting the
eigenvalues and eigenvectors of KNTK(t) by (λα(t),vα(t))nα=1, and the spectral components of the
residual error by rα(t) = vα(t)>(y− fθ(t)(X)), these training dynamics are expressed spectrally as

vα(t)>
d

dt

(
y − fθ(t)(X)

)
= −λα(t)rα(t),

d

dt
fθ(t)(X) =

n∑
α=1

λα(t)rα(t) · vα(t).

Note that these relations hold instantaneously at each training time t, regardless of whether KNTK(t)
evolves or remains approximately constant over training. Hence, λα(t) controls the instantaneous
rate of decay of the residual error in the direction of vα(t).

For very wide networks,KNTK, λα, and vα are all approximately constant over the entirety of training
[27, 19, 18, 6, 11]. This yields the closed-form solution rα(t) ≈ rα(0)e−tλα , so that the in-sample
predictions fθ(t)(X) converge exponentially fast to the observed training labels y, with a different
exponential rate λα along each eigenvector vα of KNTK.

1In this paper, we use “conjugate kernel” and “neural tangent kernel” to refer to these matrices for a
finite-width network, rather than their infinite-width limits.
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2.2 Eigenvalue distributions, Stieltjes transforms, and the Marcenko-Pastur map

We will derive almost-sure weak limits for the empirical eigenvalue distributions of random symmetric
kernel matrices K ∈ Rn×n as n→∞. Throughout this paper, we will denote this as

lim specK = µ

where µ is the limit probability distribution on R. Letting {λα}nα=1 be the eigenvalues of K, this
means

1

n

n∑
α=1

f(λα)→ Eλ∼µ[f(λ)] (4)

a.s. as n→∞, for any continuous bounded function f : R→ R. Intuitively, this may be understood
as the convergence of the “bulk” of the eigenvalue distribution of K.2 We will also show that
‖K‖ ≤ C a.s., for a constant C > 0 and all large n. Then (4) in fact holds for any continuous
function f : R→ R, as such a function must be bounded on [−C,C].

We will characterize the probability distribution µ and the empirical eigenvalue distribution of K by
their Stieltjes transforms. These are defined, respectively, for a spectral argument z ∈ C+ as3

mµ(z) =

∫
1

x− z
dµ(x), mK(z) =

1

n

n∑
α=1

1

λα − z
=

1

n
Tr(K − z Id)−1.

The pointwise convergence mK(z) → mµ(z) a.s. over z ∈ C+ implies lim specK = µ. For
z = x+ iη ∈ C+, the value π−1 Immµ(z) is the density function of the convolution of µ with the
distribution Cauchy(0, η) at x ∈ R. Hence, the function mµ(z) uniquely defines µ, and evaluating
π−1 Immµ(x+ iη) for small η > 0 yields an approximation for the density function of µ (provided
this density exists at x).

An example of this type of characterization is given by the Marcenko-Pastur map, which describes
the spectra of sample covariance matrices [40]: Let X ∈ Rd×n have i.i.d. N (0, 1/d) entries, let
Φ ∈ Rn×n be deterministic and positive semi-definite, and let n→∞ such that lim spec Φ = µ and
n/d→ γ ∈ (0,∞). Then the sample covariance matrix Φ1/2X>XΦ1/2 has an almost sure spectral
limit,

lim spec Φ1/2X>XΦ1/2 = ρMP
γ � µ. (5)

We will call this limit ρMP
γ � µ the Marcenko-Pastur map of µ with aspect ratio γ. This distribution

ρMP
γ � µ may be defined by its Stieltjes transform m(z), which solves the Marcenko-Pastur fixed

point equation [40]

m(z) =

∫
1

x(1− γ − γzm(z))− z
dµ(x). (6)

3 Main results

3.1 Assumptions

We use Greek indices α, β, etc. for samples in {1, . . . , n}, and Roman indices i, j, etc. for neurons
in {1, . . . , d}. For a matrix X ∈ Rd×n, we denote by xα its αth column and by x>i its ith row. ‖ · ‖ is
the `2-norm for vectors and `2 → `2 operator norm for matrices. Id is the identity matrix.

