Generalized Hindsight for Reinforcement Learning

Alexander C. Li Lerrel Pinto
University of California, Berkeley New York University
alexlil@berkeley.edu lerrel@cs.nyu.edu
Pieter Abbeel

University of California, Berkeley
pabbeel@cs.berkeley.edu

Abstract

One of the key reasons for the high sample complexity in reinforcement learning
(RL) is the inability to transfer knowledge from one task to another. In standard
multi-task RL settings, low-reward data collected while trying to solve one task
provides little to no signal for solving that particular task and is hence effectively
wasted. However, we argue that this data, which is uninformative for one task, is
likely a rich source of information for other tasks. To leverage this insight and
efficiently reuse data, we present Generalized Hindsight: an approximate inverse
reinforcement learning technique for relabeling behaviors with the right tasks.
Intuitively, given a behavior generated under one task, Generalized Hindsight
returns a different task that the behavior is better suited for. Then, the behavior
is relabeled with this new task before being used by an off-policy RL optimizer.
Compared to standard relabeling techniques, Generalized Hindsight provides a
substantially more efficient re-use of samples, which we empirically demonstrate
on a suite of multi-task navigation and manipulation tasks. (Website')

1 Introduction

Model-free reinforcement learning (RL) combined with powerful function approximators has achieved
remarkable success in games like Atari [43] and Go [64], and control tasks like walking [24] and
flying [33]. However, a key limitation to these methods is their sample complexity. They often
require millions of samples to learn simple locomotion skills, and sometimes even billions of samples
to learn more complex game strategies. Creating general purpose agents will necessitate learning
multiple such skills or strategies, which further exacerbates the inefficiency of these algorithms. On
the other hand, humans (or biological agents) are not only able to learn a multitude of different skills,
but from orders of magnitude fewer samples [32]. So, how do we endow RL agents with this ability
to learn efficiently across multiple tasks?

One key hallmark of biological learning is the ability to learn from mistakes. In RL, mistakes made
while solving a task are only used to guide the learning of that particular task. But data seen while
making these mistakes often contain a lot more information. In fact, extracting and re-using this
information lies at the heart of most efficient RL algorithms. Model-based RL re-uses this information
to learn a dynamics model of the environment. However for several domains, learning a robust model
is often more difficult than directly learning the policy [15], and addressing this challenge continues
to remain an active area of research [46]. Another way to re-use low-reward data is off-policy RL,
where in contrast to on-policy RL, data collected from an older policy is re-used while optimizing
the new policy. But in the context of multi-task learning, this is still inefficient since data generated

'Website: sites.google.com/view/generalized-hindsight

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://sites.google.com/view/generalized-hindsight

/
T\Z T\Z
/\/‘(\1) Hindsight Relabeling (1)

: V1, 2h
P21 ;
T(z2) s 7(2)
L 72 o —
= LN :
- e

Figure 1: Trajectories 7(z;), collected trying to maximize r(-|z;), may contain very little reward signal about
how to solve their original tasks. Generalized Hindsight checks against randomly sampled “candidate tasks"
{v:}E | to find different tasks z] for which these trajectories can serve as “pseudo-demonstrations.” Using
off-policy RL, we can obtain stronger reward signal from these relabeled trajectories.

from one task cannot effectively inform a different task. Towards solving this problem, work by
Andrychowicz et al. [2] focuses on extracting even more information through hindsight.

In goal-conditioned settings, where tasks are defined by a sparse goal, Hindsight Experience Replay
(HER) [2] relabels the desired goal, for which a trajectory was generated, to a state seen in that
trajectory. Therefore, if the goal-conditioned policy erroneously reaches an incorrect goal instead
of the desired goal, we can re-use this data to teach it how to reach this incorrect goal. Hence,
a low-reward trajectory under one desired goal is converted to a high-reward trajectory for the
unintended goal. This new relabeling provides a strong supervision and produces significantly faster
learning. However, a key assumption made in this framework is that goals are a sparse set of states
that need to be reached. This allows for efficient relabeling by simply setting the relabeled goals to
the states visited by the policy. But for several real world problems like energy-efficient transport, or
robotic trajectory tracking, rewards are often complex combinations of desirables rather than sparse
objectives. So how do we use hindsight for general families of reward functions?

In this paper, we build on the ideas of goal-conditioned hindsight and propose Generalized Hindsight.
Here, instead of performing hindsight on a task-family of sparse goals, we perform hindsight on a task-
family of reward functions. Since dense reward functions can capture a richer task specification, GH
allows for better re-utilization of data. Note that this is done along with solving the task distribution
induced by the family of reward functions. However, for relabeling, instead of simply setting
visited states as goals, we now need to compute the reward functions that best explain the generated
data. To do this, we draw connections from Inverse Reinforcement Learning (IRL), and propose
an Approximate IRL Relabeling algorithm we call AIR. Concretely, AIR takes a new trajectory and
compares it to K randomly sampled tasks from our distribution. It selects the task for which the
trajectory is a “pseudo-demonstration,” i.e. the trajectory achieves higher performance on that task
than any of our previous trajectories. This “pseudo-demonstration” can then be used to quickly learn
how to perform that new task. We illustrate the process in Figure 1. We test our algorithm on several
multi-task control tasks, and find that AIR consistently achieves higher asymptotic performance using
as few as 20% of the environment interactions as our baselines. We also introduce a computationally
more efficient version, which relabels by comparing trajectory rewards to a learned baseline, that also
achieves higher asymptotic performance than our baselines.

