1 We thank the reviewers for their detailed comments and insightful suggestions. Below we address some specific
2 comments; we apologize for conciseness due to space constraints. (We thank Reviewers 1 and 8 for supportive reviews!).

3 Reviewer 3:

4+ We thank the reviewer for a detailed and thorough review. Again, we apologize for our brevity; the nature of this topic
s warrants a much more careful and elaborate discussion, and it is unfortunate that we cannot do that here.
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We were indeed inaccurate here: we will add an explicit projection step to the exposition of SGD and GD. As we
stress below, this does not affect our technical development in any crucial way.

As stated, there is indeed a formal projection. Note that in all our constructions the trajectory remains at a bounded
constant sized-ball. Thus, for a bounded and closed W, the projection step is avoided and does not affect our
constructions—we will highlight this in the proofs where needed.

Indeed, Thm. 1 does not imply that generalization cannot be explained via implicit bias (we do not make such a claim).
It only discusses strongly convex regularizers. As such, it definitely does not rule out the possibility of a bias towards
solutions with small enough norm. Thm. 2, on the other hand, shows that for any (admissible) regularizer we can
construct an instance where SGD converges to a point w.. even though there exists another point w, that has the same
empirical error but (strictly) better regularization penalty. We follow here the intuition that if r models the implicit
bias of SGD then, given two solutions with same empirical error, SGD needs to choose (approximately) the one with
smaller regularization penalty.

. When comparing the output of SGD after enough iterations over the unregularized regression loss vs. ridge regression

solution with fixed A: in this case the output of SGD and the output of ridge regression solution are incomparable (in
the Pareto-optimality sense). Namely, SGD will have a larger regularization penalty whereas ridge regression will
have a larger empirical error; as such, it does not prove Thm. 1. The theorem states the existence of a problem where
SGD converges to a solution that is not Pareto-efficient w.r.t. the empirical loss and ¢, norm (not even approximately).

. The reviewer is correct here that this requires further explanation. First, note that the assumptions of admissibility are

used (and stated) only in Thm. 2, where we rule out distribution-independent regularizer. Any regularizer where
r(0) # minr(w) can be ruled out in this setting by simply considering the zero function (i.e., f(w, z) = 0 for all
7). In this case SGD converges to zero, which by assumption is r-suboptimal. Hence, we may assume here that
r(0) = minr(w) and we only need to normalize by choosing min r(w) = 0. (again, we emphasize that this concerns
only distribution independent bias; in the distribution dependent section we are not making any assumption on the
regularizer to begin with). Following this discussion we will revise the assumption to min r(w) = 0 (and not r(0) = 0)
and incorporate the discussion above in Thm. 2 where necessary.

31 Several other remarks:

32 * We thank the reviewer for indicating some important related work. The suggested lines of work are indeed relevant
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and should be discussed. Thank you for pointing those out!

s« * Two works which we discuss that give evidence for training neural networks without regularizations are [14,22].
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Specifically, [14] shows how training to zero training error with overcapacitated networks can improve test performance.

ss * The remark on where SGD is identical to introducing ¢, regularization: note that this claim is only for linear
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optimization (hence not relevant for regression). Perhaps, a better reference for this fact is Shalev Shwartz “Online
Learning and Online Convex Optimization” (see Examples 2.3 therein).

39 Reviewer 7:

40 * Typo in the notion of statistically complex set?: No, the quantifiers are okay. Note that we want to understand if

the structure of the set K can explain generalization, and without further considerations of the specific problem at
hand. For that one must choose a complexity measure that is independent of D. Note that any (successful) learning
algorithm converges, on a specific distribution, to a set of solutions that are okay for that distribution — thus changing
the quantifiers will lead to a tautology. What we desire here is to measure the complexity, or understand the structure
of the set of solutions w.r.t. any acceptable distribution. Specifically, Thm. 4 shows that on a given instance the set of
solution can be “too rich” in the sense that the capacity of the set cannot explain generalization.

47 * Remarks on quantification and improving clarity of Thm. 4: We will elaborate and clarify here. The quantification
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over the regularizer is before the sample (i.e., the regularizer may depend on the distribution D but is independent of
the sample §). We will also clarify the relationship between d and T'; in a nutshell, the asymptotic variable is 7 (and
d = O(T), n = 1/NT). Thanks for these suggestions!