Definition 3.1. Let ε,B > 0. A matrix X ∈ Rd×n is (ε,B)-orthonormal if its columns satisfy, for
every α 6= β ∈ {1, . . . , n},

∣∣‖xα‖2 − 1
∣∣ ≤ ε, ∣∣x>αxβ∣∣ ≤ ε, ‖X‖ ≤ B,

n∑
α=1

(‖xα‖2 − 1)2 ≤ B2.

Assumption 3.2. The number of layers L ≥ 1 is fixed, and n, d0, d1, . . . , dL →∞, such that

2We caution that this does not imply convergence of the largest and smallest eigenvalues of K to the support
of µ, which is a stronger notion of convergence than what we study in this work.

3Note that some authors use a negative sign convention and define mµ(z) as
∫
1/(z − x)dµ(x).
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(a) The weights θ = (vec(W1), . . . , vec(WL),w) are i.i.d. and distributed as N (0, 1).

(b) The activation σ(x) is twice differentiable, with supx∈R |σ′(x)|, |σ′′(x)| ≤ λσ for some λσ <∞.
For ξ ∼ N (0, 1), we have E[σ(ξ)] = 0 and E[σ2(ξ)] = 1.

(c) The input X ∈ Rd0×n is (εn, B)-orthonormal in the sense of Definition 3.1, where B is a
constant, and εnn1/4 → 0 as n→∞.

(d) As n→∞, lim specX>X = µ0 for a probability distribution µ0 on [0,∞), and limn/d` = γ`
for constants γ` ∈ (0,∞) and each ` = 1, 2, . . . , L.

Part (c) quantifies our assumption of approximate pairwise orthogonality of the training samples.
Although not completely general, it encompasses many settings of independent samples with input
dimension d0 � n, including:

• Non-white Gaussian inputs xα ∼ N (0,Σ), for any Σ satisfying Tr Σ = 1 and ‖Σ‖ . 1/n.
• Inputs xα drawn from certain multi-class Gaussian mixture models, in the high-dimensional

asymptotic regimes that were studied in [13, 39, 37, 36, 38].
• Inputs that may be expressed as

√
d0 ·xα = f(zα), where zα ∈ Rm has independent entries

satisfying a log-Sobolev inequality, and f : Rm → Rd0 is any Lipschitz function.

In particular, the limit spectral law µ0 in Assumption 3.2(d) can be very different from the Marcenko-
Pastur spectrum that would correspond to X having i.i.d. entries. This approximate orthogonality is
implied by the following more technical convex concentration property, which is discussed further in
[55, 1]. We prove this result in Appendix B.
Proposition 3.3. Let X = (x1, . . . ,xn) ∈ Rd0×n, where x1, . . . ,xn are independent training
samples satisfying E[xα] = 0 and E[‖xα‖2] = 1. Suppose, for some constant c0 > 0, that d0 ≥ c0n,
and each vector

√
d0 · xα satifies the convex concentration property

P
[∣∣ϕ(

√
d0 · xα)− Eϕ(

√
d0 · xα)

∣∣ ≥ t] ≤ 2e−c0t
2

for every t > 0 and every 1-Lipschitz convex function ϕ : Rd0 → R. Then for any k > 0, with

probability 1− n−k, X is (
√

C logn
d0

, B)-orthonormal for some C,B > 0 depending only on c0, k.