In summary, we present three key contributions in this paper: (a) we extend the ideas of hindsight
to the generalized reward family setting; (b) we propose AIR, a relabeling algorithm using insights
from IRL. This connection has been concurrently and independently studied in [17], with additional
discussion in Section 4.5; (c) we demonstrate significant improvements in multi-task RL on a suite of
multi-task navigation and manipulation tasks.

2 Background

Before discussing our method, we briefly introduce some background for multi-task RL and Inverse
Reinforcement Learning (IRL). For brevity, we defer basic formalisms in RL to Appendix A.

2.1 Multi-Task RL

A Markov Decision Process (MDP) M can be represented as the tuple M = (S, A, P,r,7,S),
where S is the set of states, A is the set of actions, P : § x A x § — R is the transition probability

function, r : § X A — R is the reward function, - is the discount factor, and S is the initial state
distribution.

The goal in multi-task RL is to not just solve a single MDP M, but to solve a distribution of MDPs
M(z), where z is the task-specification drawn from the task distribution z ~ 7. Although z can
parameterize different aspects of the MDP, we are specially interested in different reward functions.
Hence, our distribution of MDPs is now M(z) = (S, A, P,7(-|2), 7, S). Thus, a different z implies
a different reward function under the same dynamics P and start distribution S. One may view this
representation as a generalization of the goal-conditioned RL setting [61], where the reward family
is restricted to r(s,alz = g) = —d(s,z = g). Here d represents the distance between the current
state s and the desired goal g. In sparse goal-conditioned RL, where hindsight has previously been
applied [2], the reward family is further restricted to r(s, a|z = g) = 1[d(s,z = g) < €]. Here the
agent gets a positive reward only when s is within € of the desired goal g.

2.2 Hindsight Experience Replay (HER)

HER [2] is a simple method of manipulating the replay buffer used in off-policy RL algorithms that
allows it to learn state-reaching policies more efficiently with sparse rewards. After experiencing
some episode sg, S1, ..., ST, every transition s, — s;1 along with the goal for this episode is usually
stored in the replay buffer. However with HER, the experienced transitions are also stored in the
replay buffer with different goals. These additional goals are states that were achieved later in the
episode. Since the goal being pursued does not influence the environment dynamics, one can replay
each trajectory using arbitrary goals, assuming we optimize with an off-policy RL algorithm [57].

2.3 Inverse Reinforcement Learning (IRL)
In IRL [48], given an expert policy 7 or, more practically, access to demonstrations 7 from 7 g, we
want to recover the underlying reward function r* that best explains the expert behaviour. Although

there are several methods that tackle this problem [58, 1, 72], the basic principle is to find r* such
that:

T-1 T-1
E[Y v (so)lme] = E[Y | 4'r*(se)|a] v (M
t=0 t=0

We use this framework to guide our Approximate IRL relabeling strategy for Generalized Hindsight.

3 Generalized Hindsight

3.1 Overview

Given a multi-task RL setup, i.e. a dis-
tribution of reward functions r(.|z), our ' :
goal is to maximize the expected reward 1: Input: Off-policy RL algorithm A, strategy S for
E.7[R(7|z)] across the task distribution choosing suitable task variables to relabel with,
2~ T through Optimizing our pOlle rewarq functionr : S X A X T — R

7. Here, R(r|z) = Z?:Bl V(g ap ~ 2: for episode = 1 to M do o
7(s¢|2)|z) represents the cumulative dis- 3 Samplea tagk Varlable'z apd an 1p1t1a1 state sq
counted reward under the reward parameter- ‘51 Roll out policy on z, yielding trajectory 7
6

Algorithm 1 Generalized Hindsight

ization z and the conditional policy 7 (.|z). Find set of new tasks to relabel with: Z := §(r)
One approach to solving this problem would Store original transitions in replay buffer:
be the straightforward application of RL to (s, a1, 7(8t, ar, 2), Se41, 2)

train the z— conditional policy using the re- for 2’ € Z do o
wards from 7(.|z). However, this fails to 8: Store relabeled transitions in replay buffer:

re-use the data collected under one task pa- (86, ap, (8¢, az, 2'), 8041, 2")

rameter z (s¢, a;) ~ 7(.|2) to a different pa- %" end for . L .
rameter 2. In order to better use and share 10: Perform n steps of policy optimization with A
this data, we propose to use hindsight rela- 11: end for

beling, which is detailed in Algorithm 1.

~

The core idea of hindsight relabeling is to convert the data generated from the policy under one task
z to a different task. Given the relabeled task 2’ = relabel(7(n(.|z))), where T represents the

trajectory induced by the policy 7(.|z), the state transition tuple (s, at, 7:(.|2), S¢41) is converted
to the relabeled tuple (s¢, as, r¢(.|2"), st+1). This relabeled tuple is then added to the replay buffer
of an off-policy RL algorithm and trained as if the data generated from z was generated from 2’. If
relabeling is done efficiently, it will allow for data that is sub-optimal under one reward specification
z, to be used for the better relabeled specification z’. In the context of sparse goal-conditioned RL,
where z corresponds to a goal g that needs to be achieved, HER [2] relabels the goal to states seen in
the trajectory, i.e. ¢’ ~ 7(m(.|]z = g)). This labeling strategy, however, only works in sparse goal
conditioned tasks. In the following section, we describe two relabeling strategies that allow for a
general application of hindsight.