In Assumptions 3.2(a) and (b), the scaling of θ and the conditions E[σ(ξ)] = 0 and E[σ2(ξ)] = 1,
together with the parametrization (1), ensure that all pre-activations have approximate mean 0 and
variance 1. This may be achieved in practice by batch normalization [26]. For ξ ∼ N (0, 1), we define
the following constants associated to σ(x). We verify in Proposition C.1 that under Assumption
3.2(b), we have b2σ ≤ 1 ≤ aσ .

bσ = E[σ′(ξ)], aσ = E[σ′(ξ)2], q` = (b2σ)L−`, r` = aL−`σ , r+ =

L−1∑
`=0

r` − q`. (7)

3.2 Spectrum of the Conjugate Kernel

Recall the Marcenko-Pastur map (5). Let µ1, µ2, µ3, . . . be the sequence of probability distributions
on [0,∞) defined recursively by

µ` = ρMP
γ`
�
(

(1− b2σ) + b2σ · µ`−1

)
. (8)

Here, µ0 is the input limit spectrum in Assumption 3.2(d), bσ is defined in (7), and (1− b2σ) + b2σ · µ
denotes the translation and rescaling of µ that is the distribution of (1− b2σ) + b2σλ when λ ∼ µ.

The following theorem shows that these distributions µ1, µ2, µ3, . . . are the asymptotic limits of the
empirical eigenvalue distributions of the CK across the layers. Thus, the limit distribution for each
layer ` is a Marcenko-Pastur map of a translation and rescaling of that of the preceding layer `− 1.
Theorem 3.4. Suppose Assumption 3.2 holds, and define µ1, . . . , µL by (8). Then (marginally) for
each ` = 1, . . . , L, we have lim specX>` X` = µ`. In particular,

lim specKCK = µL.

Furthermore, ‖KCK‖ ≤ C a.s. for a constant C > 0 and all large n.
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If σ(x) is such that bσ = 0, then each distribution µ` is simply the Marcenko-Pastur law ρMP
γ`

. This
special case was previously conjectured in [46] and proven in [9], for input data X with i.i.d. entries.
Note that for such non-linearities, the limiting CK spectrum does not depend on the spectrum µ0 of
the input data, and furthermore µ1 = . . . = µL if the layers have the same width d1 = . . . = dL.
Implications of this for the network discrimination ability in classification tasks and for learning
performance have been discussed previously in [13, 46, 39, 38, 3].

To connect Theorem 3.4 to our next result on the NTK, let us describe the iteration (8) more explicitly
using a recursive sequence of fixed-point equations derived from the Marcenko-Pastur equation (6):
Let m`(z) be the Stieltjes transform of µ`, and define

t̃`(z−1, z`) = lim
n→∞

1

n
Tr(z−1 Id +z`X

>
` X`)

−1 =
1

z`
m`

(
−z−1

z`

)
.

Applying the Marcenko-Pastur equation (6) to m`(−z−1/z`), and introducing s̃`(z−1, z`) = [z`(1−
γ` + γ`z−1t̃`(z−1, z`))]

−1, one may check that (8) may be written as the pair of equations

t̃`(z−1, z`) = t̃`−1

(
z−1 +

1− b2σ
s̃`(z−1, z`)

,
b2σ

s̃`(z−1, z`)

)
, (9)

s̃`(z−1, z`) = (1/z`) + γ`

(
s̃`(z−1, z`)− z−1s̃`(z−1, z`)t̃`(z−1, z`)

)
, (10)

where (10) is a rearrangement of the definition of s̃`. Applying (9) to substitute t̃`(z−1, z`) in (10),
the equation (10) is a fixed-point equation that defines s̃` in terms of t̃`−1. Then (9) defines t̃` in terms
of s̃` and t̃`−1. The limit Stieltjes transform for KCK is the specialization mCK(z) = t̃L(−z, 1).

3.3 Spectrum of the Neural Tangent Kernel

In the neural network model (1), an application of the chain rule yields an explicit form

KNTK = X>LXL +

L∑
`=1

(S>` S`)� (X>`−1X`−1)

for certain matrices S` ∈ Rd`×n, where� is the Hadamard (entrywise) product. We refer to Appendix
G.1 for the exact expression; see also [25, Eq. (1.7)]. Our spectral analysis of KNTK relies on the
following approximation, which shows that the limit spectrum of KNTK is equivalent to a linear
combination of the CK matrices X>0 X0, . . . , X

>
LXL and Id. We prove this in Appendix G.1.

Lemma 3.5. Under Assumption 3.2, letting r+ and q` be as defined in (7),

lim specKNTK = lim spec
(
r+ Id +X>LXL +

L−1∑
`=0

q`X
>
` X`

)
.

By this lemma, if bσ = 0, then q0 = . . . = qL−1 = 0 and the limit spectrum of KNTK reduces
to the limit spectrum of r+ Id +X>LXL which is a translation of ρMP

γL described in Theorem 3.4.
Thus we assume in the following that bσ 6= 0. Our next result provides an analytic description of
the limit spectrum of KNTK, by extending (9,10) to characterize the trace of rational functions of
X>0 X0, . . . , X

>
LXL and Id.

Denote the closed lower-half complex plane with 0 removed as C∗ = C− \ {0}. For ` = 0, 1, 2, . . .,
we define recursively two sequences of functions

t` : (C− × R` × C∗)× C`+2 → C, (z,w) 7→ t`(z,w)

s` : C− × R` × C∗ → C+, z 7→ s`(z).

where z = (z−1, z0, . . . , z`) ∈ C− × R` × C∗ and w = (w−1, w0, . . . , w`) ∈ C`+2. We will define
these functions such that t`(z,w) will be the value of

lim
n→∞

n−1 Tr(z−1 Id +z0X
>
0 X0 + . . .+ z`X

>
` X`)

−1(w−1 Id +w0X
>
0 X0 + . . .+ w`X

>
` X`).

For ` = 0, we define the first function t0 by

t0

(
(z−1, z0), (w−1, w0)

)
=

∫
w−1 + w0x

z−1 + z0x
dµ0(x) (11)
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For ` ≥ 1, we then define the functions s` and t` recursively by
s`(z) = (1/z`) + γ`t`−1

(
zprev(s`(z), z), (1− b2σ, 0, . . . , 0, b2σ)

)
, (12)

t`(z,w) = (w`/z`) + t`−1

(
zprev(s`(z), z), wprev

)
(13)

where we write as shorthand

zprev(s`(z), z) ≡
(
z−1 +

1− b2σ
s`(z)

, z0, . . . , z`−2, z`−1 +
b2σ
s`(z)

)
∈ C− × R`−1 × C∗, (14)

wprev ≡ (w−1, . . . , w`−1)− (w`/z`) · (z−1, . . . , z`−1) ∈ C`+1. (15)

Proposition 3.6. Suppose bσ 6= 0. For each ` ≥ 1 and any z ∈ C− × R` × C∗, there is a unique
solution s`(z) ∈ C+ to the fixed-point equation (12).

Hence, (12) defines the function s` in terms of the function t`−1, and this is then used in (13) to
define t`. This is illustrated diagrammatically as

t0 → t1 → t2 → · · ·
↓ ↗ ↓ ↗ ↓ ↗
s1 s2 s3

Specializing the function tL for the last layer L to the values (z−1, z0, . . . , zL−1, zL) =
(r+, q0, . . . , qL−1, 1) and (w−1, w0, . . . , wL) = (1, 0, . . . , 0), we obtain an analytic description
for the limit spectrum of KNTK via its Stieltjes transform.
Theorem 3.7. Suppose bσ 6= 0. Under Assumption 3.2, for any fixed values z−1, z0, . . . , zL ∈ R
where zL 6= 0, we have lim spec(z−1 Id +z0X

>
0 X0+. . .+zLX

>
LXL) = ν where ν is the probability

distribution with Stieltjes transform mν(z) = tL((−z + z−1, z0, . . . , zL), (1, 0, . . . , 0)).

In particular, lim specKNTK is the probability distribution with Stieltjes transform

mNTK(z) = tL

(
(−z + r+, q0, . . . , qL−1, 1), (1, 0, . . . , 0)

)
.

Furthermore, ‖KNTK‖ ≤ C a.s. for a constant C > 0 and all large n.

We remark that Theorem 3.7 encompasses the previous result in Theorem 3.4 for KCK = X>LXL, by
specializing to (z0, . . . , zL−1, zL) = (0, . . . , 0, 1). Under this specialization, s`(z−1, 0, . . . , 0, z`) =
s̃`(z−1, z`), t`((z−1, 0, . . . , 0, z`), (1, 0, . . . , 0)) = t̃`(z−1, z`), and (12,13) reduce to (9,10).