3.2 Approximate IRL Relabeling (AIR)

The goal of computing the optimal reward
parameter, given a trajectory is closely :
tied to the Inverse Reinforcement Learn- 1: Input: Trajectory 7 = (s, ag, ..., s7), cached ref-

Algorithm 2 S;r;: Approximate IRL

ing (IRL) setting. In IRL, given demonstra- erence trajectories D = {(so, ag, ..., s7)} Y, re-
tions from an expert, we can retrieve the ward function r : § x A x T — R, number of
reward function the expert was optimized candidate task variables to try: K, number of task
for. At the heart of these IRL algorithms, variables to return: m
a reward specification parameter 2’ is opti- 2: Sample set of candidate tasks Z = {v; ~ T} JKzl
mized such that Approximate IRL Strategy:
, . , 3: forv; € Z do
R(rg|") > R(r'|2") VT (2) 4 Calculate trajectory reward for 7 and the tra-

. . . T
where 7g is an expert trajectory. Inspired jectories in D: R(T|Ug') = Zt:O V'r(se, ar, v5)
by the IRL framework, we propose the Calculate percentljl\f estimate:

Approximate IRL relabeling seen in Algo- P(r,v;) = L350 1{R(7|v;) > R(r|v;)}
rithm 2. We can use a buffer of past tra- 6: end for .
jectories to find the task 2’ on which our 7: returnm tasks v; with highest percentiles P(7, v;)
current trajectory does better than the older
ones. Intuitively this can be seen as an approximation of the right hand side of Eq. 2. Concretely,
we want to relabel a new trajectory 7, and have N previously sampled trajectories along with K
randomly sampled candidate tasks v;. Then, the relabeled task for trajectory 7 is computed as:

L&
Z = arg;nax i Z I{R(7|vx) > R(Tj|ve)} &)

j=1

The relabeled 2’ for 7 maximizes its percentile among the N most recent trajectories collected with
our policy. One can also see this as an approximation of max-margin IRL [58]. One potential
challenge with large K is that many vy will have the same percentile. To choose between these
potential task relabelings, we add tiebreaking based on the advantage estimate

A(1,2) = R(7|2) = V7 (50, 2) €

Among candidate tasks v with the same percentile, we take the tasks that have higher advantage
estimate. From here on, we will refer to Generalized Hindsight with Approximate IRL Relabeling as
AlIR.

3.3 Advantage Relabeling

One potential problem with AIR is that it re-
quires O(K' NT) time to compute the relabeled
task variable for each new trajectory, where K is 1: Repeat steps 1 & 2 from Algorithm 2

the number of candidate tasks, N is the number Advantage Relabeling Strategy:

of past trajectories compared to, and 7" is the 2: for v; € Z do

horizon. A relaxed version of AIR could sig- 3: Calculate trajectory advantage estimate:
nificantly reduce computation time, while main- 121(7-7 vj) = R(T\yj) — V™ (s, vj)
taining relatively high-accuracy relabeling. One 4: end for

way to do this is to use the Maximum-Reward 5. return m tasks z; with highest /1(7-, zj)
relabeling objective. Instead of choosing from

Algorithm3S,4: Trajectory Advantage

‘?

r\/‘\\.

(a) PointTraj (b) PointReach (c) Fetch (d) HalfCheetah (e) AntDirection (f) Humanoid

Figure 2: Environments we report comparisons on. PointTrajectory requires a 2D pointmass to follow a target
trajectory; PointReacher requires moving the pointmass to a goal location, while avoiding an obstacle and
modulating its energy usage. In (b), the red circle indicates the goal location, while the blue triangle indicates an
imagined obstacle to avoid. Fetch has the same reward formulation as PointReacher, but requires controlling the
noisy Fetch robot in 3 dimensions. HalfCheetah requires learning running in both directions, flipping, jumping,
and moving efficiently. Ant and Humanoid require moving in a target direction as fast as possible.

our K candidate tasks v ~ T by selecting for high percentile (Equation 2), we could relabel based
on the cumulative trajectory reward:

2! = argmax{R(r|vx)} 3)

Vk

However, one challenge with simply taking the Maximum-Reward relabel is that different reward
parameterizations may have different scales which will bias the relabels to a specific z. Say for
instance there exists a task in the reward family v; such that 7(.|v;) = 1 + max;; r(.|v;). Then,
v; will always be the relabeled reward parameter irrespective of the trajectory 7. Hence, we should
not only care about the vj, that maximizes reward, but select vy, such that 7’s likelihood under the
trajectory distribution drawn from the optimal 7*(.|vy,) is high. To do this, we can simply select 2’
based on the advantage term that we used to tiebreak for AIR.

2} = argmax R(7|vg) — V™ (80, vk) ©)
k

We call this Advantage relabeling (Algorithm 3), a more efficient, albeit less accurate, version of AIR.
Empirically, Advantage relabeling often performs as well as AIR and has a runtime of only O(KT),
but relies on the value function V'™ more than AIR does. We reuse the twin QQ-networks from SAC as
our value function estimator.

Vﬂ-(sv Z) = min(Ql(sa 7T(S|Z), Z)v QQ(S,’/T(S|Z), Z)) (7)

In our experiments, we simply select m = 1 task out of K = 100 sampled task variables for all
environments and both relabeling strategies. .

4 Experimental Evaluation

In this section, we describe our environments and discuss our central hypothesis: does relabeling
improve performance? We also compare generalized hindsight against HER and a concurrently
released hindsight relabeling algorithm, and examine the accuracy of different relabeling strategies.

4.1 Environments

Multi-task RL with a generalized family of reward parameterizations does not have existing bench-
mark environments. However, since sparse goal-conditioned RL has benchmark environments [55],
we build on their robotic manipulation framework to make our environments. The key difference
in the environment setting between ours and Plappert et al. [55] is that in addition to goal reaching,
we have a dense reward parameterization for practical aspects of manipulation like energy consump-
tion [42] and safety [10]. We show our environments in Figure 2 and clarify their dynamics and
rewards in Appendix B. These environments will be released for open-source access.

4.2 Does Relabeling Help?

To understand the effects of relabeling, we compare our technique with the following standard
baseline methods:

4 20
80
3 15
c
Seo 2 10
[
['4
$a0 1 °
o
B 0 WNV‘M 0
20 s I
-1 AT atdiiin -5
o -10
9 1 2 3 4 0 5 10 15 20 25 0.0 02 04 06 08 10
Steps 1ed Steps 1e3 Steps 1e6
(a) PointTrajectory (b) PointReacher (c) Fetch
4000 17500
3000
15000
3000
£ 12500
g 20 2000 10000
[}
g '/N/ 7500
€ 10001 1000 .\ww/v‘
< 5000
0 2500
ol
0
-1000
0.0 0.5 1.0 15 2.0 00 05 10 15 20 0.0 0.5 1.0 15 2.0
Steps 1e6 Steps 1e6 Steps 1e6
(d) HalfCheetahMultiObjective (e) AntDirection (f) HumanoidDirection
Random —— None —— HER HIPI-RL —— Advantage (ours) —— AIR (ours)

Figure 3: Learning curves comparing Generalized Hindsight algorithms to baseline methods. For environments
with a goal-reaching component, we also compare to HER. The error bars show the standard deviation of the
performance across 10 random seeds.

e No relabeling (None): as done in Yu et al. [71], we train with SAC without any relabeling.

o Intentional-Unintentional Agent (Random) [9]: when there is only a finite number of tasks,
IU relabels a trajectory with every task variable. Since our space of tasks is continuous, we
relabel with random z’ ~ 7. This allows for information to be shared across tasks, albeit in
a more diluted form. We perform further analysis of this baseline in Section 4.4.

e HER: for goal-conditioned tasks, we use HER to relabel the goal portion of the task with the
future relabeling strategy. We leave the non-goal portion unchanged.

e HIPI-RL [17]: a concurrently released method for multi-task relabeling that resamples 2’
every batch using a relabeling distribution proportional to the exponentiated ()-value. We
discuss the differences between GH and HIPI-RL in Section 4.5.

We compare the learning performance for AIR and Advantage Relabeling with these baselines on
our suite of environments in Figure 3. On all tasks, AIR and Advantage Relabeling outperform the
baselines in both sample-efficiency and asymptotic performance. Both of our relabeling strategies
outperform the Intentional-Unintentional Agent, implying that selectively relabeling trajectories with
a few carefully chosen 2’ is more effective than relabeling with many random tasks. Collectively, these
results show that AIR can greatly improve learning performance, even on highly dense environments
such as HalfCheetah, where learning signal is readily available. Advantage performs at least as well
as AIR on all environments except PointReacher, Fetch, and Humanoid, where its performance is
close. Thus, Advantage may be preferable in many scenarios, as it is 5-15% faster to train.

4.3 How does Generalized Hindsight compare to HER?

HER is, by design, limited to goal-reaching environments. For environments such as HalfChee-
tahMultiObjective, HER cannot be applied to relabel the weights on velocity, rotation, height, and
energy. However, we can compare AIR with HER on the partially goal-reaching environments
PointReacher and Fetch. Figure 3 shows that AIR achieves higher asymptotic performance than HER
on both these environments. Figure 4 demonstrates on PointReacher how AIR can better choose
the non-goal-conditioned parts of the task. Both HER and AIR place the relabeled goal around the
terminus of the trajectory. However, only AIR understands that the imagined obstacle should be
placed above the goal, since this trajectory becomes an optimal example of how to reach the new
goal while avoiding the obstacle. HER has no such mechanism for precisely choosing an interesting

HER

Original Task \

Relabeling

Figure 4: Top left: comparison of AIR vs HER. Red denotes the goal, and blue the obstacle. AIR places the
relabeled obstacle within the curve of the trajectory, since this is the only way that the curved path would
be better than a straight-line path (that would come close to the relabeled obstacle). Right and bottom left:
visualizations of learned behavior on Ant and Half Cheetah, respectively.

obstacle location, since the obstacle does not affect the agent’s ability to reach the goal. Thus, HER
either leaves the obstacle in place or randomly places it, and it learns more slowly as a result.