3.4 Extension to multi-dimensional outputs and rescaled parametrizations

Theorem 3.7 pertains to a network with scalar outputs, under the “NTK-parametrization” of network
weights in (1). As neural network models used in practice often have multi-dimensional outputs and
may be parametrized differently for backpropagation, we state here the extension of the preceding
result to a network with k-dimensional output and a general scaling of the weights.

Consider the model

fθ(x) = W>L+1

1√
dL
σ

(
WL

1√
dL−1

σ
(
. . .

1√
d2

σ
(
W2

1√
d1

σ(W1x)
)))

∈ Rk (16)

where W>L+1 ∈ Rk×dL . We write the coordinates of fθ as (f1
θ , . . . , f

k
θ ), and the vectorized output for

all training samples X ∈ Rd0×n as fθ(X) = (f1
θ (X), . . . , fkθ (X)) ∈ Rnk. We consider the NTK

KNTK =

L+1∑
`=1

τ`

(
∇W`

fθ(X)
)>(
∇W`

fθ(X)
)
∈ Rnk×nk. (17)

For τ1 = . . . = τL+1 = 1, this is a flattening of the NTK defined in [27], and we recall
briefly its derivation from gradient-flow training in Appendix H.1. We consider general constants
τ1, . . . , τL+1 > 0 to allow for a different learning rate for each weight matrix W`, which may arise
from backpropagation in the model (16) using a parametrization with different scalings of the weights.
Theorem 3.8. Fix any k ≥ 1. Suppose Assumption 3.2 holds, and bσ 6= 0. Then ‖KNTK‖ ≤ C a.s.
for a constant C > 0 and all large n, and lim specKNTK is the probability distribution with Stieltjes
transform

mNTK(z) = tL

(
(−z+τ ·r+, τ1q0, . . . , τLqL−1, τL+1), (1, 0, . . . , 0)

)
, τ ·r+ ≡

L−1∑
`=0

τ`+1(r`−q`).
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a) b) c)

Figure 1: Simulated spectra at initialization for i.i.d. Gaussian training samples in a 5-layer network,
for (a) the input gram matrix X>0 X0, (b) KCK = X>5 X5, and (c) KNTK. Numerical computations of
the limit spectra in Theorems 3.4 and 3.7 are superimposed in red.

a) b) c)

Figure 2: Same plots as Figure 1, for 5000 training samples from CIFAR-10 with 10 leading PCs
removed.

4 Experiments

We describe in Appendix A an algorithm to numerically compute the limit spectral densities of
Theorem 3.7. The computational cost is independent of the dimensions (n, d0, . . . , dL), and each
limit density below was computed within a few seconds on our laptop computer. Using this procedure,
we investigate the accuracy of the theoretical predictions of Theorems 3.4 and 3.7. Finally, we
conclude by examining the spectra of KCK and KNTK after network training.

4.1 Simulated Gaussian training data

We consider n = 3000 training samples with i.i.d. N (0, 1/d0) entries, input dimension d0 = 1000,
and L = 5 hidden layers of dimensions d1 = . . . = d5 = 6000. We take σ(x) ∝ tan−1(x),
normalized so that E[σ(ξ)2] = 1. A close agreement between the observed and limit spectra is
displayed in Figure 1, for both KCK and KNTK at initialization. The CK spectra for intermediate
layers are depicted in Appendix J.4.

We highlight two qualitative phenomena: The spectral distribution of the NTK (at initialization) is
separated from 0, as explained by the Id component in Lemma 3.5. Across layers ` = 1, . . . , L, there
is a merging of the spectral bulk components of the CK, and an extension of its spectral support.