4.4 Hindsight Bias and Random Relabeling

Off-policy reinforcement learning assumes that the transitions (s;, as, s;+1) are drawn from the
distribution defined by the current policy and the transition probability function. Hindsight relabeling
changes the distribution of transitions in our replay buffer, introducing hindsight bias for stochastic
environments. This bias has been documented to harm sample-efficiency for HER [37], and is likely
detrimental towards the performance of Generalized Hindsight.

In this section, we examine the tradeoffs between seeing more relevant data with relabeling, and
incurring hindsight bias. A particularly interesting baseline is to randomly replace 80% of each
minibatch with random tasks. In principle, this occasionally relabels transitions with good tasks,
while avoiding hindsight bias. Note that this is different from the IU baseline, which relabels each
transition only once.

We show results in Figure 5. Continual random relabeling
accelerated learning in the first 25% of training relative to

PointTrajectory

the IU baseline in the paper, but saturated to roughly the g
same asymptotic performance. There may be several rea- _
sons why this baseline doesn’t match GH’s performance. 2 60
o
First, random relabeling makes it difficult to see data that & 4|
. @©
can be used to improve the policy. Later in training, ran- g
dom relabeling rarely provides any novel transitions that < 20| — Random-lU
are better than those from the policy. This explains why [Random-Batch
. . .. —— Advantage (ours)
learning plateaus and it underperforms GH: transitions are oL ‘ : ‘
: : : : : ; 0 20 40 60
matchefi with the right tasks an increasingly tiny fraction Steps 163
of the time. Figure 5: Comparing random relabeling
Second, the distribution of data in each minibatch is far Strategies.

from the state-action distribution of our policy. Fujimoto

et al. [21] study a similar mismatch problem when training off-policy methods using data collected
from a different policy (here, relabeled data is from the policy for a different task). Random relabeling
introduces large training mismatch error, whereas any Bellman backup error from approximate IRL
relabeling is optimistic and will encourage exploration in those areas of the MDP. In goal-reaching
tasks, HER introduces small training mismatch error, since the relabeled transitions are always
relevant to the relabeled goal. Similarly, as long as we balance “true” transitions and transitions
relabeled with GH, we can obtain significant boosts in learning, even if we introduce hindsight bias.
This need for balance is why we add each trajectory into the replay buffer with the original task z,
in addition to a relabeled 2/, and is likely why previous relabeling methods Andrychowicz et al. [2]
and Nair et al. [47] relabel only 80% and 50% of the transitions, respectively. In more stochastic

led Latent

Relabeled Latent
Relabeled Latent
o
%

00] @ PRI

0.0] seximaiEi
00 02 04 06 08 10 12 14 16 00 02 04 06 08 10 12 14 16 00 02 04 06 08 1.0 12 14 16
Original Latent Original Latent Original Latent
(a) Approximate IRL (b) Advantage Relabeling (c) Reward Relabeling

Figure 6: Comparison of relabeling fidelity on optimal trajectories. We roll out a trained PointReacher policy on
1000 randomly sampled tasks z, and apply each relabeling method to select from K = 100 randomly sampled
tasks v. For approximate IRL, we compare against N = 10 prior trajectories. The x-axis shows the weight on
energy for the task z used for the rollout, while the y-axis shows the weight on energy for the relabeled task 2’.
Note that goal location, obstacle location, and weights on their rewards/penalties are varying as well, but are not
shown. Closer to to the line y = x indicates higher fidelity, since it implies 2’ ~ z*.

environments, we would likely need to address hindsight bias by extending methods like ARCHER
[37], or by applying the opposite of our method to present failed trajectories for each task, in addition
to successful ones, as negative samples. Future work on gaining a better theoretical understanding of
hindsight bias and the tradeoffs of relabeling would be highly useful for designing better algorithms.

4.5 Comparison to HIPI-RL

Eysenbach et al. [17], concurrently and independently, have released a method with similar motivation
based on max-entropy IRL [72], rather than max-margin IRL [58] as ours is. Their method (HIPI-RL)
repeatedly relabels each transition by sampling z from the optimal relabeling distribution of tasks
q(z|s¢, ar) that minimizes D, (q(z, 7)||p(2, 7)), where p is the target joint distribution over tasks
and trajectories.

q(z|st, at) o eQ(s,a,z)flog Z(z) (8)
where Z(z) is the per-task normalizing constant.

We compare HIPI-RL to GH in Figure 3, and find that ours is more sample-efficient and may be
preferable for several reasons. Using the ()-function to relabel in HIPI-RL presents a chicken-and-
the-egg problem where the Q-function needs to know that (s, a, z) is large before we relabel the
transition with z; however, it is difficult for the Q-function to do so unless the policy is already good
and nearby data is plentiful. Furthermore, relabeling each transition is slow — if we see each transition
an average of 10 times, then this uses 10 times the relabeling compute. Empirically, HIPI-RL takes
roughly 4 x longer to train overall for simpler environments like PointTrajectory. HIPI-RL can even
take up to 11 x longer on complex environments as HalfCheetah, Ant, and Humanoid, for about 2
weeks of training time. These environments require large batch sizes to stabilize training, which
means that we need to do more transition relabeling overall. In comparison, Generalized Hindsight
can be interpreted as doing maximum-likelihood estimation of the task z on a trajectory-level basis.
This is computationally faster and may have higher relabeling fidelity, due to lower reliance on the
accuracy of the @)-function.

4.6 Analysis of Relabeling Fidelity

Approximate IRL, advantage relabeling, and reward relabeling are all approximate methods for
finding the optimal task z* that a trajectory is (close to) optimal for. As a result, an important
characteristic is their fidelity, i.e. how close the 2’ they choose is to the true z*. In Figure 6, we
compare the fidelities of these three algorithms. Approximate IRL comes fairly close to reproducing
the true z*, albeit a bit noisily because it relies on the comparison to N past trajectories. In the
limit, as IV approaches infinity, AIR would find 2’ = 2* perfectly, since it directly maximizes the
max-margin IRL objective when comparing against infinite random trajectories in the limit. Thus,
the cache size IV for AIR should be chosen to balance the relabeling computation time against the
relabeling fidelity.

Advantage relabeling is slightly more precise, but fails for large energy weights, likely because the
value function is not precise enough to differentiate between these tasks. Finally, reward relabeling
does poorly, since it naively assigns 2z’ solely based on the trajectory reward, not how close the
trajectory reward is to being optimal.

5 Related Work

5.1 Multi-task, Transfer, and Hierarchical Learning

Learning models that can share information across tasks has been concretely studied in the context
multi-task learning [11], where models for multiple tasks are simultaneously learned. More recently,
Kokkinos [35] and Doersch and Zisserman [14] look at shared learning across visual tasks, while
Devin et al. [13] and Pinto and Gupta [53] look at shared learning across robotic tasks. Transfer
learning [50, 68] focuses on transferring knowledge from one domain to another. One of the simplest
forms of transfer is finetuning [22], where instead of learning a task from scratch it is initialized on a
different task. Several other works look at more complex forms of transfer [70, 28, 4, 60, 36, 18, 23,
29]. In the context of RL, transfer learning [67] research has focused on learning transferable features
across tasks [51, 5, 49]. One line of work by [59, 31, 13] has focused on network architectures that
improves transfer of RL policies. Hierarchical reinforcement learning [44, 6] is another framework
amenable for multi-task learning. Here the key idea is to have a hierarchy of controllers. One
such setup is the Options framework [66] where the higher level controllers break down a task into
sub-tasks and choose a low-level controller to complete each sub-task. Unsupervised learning of
general low-level controllers has been a focus of recent research [19, 16, 62]. Variants of the Options
framework [20, 39] can learn transferable primitives that can be used across a wide variety of tasks,
either directly or after finetuning. Hierarchical RL can also be used to quickly learn how to perform
a task across multiple agent morphologies [26]. All of these techniques are complementary to our
method. They can provide generalizability to different dynamics and observation spaces, while
Generalized Hindsight can provide generalizability to different reward functions.

5.2 Hindsight in Reinforcement Learning

Hindsight methods have been used for improving learning across as variety of applications.
Andrychowicz et al. [2] use hindsight to efficiently learn on sparse, goal-conditioned tasks [54, 52, 3].
Nair et al. [47] approach goal-reaching with visual input by using hindsight relabeling within a
learned latent space encoding for images. Several hierarchical methods [38, 45] train a low-level
policy to achieve subgoals and a higher-level controller to propose those subgoals. These methods use
hindsight relabeling to help the higher-level learn, even when the low-level policy fails to achieve the
desired subgoals. Generalized Hindsight could be used to allow for richer low-level reward functions,
potentially allowing for more expressive hierarchical policies.

5.3 Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) has had a rich history of solving challenging robotics prob-
lems [1, 48]. More recently, powerful function approximators have enabled more general purpose
IRL. For instance, Ho and Ermon [27] use an adversarial framework to approximate the reward
function. Li et al. [40] extend this idea by learning reward functions on demonstrations from a
mixture of experts. Our relabeling strategies currently build on top of max-margin IRL [58], but our
central idea is orthogonal to the choice of IRL technique. Indeed, as discussed in subsection 4.5,
Eysenbach et al. [17] concurrently and independently apply max-entropy IRL [72] towards relabeling.
Future work should examine what scenarios each approach is best suited for.

6 Conclusion

In this work, we have presented Generalized Hindsight, a relabeling algorithm for multi-task RL
based on approximate IRL. We demonstrate how efficient relabeling strategies can significantly
improve performance on simulated navigation and manipulation tasks. Through these first steps, we
believe that this technique can be extended to multi-task learning in other domains like real world
robotics, where a balance between different specifications, such as energy use or safety, is important.

Broader Impact

Our work investigates how to perform sample-efficient multi-task reinforcement learning. Generally,
this goes against the trend of larger models and compute-hungry algorithms, such as state-of-the-art
results in Computer Vision [12], NLP [8], and RL [69].

This will have several benefits in the short term. Better sample efficiency decreases the training time
required for researchers to run experiments and for engineers to train models for production. This
reduces the carbon footprint of the training process, and increases the speed at which scientists can
iterate and improve on their ideas. Our algorithm enables autonomous agents to learn to perform a
wide variety of tasks at once, which widens the range of feasible applications of reinforcement learning.
Being able to adjust the energy consumption, safety priority, or other reward hyperparameters will
allow these agents to adapt to changing human preferences. For example, autonomous cars may be
able to learn to how avoid obstacles and adjust their driving style based on passenger needs.