4.2 CIFAR-10 training data

We consider n = 5000 samples randomly selected from the CIFAR-10 training set [32], with input
dimension d0 = 3072, and L = 5 hidden layers of dimensions d1 = . . . = d5 = 10000. Strong
principal component structure may cause the training samples to have large pairwise inner-products,
which is shown in Appendix J.1. Thus, we pre-process the training samples by removing the leading
10 PCs—a few example images before and after this removal are depicted in Appendix J.3. A close
agreement between the observed and limit spectra is displayed in Figure 2, for both KCK and KNTK.
Results without removing these leading 10 PCs are presented in Appendix J.2, where there is close
agreement for KCK but a deviation from the theoretical prediction for KNTK. This suggests that the
approximation in Lemma 3.5 is sensitive to large but low-rank perturbations of X .
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a) b) c)

Figure 3: Eigenvalues of (a)KCK and (b)KNTK in a trained network, for training labels yα = σ(x>αv).
The limit spectra at random initialization of weights are shown in red. Large outlier eigenvalues,
indicated by blue arrows, emerge over training. (c) The projection of training labels onto the first 2
eigenvectors of the trained matrix KCK accounts for 96% of the training label variance.

4.3 CK and NTK spectra after training

We consider n = 1000 training samples (xα, yα), with xα uniformly distributed on the unit sphere
of dimension d0 = 800, and yα = σ(x>αv) for a fixed v ∈ Rd0 on the sphere of radius

√
d0. We

train a 3-layer network with widths d1 = d2 = d3 = 800, without biases, using the Adam optimizer
in Keras with learning rate 0.01, batch size 32, and 300 training epochs. The final mean-squared
training error is 10−4, and the test-sample prediction-R2 is 0.81.

Figure 3 depicts the spectra of KCK and KNTK for the trained weights θ. Intermediate layers are
shown in Appendix J.4. We observe that the bulk spectra of KCK and KNTK are elongated from their
random initializations. Furthermore, large outlier eigenvalues emerge in both KCK and KNTK over
training. The corresponding eigenvectors are highly predictive of the training labels y, suggesting the
emergence of these eigenvectors as the primary mechanism of training in this example.

We describe in Appendix J.5 a second training example for a binary classification task on CIFAR-10,
where similar qualitative phenomena are observed for the trained KCK. This may suggest a path to
understanding the learning process of deep neural networks, for future study.

5 Conclusion

We have provided analytic descriptions of the empirical eigenvalue distributions of the Conjugate
Kernel (CK) and Neural Tangent Kernel (NTK) of large feedforward neural networks at random
initialization, under a general condition for the input samples. Our work uses techniques of random
matrix theory to provide an asymptotic analysis in a limiting regime where network width grows
linearly with sample size. The resulting limit spectra exhibit “high-dimensional noise” that is
not present in analyses of the infinite-width limit alone. This type of high-dimensional limit has
been previously studied for networks with a single hidden layer, and our work develops new proof
techniques to extend these characterizations to multi-layer networks, in a systematic and recursive
form.

Our results contribute to the theoretical understanding of neural networks in two ways: First, an
increasingly large body of literature studies the training and generalization errors of linear regression
models using random features derived from the neural network CK and NTK. In the linear-width
setting of our current paper, such results are typically based on asymptotic approximations for the
Stieltjes transforms and resolvents of the associated kernel and covariance matrices. Our work
develops theoretical tools that may enable the extension of these studies to random features regression
models that are derived from deep networks with possibly many layers.

Second, the linear-width asymptotic regime may provide a simple setting for studying feature learning
and neural network training outside of the “lazy” regime, and which is arguably closer to the operating
regimes of neural network models in some practical applications. Our experimental results suggest
interesting phenomena in the spectral evolutions of the CK and NTK that may potentially arise during
training in this regime, and our theoretical characterizations of their spectra for random weights may
provide a first step towards the analysis of these phenomena.
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Broader Impact

This work performs theoretical analysis that aims to extend our understanding of training and
generalization in multi-layer neural networks. A better theoretical understanding of training and
generalization in these models may ultimately help us to (1) understand the mechanisms by which
social biases may be propagated by artificial systems, and prevent this from occurring, and (2)
increase the robustness and fault-tolerance of artificial systems built on such models.
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