Although our work helps make progress towards generalist RL systems, reinforcement learning re-
mains impractical for most real-world problems. Reinforcement learning capabilities may drastically
increase in the future, however, with murkier impacts. RL agents operating in the real world could
improve the world by automating elderly care, disaster relief, cleaning and disinfecting, manufactur-
ing, and agriculture. These agents could free people from menial, physically taxing, or dangerous
occupations. However, as with most technological advances, developments in reinforcement learning
could exacerbate income inequality, far more than the industrial or digital revolutions have, as profits
from automation go to a select few. Reinforcement learning agents are also susceptible to reward
misspecification, optimizing for an outcome that we do not truly want. Police robots instructed
to protect the public may achieve this end by enacting discriminatory and oppressive policies, or
doling out inhumane punishments. Autonomous agents also increase the technological capacity for
warfare, both physical and digital. Escalating offensive capabilities and ceding control to potentially
uninterpretable algorithms raises the risk for international conflict to end in human extinction. Further
work in Al alignment, interpretability, and safety is necessary to ensure that the benefits of strong
reinforcement learning systems outweigh their risks.

Acknowledgments and Disclosure of Funding

We thank AWS for computing resources. We also gratefully acknowledge the support from Berkeley
DeepDrive, NSF, and the ONR Pecase award.

References

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, page 1. ACM,
2004. 3,9

[2] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
P. Abbeel, and W. Zaremba. Hindsight experience replay. NIPS, 2017. 2,3,4,7,9

[3] M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation. arXiv preprint
arXiv:1808.00177,2018. 9

[4] Y. Aytar and A. Zisserman. Tabula rasa: Model transfer for object category detection. In 2011
international conference on computer vision, pages 2252-2259. IEEE, 2011. 9

[5] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van Hasselt, and D. Silver.
Successor features for transfer in reinforcement learning. In Advances in neural information
processing systems, pages 40554065, 2017. 9

[6] A. G. Barto, S. Singh, and N. Chentanez. Intrinsically motivated learning of hierarchical
collections of skills. In Proceedings of the 3rd International Conference on Development and
Learning, pages 112-19, 2004. 9

[7] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016. 16, 17

10

[8] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020. 10

[9] S. Cabi, S. G. Colmenarejo, M. W. Hoffman, M. Denil, Z. Wang, and N. De Freitas. The
intentional unintentional agent: Learning to solve many continuous control tasks simultaneously.
arXiv preprint arXiv:1707.03300, 2017. 6

[10] S. Calinon, I. Sardellitti, and D. G. Caldwell. Learning-based control strategy for safe human-
robot interaction exploiting task and robot redundancies. In 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 249-254. IEEE, 2010. 5

[11] R. Caruana. Multitask learning. Machine learning, 28(1):41-75, 1997. 9

[12] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709, 2020. 10

[13] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine. Learning modular neural network
policies for multi-task and multi-robot transfer. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 2169-2176. IEEE, 2017. 9

[14] C. Doersch and A. Zisserman. Multi-task self-supervised visual learning. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2051-2060, 2017. 9

[15] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement
learning for continuous control. In International Conference on Machine Learning, pages 1329—
1338, 2016. 1

[16] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function. arXiv preprint arXiv:1802.06070, 2018. 9

[17] B. Eysenbach, X. Geng, S. Levine, and R. Salakhutdinov. Rewriting history with inverse rl:
Hindsight inference for policy improvement. arXiv preprint arXiv:2002.11089, 2020. 2, 6, 8,9

[18] B.Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adaptation
using subspace alignment. In Proceedings of the IEEE international conference on computer
vision, pages 2960-2967, 2013. 9

[19] C. Florensa, Y. Duan, and P. Abbeel. Stochastic neural networks for hierarchical reinforcement
learning. arXiv preprint arXiv:1704.03012,2017. 9

[20] K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman. Meta learning shared hierarchies. arXiv
preprint arXiv:1710.09767,2017. 9

[21] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-
ration. arXiv preprint arXiv:1812.02900, 2018. 7

[22] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 580-587, 2014. 9

[23] R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object recognition: An unsupervised
approach. In 2011 international conference on computer vision, pages 999-1006. IEEE, 2011.
9

[24] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018. 1,
15,18

[25] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018. 18

[26] D.J. Hejna III, P. Abbeel, and L. Pinto. Hierarchically decoupled imitation for morphological
transfer. arXiv preprint arXiv:2003.01709, 2020. 9

11

[27] J.Ho and S. Ermon. Generative adversarial imitation learning. In Advances in neural information
processing systems, pages 4565-4573, 2016. 9

[28] J. Hoffman, T. Darrell, and K. Saenko. Continuous manifold based adaptation for evolving
visual domains. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 867-874, 2014. 9

[29] 1.-H. Jhuo, D. Liu, D. Lee, and S.-F. Chang. Robust visual domain adaptation with low-rank
reconstruction. In 2012 IEEE conference on computer vision and pattern recognition, pages
2168-2175. IEEE, 2012. 9

[30] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal
of artificial intelligence research, 1996. 15

[31] K. Kansky, T. Silver, D. A. Mély, M. Eldawy, M. Lazaro-Gredilla, X. Lou, N. Dorfman, S. Sidor,
S. Phoenix, and D. George. Schema networks: Zero-shot transfer with a generative causal
model of intuitive physics. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1809-1818. JMLR. org, 2017. 9

[32] A.Karni, G. Meyer, C. Rey-Hipolito, P. Jezzard, M. M. Adams, R. Turner, and L. G. Ungerleider.
The acquisition of skilled motor performance: fast and slow experience-driven changes in
primary motor cortex. Proceedings of the National Academy of Sciences, 95(3):861-868, 1998.
1

[33] E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza. Deep
drone racing: Learning agile flight in dynamic environments. arXiv preprint arXiv:1806.08548,
2018. 1

[34] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 18

[35] I. Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and
high-level vision using diverse datasets and limited memory. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6129-6138, 2017. 9

[36] B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: Domain adaptation
using asymmetric kernel transforms. In CVPR 2011, pages 1785-1792. IEEE, 2011. 9

[37] S. Lanka and T. Wu. Archer: Aggressive rewards to counter bias in hindsight experience replay.
arXiv preprint arXiv:1809.02070, 2018. 7, 8

[38] A.Levy, R. Platt, and K. Saenko. Hierarchical actor-critic. arXiv preprint arXiv:1712.00948,
2017. 9

[39] A. Li, C. Florensa, I. Clavera, and P. Abbeel. Sub-policy adaptation for hierarchical rein-
forcement learning. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=ByeWogStDS. 9

[40] Y. Li, J. Song, and S. Ermon. Infogail: Interpretable imitation learning from visual demon-
strations. In Advances in Neural Information Processing Systems, pages 3812-3822, 2017.
9

[41] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.
15

[42] D. Meike and L. Ribickis. Energy efficient use of robotics in the automobile industry. In 2011
15th international conference on advanced robotics (ICAR), pages S07-511. IEEE, 2011. 5

[43] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 2015. 1, 15

[44] J. Morimoto and K. Doya. Acquisition of stand-up behavior by a real robot using hierarchical
reinforcement learning. Robotics and Autonomous Systems, 36(1):37-51, 2001. 9

12

https://openreview.net/forum?id=ByeWogStDS

[45] O.Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
In Advances in Neural Information Processing Systems, pages 3303-3313, 2018. 9

[46] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural network dynamics for model-
based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 7559-7566. IEEE, 2018. 1

[47] A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine. Visual reinforcement learning
with imagined goals. In Advances in Neural Information Processing Systems, pages 9191-9200,
2018. 7,9

[48] A.Y.Ng,S.J. Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
page 2, 2000. 3,9

[49] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian. Deep decentralized multi-task
multi-agent reinforcement learning under partial observability. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 2681-2690. IMLR. org, 2017.
9

[50] S.J.Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on knowledge and
data engineering, 22(10):1345-1359, 2009. 9

[51] E. Parisotto, J. L. Ba, and R. Salakhutdinov. Actor-mimic: Deep multitask and transfer
reinforcement learning. arXiv preprint arXiv:1511.06342, 2015. 9

[52] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic
control with dynamics randomization. 2018 IEEE International Conference on Robotics and
Automation (ICRA), May 2018. 9

[53] L. Pinto and A. Gupta. Learning to push by grasping: Using multiple tasks for effective learning.
In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 2161-2168.
IEEE, 2017. 9

[54] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel. Asymmetric actor critic
for image-based robot learning. arXiv preprint arXiv:1710.06542, 2017. 9

[55] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell, J. Schneider, J. Tobin,
M. Chociej, P. Welinder, et al. Multi-goal reinforcement learning: Challenging robotics
environments and request for research. arXiv preprint arXiv:1802.09464, 2018. 5, 16

[56] B.T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 1992. 15

[57] D. Precup, R. S. Sutton, and S. Dasgupta. Off-policy temporal-difference learning with function
approximation. In ICML, 2001. 3

[58] N.D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. Maximum margin planning. In Proceedings
of the 23rd international conference on Machine learning, pages 729-736, 2006. 3, 4, 8, 9

[59] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu,
R. Pascanu, and R. Hadsell. Progressive neural networks. arXiv preprint arXiv:1606.04671,
2016. 9

[60] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains.
In European conference on computer vision, pages 213-226. Springer, 2010. 9

[61] T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approximators. In
ICML 2015. 3

[62] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-aware unsupervised
discovery of skills. arXiv preprint arXiv:1907.01657,2019. 9

[63] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy
gradient algorithms. In ICML 2014. 15

13

[64] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. Nature, 550
(7676):354-359, 2017. 1

[65] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1. MIT press
Cambridge, 1998. 15

[66] R.S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181-211, 1999. 9

[67] M. E. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(Jul):1633—-1685, 2009. 9

[68] L. Torrey and J. Shavlik. Transfer learning. In Handbook of research on machine learning
applications and trends: algorithms, methods, and techniques, pages 242-264. IGI Global,
2010. 9

[69] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 575(7782):350-354, 2019. 10

[70] J. Yang, R. Yan, and A. G. Hauptmann. Adapting svm classifiers to data with shifted distributions.
In Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007), pages
69-76. IEEE, 2007. 9

[71T7 T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. arXiv preprint
arXiv:1910.10897, 2019. 6, 17

[72] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. 2008. 3, 8,9

14

